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•  Due to the decrease of the Coulomb collision force with p, electrons with 
momentum larger than pcrit  can be continuously accelerated by the toroidal 
electric field to very high energy.
•  Runaway electron (RE) beam is considered to be causing severe 

damage in ITER disruption.

 

Motivation: develop a theoretical tool to help 
understand RE momentum space structure
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RE Kinetic Equation in Momentum Space
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∂ f
∂t

+ E{ f }+C{ f }+ RS{ f }+ RB{ f } = S{ f }

E: Parallel electric field acceleration
C: Relativistic collision operator (slowing-down and pitch angle scattering)
RS: Synchrotron radiation reaction force (SRRF)
RB: Bremsstrahlung radiation reaction force (BRRF)
S: Source term for secondary RE generation (Avalanche)
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RE Kinetic Equation in Momentum Space

•  The kinetic equation is a 2-D Fokker-Planck equation (ignoring the source 
term).
•  Diffusion term mainly comes from pitch angle scattering term.
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Adjoint method Ⅰ: Runaway Probability Function
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L̂†[P]= a(p) ∂P
∂p

+ D(p) ∂
2P

∂p2
= 0

P(p1) = 0,P(p2 ) = 1

C.F.F. Karney and N.J. Fisch, Phys. Fluids 29, 180 (1986).
C. Liu, D.P. Brennan, A. Bhattacharjee, and A.H. Boozer, Phys. Plasmas 23, 010702 (2016).

P is solution of adjoint Fokker-
Planck equation.
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F is the Green’s function of the
Fokker-Planck operator L.

P is solution of adjoint Fokker-
Planck equation.

P characterize the probability for
electron to eventually reach
boundary p=p2.
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Runaway Probability Function for Z=1

•  P gives probability for electron to reach high momentum boundary
•  Result of P shows smooth transition near separatrix

•  The test-particle method (relying on truncation of pitch angel scattering) only gives 
a line of separatrix, equivalent to a Heaviside P function.
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Runaway Probability Function for Z=1

•  P gives probability for electron to reach high momentum boundary
•  Result of P shows smooth transition near separatrix

•  The test-particle method (relying on truncation of pitch angel scattering) only gives 
a line of separatrix, equivalent to a Heaviside P function.

•  Results agree well with Monte-Carlo Simulation
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Z=1
Z=7

Runaway Probability Function for Z=7

•  Separatrix location and width of transition region both increase with pitch angle 
scattering (Z).
•  Transition region is asymmetric at two sides of separatrix.
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•  Calculated γA agrees well with CODE simulation result.
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CODE Simulation
Runaway Probability Calculation

Use Runaway Probability to Calculate the 
Avalanche Growth Rate
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γ A =
dpS{ f } ⋅P∫
nRE

Avalanche growth rate
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•  Calculated γA agrees well with CODE simulation result.
•  For tokamak disruption, P can be used to estimate the number of seed 

RE in thermal quench.
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Adjoint Method Ⅱ: Expected Loss Time (ELT)

24 

L̂†[T ]= a(p) ∂T
∂p

+ D(p) ∂
2T

∂p2
= −1

T (p1) = 0,T (p2 ) = 0

T is solution of nonhomogeneous
adjoint Fokker-Planck equation.

C.F.F. Karney and N.J. Fisch, Phys. Fluids 29, 180 (1986).
C. Liu, D.P. Brennan, A. Bhattacharjee, and A.H. Boozer, Phys. Plasmas 23, 010702 (2016).



Adjoint Method Ⅱ: Expected Loss Time (ELT)

25 

L̂†[T ]= a(p) ∂T
∂p

+ D(p) ∂
2T

∂p2
= −1

T (p1) = 0,T (p2 ) = 0

dF
dt

= ∂F
∂t

− L̂[F]= δ (p − p0 )

F(p1) = 0,F(p2) = 0.

F is the Green’s function of the
Fokker-Planck operator L.

T is solution of nonhomogeneous
adjoint Fokker-Planck equation.S = δ (p − p0 )

p1 p2p

C.F.F. Karney and N.J. Fisch, Phys. Fluids 29, 180 (1986).
C. Liu, D.P. Brennan, A. Bhattacharjee, and A.H. Boozer, Phys. Plasmas 23, 010702 (2016).



Adjoint Method Ⅱ: Expected Loss Time (ELT)

26 

L̂†[T ]= a(p) ∂T
∂p

+ D(p) ∂
2T

∂p2
= −1

T (p1) = 0,T (p2 ) = 0

dF
dt

= ∂F
∂t

− L̂[F]= δ (p − p0 )

F(p1) = 0,F(p2) = 0.

F is the Green’s function of the
Fokker-Planck operator L.

T is solution of nonhomogeneous
adjoint Fokker-Planck equation.S = δ (p − p0 )

p1 p2p

C.F.F. Karney and N.J. Fisch, Phys. Fluids 29, 180 (1986).
C. Liu, D.P. Brennan, A. Bhattacharjee, and A.H. Boozer, Phys. Plasmas 23, 010702 (2016).



Adjoint Method Ⅱ: Expected Loss Time (ELT)
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Expected Loss Time for Runaway Electron 
Decay

•  1/T=1/TS+1/TR, TS (slowing-down time) and TR (runaway time) are 
expected time to reach low/high energy boundary.

•  For E<E0, all electrons will end up in low energy boundary. TS represents the 
timescale for runaway electron energy decay.
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a(p) dT (p)
dp

+ D(p) d
2T (p)
dp2

= −1 T p1,p2
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•  1/T=1/TS+1/TR, TS (slowing-down time) and TR (runaway time) are 
expected time to reach low/high energy boundary.

•  For E<E0, all electrons will end up in low energy boundary. TS represents the 
timescale for runaway electron energy decay.

•  In the marginal case (E is close to E0), T
   has a big jump near the separatrix.

•  E field force can form a potential
   barrier near the separatrix that hinder
   particle losing energy.
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Expected Loss Time including Secondary RE 
Generation
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•  T→∞ when RE growth rate (with avalanche) is positive.
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Large Angle Scattering in Nonhomogeneous 
Momentum Space 
•  Like runaway electron avalanche where electrons gain a large amount of 

energy through large angle scattering (LAS), electrons can also loose a large 
fraction of energy through LAS.
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Large Angle Scattering in Nonhomogeneous 
Momentum Space 
•  Like runaway electron avalanche where electrons gain a large amount of 

energy through large angle scattering (LAS), electrons can also loose a large 
fraction of energy through LAS.
•  For collisional energy loss, the contribution of LAS is 1/lnΛ of the 

accumulation of small angle scattering.
•  In nonhomogeneous momentum space, E field balances collisional drag 

near the separatrix, thus LAS can be more important.
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•  Large angle collision is important for electron energy loss when E is 
close to E0 (marginal case).
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•  Large angle collision is important for electron energy loss when E is 
close to E0 (marginal case).

•  Results of expected loss
time shows that large angle
collisions help electrons
overpass the potential barrier, 
therefore significantly reduce the
jump of T at marginal case.
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•  Summary
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Summary
•  Adjoint method gives a new angle to study the nonhomogeneous 

momentum space of runaway electrons.

•  Both runaway probability (P) and expected loss time (T) are derived 
from the adjoint method.

•  For marginal case (E close to E0), large angle scattering (LAS) plays 
an important role in energy decaying of existing RE population.

•  The adjoint method can also be applied to other dynamical systems.
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Thanks!
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