KINETIC PLASMA TURBULENCE SIMULATIONS ON TOP SUPERCOMPUTERS WORLDWIDE

William M. Tang* Princeton Institute for Computational Science & Engineering (PICSciE) and Princeton Plasma Physics Laboratory Princeton University, Princeton, New Jersey

10th West Lake International Symposium on Magnetic Fusion &12th Asia Pacific Plasma Theory Conference (WLIS-APPTC)

Hangzhou, China

May 9-13, 2016

*Collaborators: Bei Wang (PU), S. Ethier (PPPL), Bruce Scott (IPP-Garching), K. Ibrahim (LBNL), K. Madduri (Penn State U), S. Williams (LBNL), L. Oliker (LBNL), T. Williams (ANL), C. Rosales (TACC), T. Hoefler (ETH-Zurich), G. Kwasniewski (ETH-Zurich), Y. Lu (NUDT)

INTRODUCTION

I. FOCUS: HPC Performance Scalability and Portability with FES as appropriate example application domain

→ Illustration of domain application that delivers discovery science with good performance scaling, while also helping provide viable <u>metrics</u> on top supercomputing systems such as <u>"portability," "time to solution," & associated "energy to solution"</u> <u>Reference: "Scientific Discovery in Fusion Plasma Turbulence Simulations @ Extreme Scale;" W. Tang, B. Wang, S. Ethier, Computing in Science and Engineering (CiSE), vol. 16. Issue 5, pp.44-52, 2014</u>

II. PHYSICS & COMPUTATIONAL PROGRESS: Enabled by deployment of innovative algorithms – e.g., using MPI & OpenMP within modern code that <u>delivers new scientific</u> <u>insights on world-class systems</u> → currently: Mira; Sequoia; K-Computer; Titan; Piz Daint; Blue Waters; Stampede;TH-2

& in near future on: Summit (via CAAR), Cori, Stampede-II, Tsubame 3.0, -----

III. FUTURE: Ability to utilize computing at exascale & beyond will require <u>algorithmic &</u> <u>solver advances enabled by Applied Mathematics</u> – in an interdisciplinary "Co-Design" type environment together with Computer Science & Extreme-Scale HPC Domain Applications

Performance Development of HPC over the Last 22 Years from the Top 500 (J. Dongarra)

Applications Impact Actual value of extreme Scale HPC to scientific domain applications & industry

Context: new US Govt. announcement of NATIONAL STRATEGIC COMPUTING INITIATIVE

- *Practical Considerations:* "Better Buy-in" from Science & Industry requires:
 - Moving beyond <u>"voracious</u>" (more of same just bigger & faster) to <u>"transformational</u>" (achievement of major new levels of scientific understanding)
 - Improving experimental validation and verification to enhance realistic predictive capability of both <u>hypothesis-driven</u> and <u>big-data-driven statistical approaches</u>
 - Deliver software engineering tools to improve "time to solution" and "energy to solution"
 - <u>David Keyes (KAUST/Columbia U)</u> → "Billions of \$ of scientific software worldwide hangs in the balance until better algorithms arrive to span the <u>architecture-applications gap."</u>
- Associated Challenges:
- <u>Hardware complexity</u>: Heterogeneous multicore; gpu+cpu → <u>Summit</u>; mic+cpu → <u>Aurora</u>
 <u>Software challenges</u>: <u>Rewriting code focused on data locality</u>
- <u>Applications Imperative:</u> "Accountability" aspect
- → Need to provide specific examples of impactful scientific and mission advances enabled by progress from terascale to petascale to today's multi-petascale HPC capabilities

Demonstration of GTC Productivity & Impact → Delivery of Scientific Advances with use of Increasingly Powerful Supercomputing Systems

GTC Simulation	Computer name	PE # used	Speed (TF)	# Particles used	T i m e steps	Physics Discovery (Publication)
1998	Cray T3E NERSC	10 ²	10-1	108	104	Ion turbulence zonal flow (<i>Science</i> , 1998)
2002	IBM SP NERSC	10 ³	100	109	104	Ion transport size scaling (<i>PRL</i> , 2002)
2007	Cray XT3/4 ORNL	104	10 ²	10 ¹⁰	10 ⁵	Electron turbulence (<i>PRL</i> , 2007); EP transport (<i>PRL</i> , 2008)
2009	Jaguar/Cray XT5 ORNL	105	10 ³	10 ¹⁰	105	Electron transport scaling (<i>PRL, 2009</i>); EP-driven MHD modes
2012 to present	Cray XT5→Titan ORNL Tianhe-1A (China)	105	104	1011	105	Kinetic-MHD (<i>PRL</i> , 2012); Turbulence + EP + MHD TAE Modes (<i>PRL</i> , 2013)
2018 (future)	Path to Exascale HPC Resources	TBD	106	10 ¹²	106	Turbulence + \mathbf{EP} + MHD + \mathbf{RF}

