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This structure occurs even for an axisymmetric plasma boundary, 
i.e. it is self-organized.
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Axis state
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P. Martin et al., Nuclear Fusion 49, 104019 (2009).
D. Terranova et al., PPCF 52, 124023 (2010).
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Figure 1. Safety factor profiles for an axisymmetric (dashed) and helical (continuous) RFP.
Resonance radii are shown with dots. Note that the ι = 7 resonance is lost in the helical case.
(Colour online.)

associated with the dominant mode (this single helical equilibrium—SHEq—model is
described in [LOR09] and in [SHEq]). Even though the model is simple in its ingredients
and neglects pressure effects, the results are good in most cases and highlight the need for a
full 3D approach not only for equilibrium but also for stability and transport. Furthermore
this approach allowed the determination of the safety factor profile with respect to the helical
axis that is different from the monotonic profile of the axisymmetric RFP (figure 1): helical
states are characterized by a null/reverse magnetic shear in the region corresponding to the
temperature barrier region [ME-EPS09] and the dominant helicity is no longer resonant.

As the magnetic configuration shares similarities with the stellarator, the VMEC spectral
code [HW83] was considered as a complementary equilibrium study of the helical RFP. To
this end the code had to be modified in order to correctly deal with the RFP toroidal field
reversal: the toroidal flux is non-monotonic and cannot be used as a flux surface label as is
customary when dealing with the tokamak and stellarator configurations. The code is run
providing as input data global plasma quantities such as plasma current, total toroidal flux,
q and pressure profiles, as well as a helical axis guess [PB09] (inferred from experimental
measurements such as Te profile or SXR tomographic reconstruction). The solution is then
determined in a fixed-boundary mode, i.e. defining the shape of the last closed flux surface,
LCFS. To reduce as much as possible the harmonic content, VMEC can be run with a defined
toroidal machine periodicity (Nfp) so that only this mode and its harmonics are considered.
The value of Nfp in a stellarator is defined by the structure of the device, while in the helical
RFP it corresponds to the periodicity selected by the plasma itself as dominant mode of the
spectrum and is the most internally resonant mode (in RFX-mod the m = 1, n = 7, so that
Nfp = 7). While the issue of the LCFS will be considered in the next section, here we would
like to underline the key role of the safety factor profile that is an input constraint to VMEC
and has to be determined independently. This is done either from the SHEq equilibrium in a
semi-analytical way or numerically estimated with the FLiT [INN07] or ORBIT [ORBIT] field
line tracing codes following field lines as they wind around the helical axis. Both solutions
provide the same result though the second one requires much more computational time.

The present RFP version of VMEC was benchmarked against a typical RFP equilibrium
[ISHW09] both in the axisymmetric [ZT04] and in the helical (from SHEq) cases showing a
good match between the codes when run with the same constraints and boundary conditions.
Currently VMEC is being run to provide equilibria as close as possible to experimental
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…but the safety factor profile must be carefully chosen
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Ideal MHD (with assumed nested flux surfaces) cannot 
model the Double-Helical Axis state. 
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50 Taylor's Theory of Plasma Relaxation 

f (Vl/>xA).ndS = I V.(Vl/>xA) dV (3.8a)sz Vz 

= r B· V¢dV = O. (3.8b)Jvz 

Thus each of the integrals Kl is invariant in a perfectly conducting 
plasma. This result, first obtained by Woltjer [1958], depends only on the 
JOundary condition n . B =0, and on the relationship E =-v x B + Vl/>. 

fhe Topological Properties of the Woltjer Constraints 

We are thus motivated to seek states that minimize W subject to the 
nfinity of constraints Kl = constant, for o:s; I :s; 00. Before proceeding, 
lowever, we remark on the physical significance of these constraints, as 
)riginally given by Moffatt [1969, 1978], and later by Berger and Field [1984], 
md by Taylor [1986]. Consider two infinitesimal flux tubes that follow two 
:losed space curves Cz and C2, with magnetic fluxes <PI and l1>2, and volumes 
11 and V2, as shown in Figure 3-1. These flux tubes link each other once. 

Figure 3-1. Sketch of linked flux tubes. 

3.2 Energy Minimization with the Constraints of Ideal MHO 51 

Then, for the first flux tube, VI, we can write BdV = B'ndS dl = <Pldl, and 
hence 

Kl = f A·BdV = <Pt" A·d1 <Pt<1>:2, (3.9)
VI 7CI 

while, for the second flux tube, V2, we have 

K2 = r A·BdV = <1>:2" A·d1 = <Pt<1>:2 (3.10)
JV2 7C2 

Thus, K1 and K2 measure the linkage of the two tubes of flux. If the 
tubes were not interlinked, the line integrals would vanish, as would Kl and 
K2; if they had been linked N times, we would find K1 = K2 = ± N <Pll1>2, with 
the sign determined by the "handedness" of the linkage. A single knotted 
flux tube with flux <P, and a flux tube with two twists, have also the same 
helicity. The integrals Kl are thus seen to measure a topological property of 
the field. The invariance of the Kl with respect to ideal MHO motions (for 
which E = - v x B + Vl/» is another expression of the well known property of 
integrity of flux tubes, as derived in Chapter 2: they cannot be broken or 
reconnected. The topological complexity of the field, once initially 
established, is retained for all time. 

