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Overview
A simple kinetic transport theory predicts strong linear dependence
of edge intrinsic toroidal rotation on R̄X

.
= (RX −Rmid)/a, with RX

the major-radial position of the X-point.
I “Edge” means ρN & 0.85, both inside and outside the LCFS,

where spatial variation is rapid.
I An analytic calculation yields a simple formula vTh for the

toroidal rotation at the core-edge boundary.

A series of Ohmic L-mode shots on TCV, scanning RX , showed:
I Entire rotation profile shifts rather rigidly as RX changes.
I Linear dependence of edge rotation on RX (X)
I Rotation sign change for adequately outboard X-point (X)
I Reasonable quantitative agreement between predicted and

measured rotation (X)
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Outline

I Theoretical background
I Assumptions
I Cartoon of model
I Ingredients of analytical calculation
I Resulting predictions

I Description of experiment
I TCV features
I Discharge geometry and evolution

I Results
I Rotation profiles for different RX
I Qualitative and quantitative comparison with theory
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Assumption: In the outer edge and SOL, turbulent
viscosity χ turb

φ
decreases with r .

Focus:
I outer edge and SOL, ρN & 0.85

I region of steep gradients
I strongly turbulent viscosity

I χφ ∼ ṽ2
Erτac ∼ ṽ2

Er/k⊥ṽEr ∼ c φ̃/B
I φ̃ is unnormalized, drops with Te

Probe measurements show φ̃ decreases
with r in the outer edge and SOL, e.g.:

I NSTX (Boedo PoP’14, upper, Ẽθ )
I TCV (lower, Te)
I C-mod (LaBombard NF’05)
I AUG (Endler NF’95, Horacek NF’10)
I JET (Silva RSI’04)
I W7-AS (Bleuel NJP’02)
I TEXT (Ritz PRL’90)
I Caltech (Zweben NF’85)
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Theory: Orbit-averaged diffusivity is different for co- and
counter-current ions.

co

ctr co

ctr
Edge rotation may become counter-current for outboard X-point!
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A simple kinetic transport theory models edge intrinsic
rotation.

∂t fi + v‖∂θ fi −δv2
‖ (sinθ)∂x fi −∂x [χ (x ,θ)∂x fi ] = 0

Extremely simple kinetic transport model contains only:

0

2π

x

θ

v‖>0:fi=0

periodic
⇐=
fi→fi0

=⇒
fi→0

x
θ

I Free flow along the magnetic field
I Radially-directed curvature drift
I Radial diffusion due to turbulence

I Diffusivity stronger outboard, decays in x

I Two-region geometry

I Confined edge: periodic in θ

I SOL: pure outflow to divertor legs

After some variable transforms, obtain steady-state equation
∂

θ̄
fi = χeff

(
v‖
)

∂x̄

(
e−x̄∂x̄ fi

)
,

in which χeff depends on the sign of v‖.
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Vanishingmomentumflux sets intrinsic rotation at boundarywith core.

0 =
∫

∞

−∞

(
vTh + v‖

)
Γ
(
v‖
)
dv‖ = vThΓp + Π

RX

vTh

vti
∆=

qΡ
i

LΦ

∆=0.25

∆=0.1

∆=0.05
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vTh =− Π
Γp vti ≈ 1.04

( 1
2dc − R̄X

) qρi
Lφ

vti ∝
Ti

BθLφ

Reproduces known results: ∝ Ti , ∝ 1/Bθ ∝ 1/Ip, typically co-current
Predicts linear dependence on R̄X

.
= (RX −Rmid)/a⇒can change sign!
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Description
Results

TCV is well-suited to investigateRX -dependent edge rotation.
Extreme geometric flexibility:

I Vary RX from inner to outer wall
I Both LSN and USN

Diagnostic NBI for CXRS on C6+:
I applies negligible torque (∼1%τint)
I LFS & HFS viewing chords
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Parameter ranges for this experiment:
X-point major radius (RX ) 0.675–1.085m