*** GTC is first FES code to deliver production run simulations @ TF in 2002 and PF in 2009

DOE SciDAC Success Story from Fusion Energy Science: PIC Code Simulations of Confinement Loss from Turbulent Transport

- Mission Importance: <u>Fusion reactor size &</u> <u>cost determined by balance between loss</u> <u>processes due to turbulent transport & self-</u> <u>heating rates from fusion reactions</u>
- "Scientific Discovery" Transition to favorable scaling of confinement for ITER-size plasmas [Good News for ITER!]
 - a/ρ_i = 400 (JET, largest present lab experiment)
 - a/ρ_i = 1000 (ITER, ignition experiment)

from <u>Multi-TF</u> simulations using 3D PIC code [Z. Lin, et al, $2002 \rightarrow 1^{st}$ ITER-scale simulation with ion gyroradius resolution with GTC-Code

 "Co-Design Enabled Advances @multi PF" → Excellent scalability of 3D PIC Codes <u>on top 7</u> <u>multi-PF supercomputers worldwide</u>

→ enables unprecedented resolution/physics fidelity needed for better understanding of large fusion systems

<u>Accelerated progress enabled by SciDAC-based</u> <u>interdisciplinary approach with Computer Science (CS),</u> <u>Applied Math (AM), & Domain Applications</u>

→ Recent achievements enabled by SciDAC approach plus "CoDesign" inclusion of Hardware Design

Particle Resolution (ppc) Convergence Study

[Results from C-version GTC-Princeton Code for ITER (D-size) Case on IBM BG-Q]

Time History of Thermal Diffusivity from ITG Instability @ Different Resolutions

High Resolution Ion Transport Scaling Results enabled by "Mira" at ALCF

[vertical axis represents transport level and horizontal axis the plasma size with ITER at 1000] two weights scheme + remapping

<u>New Trends</u>: "rollover" significantly more gradual than established earlier in much lower resolution, shorter duration studies with magnitude of transport now reduced by ~ 2

Picture of Particle-in-Cell Method

- Charged particles sample distribution function
- Interactions occur on a grid with the forces determined by gradient of electrostatic potential (calculated from deposited charges)
- Grid resolution dictated by Debye length ("finite-sized" particles) up to gyro-radius scale

Specific PIC Operations:

- "SCATTER", or deposit, charges as "nearest neighbors" on the grid
- Solve Poisson Equation for potential
- *"GATHER" forces (gradient of potential) on each particle*
- Move particles (PUSH)
- Repeat...

GTC-P: six major subroutines

- **Charge**: particle to grid interpolation (SCATTER)
- Smooth/Poisson/Field: grid work (local stencil)
- Push:
 - grid to particle interpolation (GATHER)
 - update position and velocity
- **Shift**: in distributed memory environment, exchange particles among processors

KEY ROLE OF OPEN-MP in ADDRESSING MODERN HPC CHALLENGES

Open-MP-enabled scalable scientific software for extreme scale applications: FES as illustrative application domain

- <u>Extreme concurrency</u>: → Adopting OpenMP is one of most efficient algorithmic approaches to facilitate efficient multi-threading methods
- <u>Portability</u>: → except for GPU hardware, OpenMP works with <u>all</u> multicore processors
- <u>Ease of Deployment</u>: → OpenMP is now a mature implementation relatively easy to use

-- easiest approach to deploy OpenMP is at loop level;

- -- OpenMP worked best at loop level beginning in late 1990s/early 2000s and has <u>remained best approach since then</u>;
- -- Example: deployed this way *in all prominent Global FES PIC codes* GTC-P, GTC, GTS, and XGC;

KEY ROLE OF OPEN-MP (continued)

- NEED FOR OPEN-MP CAPABILITY IN MULTI-GRID SOLVERS SUCH AS LLNL'S "HYPRE"
- <u>Significant challenge/goal</u>: Incorporation of multi-grid Poisson solvers with OpenMP to efficiently deal with extreme concurrency, multi-threading issues characteristic of near-future systems (e.g., 100 PF systems such as Summit and Aurora)
- -- FES Application: GTC (UC Irvine) & GTC-P Project in Fusion Energy Science were selected for current portfolio of OLCF CAAR Early Science Program for Summit → <u>will require multi-grid electromagnetic</u> <u>field-solver with OpenMP such as HYPRE</u>

→ Choosing a portable and threaded solver (e.g., HYPRE) is critically important for GTC and GTC-P

ILLUSTRATION OF GTC-P CODE PORTABILITY

- Broad range of leading multi-PF supercomputers worldwide
- Percentage indicates fraction of overall nodes currently utilized for GTC-P experiments
- NOTE: Results in this figure are only for CPU nodes on Stampede and TH-2

Weak Scaling of GTC-P (GPU-version) on Heterogenous (GPU/CPU) "Titan" and "Piz Daint"

- The number of particles per cell is 100
- GTC-P GPU obtains 1.7x speed up <u>Same code for all cases</u> → Performance difference solely due to hardware/system software

<u>*Aries</u> <u>Network on</u> <u>Piz Daint</u>

GTC-P (kinetic electron) weak scaling performance using a fixed problem size per node across all systems allows comparisons of node performance.