3.2 Energy Minimization with the Constraints of Ideal MHO 

We now continue with the minimization of W. We have just shown 
that ideal MHO, in which E = -v x B + V l/>, implies that the Kl are constant. 
We may thus seek to directly minimize W with respect to this infinity of 
constraints. This requires an extension of the usual Lagrange multiplier 
technique [Taylor, 1986]. However, it can be shown [Freidberg, 1987] that this 
minimization procedure is identically equivalent to the unconstrained 
minimization of W under the assumption of ideal MHO. (Thus, the 
statement that W is minimized while the Kl remained fixed is equivalent to 
the assumption of ideal MHO, and vice versa: each implies the other.) Since 
the latter is mathematically simpler, we adopt this approach. Furthermore, 
we assume that the internal energy density is much less than the magnetic 
energy density, or f3 = pi B2« 1. Then the minimization of W reduces to the 
minimization of the magnetic energy. We discuss this point further later in 
this chapter. 

To perform the minimization, we imagine an infinitesimal 
displacement of the plasma away from some static background state, and then 
calculate the resulting change in energy. Setting this energy change to zero 
determines a differential equation that must be satisfied by the background 
magnetic field. The imagined displacement is arbitrary; its effect on the 
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Multiregion Relaxed MHD (MRxMHD) 
approaches ideal MHD as N→∞

s

p

N

∆

G. Dennis et al., Phys. Plasmas 20, 032509 (2013).[1]
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Reconstructed Poincaré plots

Quasi-single 
helicity

Single Helical 
Axis

Top figure source: P. Martin et al., Nuclear Fusion 49, 104019 (2009).
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Reconstructed Poincaré plots

Poincaré section Safety factor profile (q)



1.5 2 2.5
−0.05

0

0.05

0.1

0.15

0.2

R

Sa
fe

ty
 fa

ct
or

 (q
)

1.5 2 2.5
−0.05

0

0.05

0.1

0.15

0.2

R

Sa
fe

ty
 fa

ct
or

 (q
)

Reconstructed Poincaré plots

Poincaré section Safety factor profile (q)



1.5 2 2.5
−0.05

0

0.05

0.1

0.15

0.2

R

Sa
fe

ty
 fa

ct
or

 (q
)

1.5 2 2.5
−0.05

0

0.05

0.1

0.15

0.2

R

Sa
fe

ty
 fa

ct
or

 (q
)

1.5 2 2.5
−0.05

0

0.05

0.1

0.15

0.2

R

Sa
fe

ty
 fa

ct
or

 (q
)

Reconstructed Poincaré plots

Poincaré section Safety factor profile (q)



1.5 2 2.5
−0.05

0

0.05

0.1

0.15

0.2

R

Sa
fe

ty
 fa

ct
or

 (q
)

1.5 2 2.5
−0.05

0

0.05

0.1

0.15

0.2

R

Sa
fe

ty
 fa

ct
or

 (q
)

1.5 2 2.5
−0.05

0

0.05

0.1

0.15

0.2

R

Sa
fe

ty
 fa

ct
or

 (q
)

1.5 2 2.5
−0.05

0

0.05

0.1

0.15

0.2

R

Sa
fe

ty
 fa

ct
or

 (q
)

Reconstructed Poincaré plots

Poincaré section Safety factor profile (q)



1.5 2 2.5
−0.05

0

0.05

0.1

0.15

0.2

R

Sa
fe

ty
 fa

ct
or

 (q
)

1.5 2 2.5
−0.05

0

0.05

0.1

0.15

0.2

R

Sa
fe

ty
 fa

ct
or

 (q
)

1.5 2 2.5
−0.05

0

0.05

0.1

0.15

0.2

R

Sa
fe

ty
 fa

ct
or

 (q
)

1.5 2 2.5
−0.05

0

0.05

0.1

0.15

0.2

R

Sa
fe

ty
 fa

ct
or

 (q
)

Reconstructed Poincaré plots

Poincaré section

1.5 2 2.5
−0.05

0

0.05

0.1

0.15

0.2

R

Sa
fe

ty
 fa

ct
or

 (q
)

Safety factor profile (q)



MRxMHD gives a good qualitative explanation of the 
high-confinement state in Reversed Field Pinches

With a minimal model we reproduced the helical pitch and 
structure of the Quasi-Single Helicity state in RFP

MRxMHD is a well-formulated model that interpolates 
between Taylor’s theory and ideal MHD

With MRxMHD we reproduced the second magnetic axis.  
This is the first equilibrium model to be able to reproduce 

the Double-Axis state.

Conclusions

G. Dennis et al., PRL 111, 055003 (2013).[1]



Considering RFX helical states with pressure

More detailed experimental comparisons with RFX

Future Work

Generalize MRxMHD to include flow

Apply the same methodology to 3D structures in 
tokamaks, in particular, the sawtooth crash