Major radius (R0) 0.88–0.89m

Minor radius (a) 0.22–0.23m

Edge safety factor (qeng) 3.6–4

Plasma current (Ip) 150–155kA

Electron density (ne,avg) 1.4–2.2×1019m−3

Elongation (κ) 1.35–1.45

Triangularity -0.3 –+0.4 Figures from A. Bortolon
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Discharges with RX from inner to outer wall, USN and LSN.
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Example discharge with X-point position sweep
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I All shots Ohmic L-modes
I Included static and swept RX

I Data taken in both swept &
stationary phases

I pulsed DNBI (20ms on/40 off)
I integration time short compared

to profile evolution
I measurements for t ≥ 0.4s

I ne,avg, Ip are feedback-controlled
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Changing R̄X indeed shifts the boundary rotation, shifting
the whole rotation profile with it.
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Changing R̄X shifts the boundary rotation value, ∼rigidly shifting the entire
rotation profile with it.

Stoltzfus-Dueck, Karpushov, Sauter, . . . RX -Dependent Edge Toroidal Rotation on TCV (11)



Background
Experiment

Description
Results

Experimentally measured edge rotation was compared with
theoretical predictions.

vTh = .104
(
0.5dc − R̄X

) q
Lφ (cm)

Ti (eV)
BT (T) km/s vexp = 1

2

[
vφ ,LFS+vφ ,HFS

]
+ ∆C→D

I D ∝ (1+dc cosθ)
I dc taken constant

I R̄X
.

= (RX −Rmid)/a

I q→ qeng ∝ a2κBT/R0Ip
I Lφ : length scale for radial decay of

turbulent fluctuations 〈φ̃2〉1/2
I taken constant

I Ti ,vφ : measurements at
ρpol = 0.83

I ∆C→D ≈ vφD −vφC ≈ 5km/s
I evaluated with NEOART
I varies little with radius or

X-point position

I For comparison, filtered out:
I strong MHD
I wall gaps < 7mm
I large CXRS-estimated error,

both raw data and fitted
profiles
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Theory-Experiment agreement is surprisingly good.
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Roughly linear dep of vexp on RX .
I Sign change for large RX .

USN∼ 5km/s more counter-current
than LSN.

Simple formula vTh matches vexp well.
I Reasonable fitting parameters:

dc ≈ 0.93, Lφ ≈ 4.2cm
Some mid-range RX inaccessible due
to machine constraints
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The basic trend holds for alternate edge velocities.
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Core rotation reversal seems to have little effect on edge rotation.

Spontaneous core rotation reversal well-known on TCV (Bortolon et al PRL 2006)
Accidentally triggered reversal in shots 48152–48153, due to larger Ip
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Can transport-driven SOL flows drive rotation in the
confined plasma?
Intrinsic rotation velocity is determined by vanishing momentum flux.
Although transport-driven toroidally-asymmetric flows exist in the theoretical
calculation, they do not drive rotation at the boundary with the core plasma.
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Favorable/unfavorable ∇B comparison can clarify physics.
Reverses transport-driven flows but not orbit shifts and their flows.
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Rotation data consistent with dominant drive by orbit shifts.
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Dominant variation of rotation unaffected by LSN→USN.
Apparent ∼ 5km/s counter-Ip shift for USN shots may be an artifact due to:

I Core rotation reversal shots, were SND only
I Differing positions of the core-edge boundary, in presence of core

counter-current peaking
Topic for future comparison with XGC simulations and DIII-D measurements.
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Summary

I Simple theory for intrinsic rotation due to interaction of:
I spatial variation of turbulence
I different radial orbit excursions for co- and counter-current passing ions

I Predicted rotation depends strongly on RX

I Performed series of Ohmic L-mode shots on TCV, scanning RX

I Change of RX shifts entire rotation profile, fairly rigidly

I Experiment and theory appear fairly consistent
I vexp depends about linearly on RX .
I vexp goes counter-current for large RX .
I Simple vTh formula seems to capture most variation of vexp.
I Basic results hold for various alternate experimental v .
I vexp appears fairly insensitive to core rotation reversal.

I USN rotation shows modest counter-current shift, compared to LSN.
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