
Magnetic self-organization in 
Tokamaks 

S.C. Jardin 
Princeton Plasma Physics Laboratory 

 
 

Presented at 
 

American Physical Society 
Division of Plasma Physics 

November 17, 2015 
Savannah, GA 

Co authors: 
N. Ferraro 
I. Krebs 

 
Acknowledgments: 
A. Bhattacharjee 
J. Breslau 
J. Callen 
G. Fu 
S. Günter 
S. Hudson 
D. Meshcheriakov 
R. Nazikian 
C. Petty 
C. Sovinec 



Motivation 
• Some high- operating modes of existing tokamaks do not exhibit 

sawteeth and maintain central safety factor values near q0 = 1 
• hybrid modes in DIII-D, ASDEX-U, JET    
• long-lived mode in MAST, NSTX 

 
• However, applying 1 ½ D transport codes (i.e. TRANSP) to many of these 

discharges indicate q0 should fall below 1 
 

• Mechanism responsible for keeping q0=1 not previously understood, but 
often referred to as “flux-pumping” 
 

• We offer an explanation for this as a “self-organized” state which we 
found using 3D MHD code M3D-C1 
 



3D resistive MHD in torus with source terms 
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Sn(t) and Se(t) volume sources adjusted to keep  and total # of particles constant 

VL(t) applied at boundary in control loop to keep total plasma toroidal current constant 

Series of runs with same  = 0 p/B2 ~ 2% but differing 0 and Se  (proportional) 

 ~ 0 (T/T0
)-1/2      || ~ 105        0 ~ 10-6       0 = 180 , 360  , 720 , 1440 

                                                                          (4 3D  cases will be presented + 1 2D) 

VL 

These balance in 
axisymmetric equilibrium 



0 p/B2 =2% behavior much different from low  

• At low-, plasma kinetic energy (and Te0 and q0) 
undergo periodic oscillations where current peaks, 
reconnection occurs and process repeats (sawteeth) 
 

• At 2% , plasma goes into a stationary state with large 
stationary kinetic energy and ultra-low magnetic shear 
with q=1 in center region 

Large region in center with q = 1  

#  of toroidal transits

#  of poloidal transits
q 

2%  

This self-organized stationary 
state with q=1 occurs only in 3D 
simulations (not in 2D) 



Comparison of profiles from 2D and 3D stationary states 
(both with same =2% and same )  shows 2 differences 

(1) Central pressure is flattened in 3D calculation compared to 2D 
 

(2) Central q-profiles is less than 1 in 2D, equal to 1  and ultra-flat in 3D 

(1) 

(2) 

Volume in 
center with 
q=1 and no 
flux surfaces 
 
Next slide 
focuses on 
central region 
with q=1 

Poincare “field 
line mapping” 
plot of 3D final 
configuration 



Plotted on top is poloidal velocity stream function U where 
 
On bottom are vectors of poloidal velocity V1,1  .   Hill’s vortex like structure. 
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1,1 R U   V

3D simulations show stationary (1,1) helical flow in q=1 region 

q =1.01 

NOTE: 
Only the central 
shear-free region 
with q=1 is plotted. 

2

1,1 R U   V

U

What causes this 
flow and how does 
it enforce q0=1? 



Why doesn’t q0 continue to decrease in 3D run? 

In a stationary state,                                                                                                   (1) 
 
Generalized Ohm’s law:                                                                                              (2) 
 
In the stationary state, (1)+(2) becomes: 
                                                                                                                                        (3) 
 
If we dot B into Eq. (3):            
                                                                                                                                        (4) 
 
If magnetic surfaces exist, and we surface average (4), we get the well-known condition that the 
surface averaged current is completely determined by the resistivity profile: 
 

0
2

LV

t





       



B
E E

  E V B J

2

LV
 


      V B J

( )
2

LV
 


      B B B J B

2

LV
 


 J B B

 is a constant (applied loop voltage)

 is the toroidal angle

LV



̂

B

This is satisfied exactly in 2D 
stationary states   q0 < 1 

Most general form for a 
curl-free vector field in a 
torus 

But, it is not satisfied in 3D in the central 
region (if 2D surfaces are used!)  Why not? 



(1) Central ultra-low 
shear (ULS) region 
with q=1 (and no 
flux surfaces) 

(2) Drives stationary 
interchange instability 
producing 1,1V

(3) Produces electric potential 
 1,1 1,1 V B

(5) Also perturbs magnetic field: 

  
1,1 1,1 1,1
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(4) Also perturbs temperature: 

 1,1 1,1(2 / 3) n T n T
     V

(6) 3+5 produce effective enhanced 
loop voltage in central region: 
 

0 1,1 1,1nV    B

(7)  2+4 produce velocity field that tends 
to flatten temperature profile 

 0 1,1 1,1nT T   V

(8 )Axisymmetric (n=0) parallel Ohm’s law is 
modified in two ways that broaden current 