"ENERGY TO SOLUTION" ESTIMATES (for Mira, Titan, and Piz Daint)

		CPU-0	Only	CPU+GPU		
	Mira	Titan	Piz Daint	Titan	Piz Daint	
Nodes	4096	4096	4096	4096	4096	
Power/node (W)	69.7	254.1	204.9	269.4	246.5	
Time/step (s)	13.77	15.46	10.00	10.11	6.56	
Energy (KWh)	1.09	4.47	2.33	3.10	1.84	

• Energy per ion time step (KWh) by each system/platform for the weakscaling, kinetic electron studies using 4K nodes.

(Watts/node) * (#nodes) * (seconds per step) * (1KW/1000W) * (1hr/3600s)

• <u>Power/Energy estimates</u> obtained from system instrumentation including compute nodes, network, blades, AC to DC conversion, etc.

GTC-P SIMULATION OF MICROTURBULENCE IN ITER-SIZE PLASMA

Density fluctuations during the non-linear phase of an ITER-size GTC-P simulation of plasma microturbulence

ILLUSTRATION OF GTC-P CODE CAPABILITY FOR INCREASING PROBLEM SIZE

<u>New Physics Results</u>: Fusion system size-scaling study of "trapped-electron-mode" turbulence showing the "plateauing" of the radial electron heat flux as size of tokamak increases.

<u>Verification</u> – via (1) <u>GTC Simulation Results</u> (up to C) – Y. Xiao, Z. Lin (PRL – 2009); and
 (2) <u>Analytic Foundations</u> – <u>Liu Chen &</u> Z. Lin hybrid kinetic model for electrons

Associated Findings

• Advanced phase space remapping and Krook-type collision models deployed for long temporal duration global PIC simulations with GTC-P (*Bei Wang and Bruce Scott*)

 \rightarrow Current findings of realistic Kolmogorov-type spectral roll-over indicate:

(i) numerical dissipation in some form needed to ensure proper "steady state" behavior for "collisionless" systems;

(ii) while further improvements are needed, present results from remapping and Krook-type collision models effectively reduce noise levels for longduration simulations where the amplitudes are small; and

(iii) Inherent turbulence-driven dissipation sustainable in meaningful way – without invoking "ad-hoc" artificial dissipation models

APPLIED MATH LOCALITY CHALLENGE: <u>GEOMETRIC HAMILTONIAN APPROACH</u> <u>TO SOLVING GENERALIZED VLASOV-MAXWELL EQUATIONS</u> Hamiltonian → Lagrangian → Action → Variational Optimization → Discretized Symplectic Orbits for Particle Motion

I. <u>"Ultrahigh Performance 3-Dimensional Electromagnetic Relativistic Kinetic Plasma</u> <u>Simulation</u>

Kevin J. Bowers, et al., Phys. Plasmas 15, 055703 (2008)

- ➔ Basic foundation for symplectic integration of particle orbits in electromagnetic fields <u>without frequency ordering constraints</u>
- ➔ Foundational approach for present-day simulations of laser-plasma interactions on modern supercomputing systems
- Limited applicability with respect to size of simulation region and geometric <u>complexity</u>
- II. <u>"Geometric Gyrokinetic Theory for Edge Plasmas"</u>

Hong Qin, et al., Phys. Plasmas 14, 056110 (2007)

- ➔ Basic foundation for symplectic integration of particle orbits in <u>electromagnetic low-</u> <u>frequency plasma following GK ordering</u>
- → Still <u>outstanding challenge</u>: Address reformulation of <u>non-local Poisson Equations</u> <u>structure</u> for electromagnetic field solve

Concluding Comments

 Modern FES HPC domain application code capable of scientific discovery while providing good <u>performance scaling</u> and <u>portability</u> on top supercomputing systems worldwide – together with illustrating <u>the key metrics</u> of <u>"time to solution" and associated</u> <u>"energy to solution"</u>

<u>Reference: "Scientific Discovery in Fusion Plasma Turbulence Simulations @ Extreme</u> <u>Scale;" W. Tang, B. Wang, S. Ethier, Computing in Science and Engineering (CiSE), vol.</u> <u>16. Issue 5, pp.44-52, 2014</u>

• Current physics and computational progress enabled by <u>deployment of innovative</u> <u>algorithms within a modern application code (GTC-P) that delivers new scientific insights</u> on world-class systems → currently: Mira; Sequoia; K-Computer; Titan; Piz Daint; Blue Waters; Stampede;TH-2

with future targets: Summit (via CAAR), Cori, Aurora, Stampede-II, Tsubame 3.0, -----

• Future progress will require <u>algorithmic & solver advances enabled by Applied</u> <u>Mathematics</u> – in an interdisciplinary "Co-Design" type environment together with Computer Science (e.g., OpenMP4.5, OpenACC, etc.) & Extreme-Scale HPC Domain Applications