 

positive in center, 
flattening current  

resistivity 
profile is 
flattened 

(9) No longer constrained to  
central region approaches minimum energy 
Taylor State                  ULS 

const. J B

J B

• These perturbations will also produce other islands via mode 
coupling, but we believe they do not play a central role 

Basic Physics of self-organized stationary discharge with q0=1 
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(2) Ultra-flat q profile drives interchange instability[1] 
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0 1( , , ) [1 ( / ) ]sin( )U r U r r r     

Plotted is U on one toroidal plane (=0)  
from a 3D simulation where: 

2

1,1 R U   V

Compare with the unstable 
eigenfunction found in [1] 

[1] Hastie and Hender, NF 28 (1988) p. 585  “Toroidal internal kink stability in tokamaks with ultra flat q profiles” 

Shape of stationary velocity stream 
function from 3D nonlinear code agrees 
well with analytic linear eigenfunction. 

 
Almost the same for all values of 0  -- 
but amplitude depends on  

q =1.01 

Mid-plane values 



(3) Driven flow from interchange produces electric potential 
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potential  at one toroidal plane

0 

These 2 large terms 
must almost cancel 

Mid-plane values of individual terms 
making up toroidal electric field (color 
coded) at one toroidal location 

Terms on either side of equal sign 
mostly cancel (but not exactly) 

q =1.01 
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(4) Velocity field also perturbs temperature and pressure.  
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In low  cases 
velocity terms 
dominate 
energy balance 
near center   
 large T1,1 

0 

Mid-plane 
values at =0 

These balance in 2D (1,1) components balance in 3D 

q =1.01 

In high  cases 
thermal 
conductivity 
terms still 
dominate 
energy balance 



0o 
090o 180o 270o 

High  = 1440  

p ~  0.0009 

Low  = 180  
p ~  0.0020 

Toroidal derivative of pressure profile at 4 locations 

Pressure develops a  (1,1) component from V1,1.  It is of a similar form 
but about twice as large for the lowest  case as for the highest  case 



(5) The toroidal magnetic field is perturbed by the perturbed pressure 
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field agrees with 
simple estimate 

 
 
Because div B=0 
this causes a (1,1) 
poloidal field 
component 



0 o 180o 

• Perturbed  is dominantly (m,n) = (2,1) 
due to the (2,1) island 
 

• However, it also has a (1,1) component 
that plays an essential role. 

 

The poloidal flux  is also perturbed by the velocity field. 

q = 2 

q = 1 
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(6) Terms in parallel  Ohm’s law 
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• Contours at 4 planes around torus. 
• White is zero, blue is negative, red is positive.     
• Center region is blue (negative) at all toroidal locations  
• Implies a (0,0) voltage generated non-linearly 

In 3D, the  B1,1 1,1 term leads to an 
effective voltage along the field in center 



(6b) How can           have a non-zero toroidal average in a volume? B
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Suppose  is a small (1,1) field component resonant with :
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Resonant field perturbation produces an 
effective voltage along perturbed field! 

Potential   Perturbed flux  1,1 B



(8) Parallel Ohm’s law is modified in two ways that broaden current 
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• (2) Nonlinear processes from 
B1,11,1 produce an 
effective n=0 toroidal voltage 
in the center (as needed) to 
keep q=1 in central volume. 
 

• This voltage is different for 
each of the 4 runs that have 
a different degree of 
temperature flattening 
 

• Also different from 2D result 
(dashed line) 

(1) Resistivity is 
flattened because 
temperature is 
partially flattened 
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(9) No longer constrained to                          , central regions in all 
3D runs approach minimum energy Taylor State with q=1 

const J B

The nonlinear drive that keeps 
the current from peaking  gets 
stronger as q1 from above 
 
This feedback mechanism results 
in an ultra-flat q-profile in center 
with q0 = 1 +   (where  << 1) 

        3D runs (all  values) 
2D run 

Final q-profile in 2D and 3D runs 



Summary 
• Some operating modes of existing tokamaks (i.e. hybrid modes in DIII-D, ASDEX-U, JET;   

long-lived mode in MAST, NSTX) do not exhibit sawteeth.   However, (2D) transport codes 
indicate q0 should fall below 1. 
 

• In our long-time 3D MHD simulations, we similarly find that for some parameters,  the 
discharge does not sawtooth but remains in a stationary state with q0  1 and ultra-low 
shear in center 
 

• This configuration is unstable to a pressure driven interchange mode which creates a 
stationary flow V, which leads to a (1,1) electrical potential :   1,1    V  B 

 
• Flow  from interchange mode also perturbs temperature and magnetic fields, and leads to 

a (1,1) component of the magnetic field B1,1 

 
• The (0,0) dynamo voltage from B1,11,1 is just that needed to maintain the current that 

keeps q0  1  
S.C. Jardin, N. Ferraro, I. Krebs, PRL (2015)  online Nov. 17! 


