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3D MHD brings together tokamaks and stellarators

Stellarator three-dimensional topology

Tokamak non-axisymmetric designs

(magnetic ripple, resonant magnetic perturbations,...)

Tokamak MHD helical modes and bifurcations

(saturated internal kink, sawteeth)




Computational 3D MHD is a numerical challenge

» Singular current densities (current sheets) are predicted to form at

rational surfaces in 3D ideal-MHD equlibria with nested surfaces.

» Non-ideal effects allow plasma relaxation towards lower-energy states:

an intricate combination of flux-surfaces, magnetic islands, and chaos.

General, outstanding question:

How to compute the equilibrium magnetic field that is consistent with the

established equilibrium pressure profile?



On the menu today

On the importance of 3D ideal-MHD

What is the origin and physical meaning of singular currents?

Can these be computed numerically?

Are there equilibria with nested resonant surfaces and smooth pressure?
What are the implications for external resonant fields?

What are the implications for internal kink theory?

On partially relaxed 3D MHD equilibria
How to compute general stellarator equilbria?

Can we predict the beta limit?



Current sheets in fusion and astrophysical plasmas

Current sheets are predicted to form in 3D ideal-MHD equlibria...

...in the solar corona, where ideal

plasma convection on the surface

produces field entanglement.

[Parker, 1972]

...Iin toroidally confined plasmas,
where ideal kink instabilities bring

the plasma to resonant 3D states.

[Rosenbluth, 1973]




Singular current densities come in two flavours

magnetic

/ differential equation
V.j=0,V-B=0 .:@—v .
"JL
— .

j=uB+]j,

j X B = VP nested
/ surfaces \ ¢
Magnetic coordinates — V9 B -V =t0y + 0y | )9
(1,6, )

Fourier decomposition —  (tm—n)Umn = (9 VI )mn
U — Z umnei(me—ngb)

Equation type — Umn(z) = h(z)/2 + 3mn5($)

zf(x) = h(z) va /

r =sm—n, h(z) ~p Pfirsch-Schliiter current  pjrac d-current



Existence of 3D ideal-MHD equilibria?

> j=uB+j, isnot the current, but the current density [A/m?] .

» Physically-valid equilibrium if the current J = / j-do across
=
any surface is finite (weak formulation of the problem).

» Problem: Pfirsch-Schliiter current diverges across certain surfaces.

» Historical conclusion: pressure gradients cannot be supported at

resonant rationals and thus pressure is either fractal or stepped.

P
The function p is continuous but its

derivative is pathological. We have obtained an
equilibrium solution without infinite currents, but
at the price of a very pathological pressure distri-

bution.
HHon [H. Grad, 1967] v




Existence of 3D ideal-MHD equilibria?

> j=uB+j, isnot the current, but the current density [A/m?] .

» Physically-valid equilibrium if the current J = / j-do across
>

any surface is finite (weak formulation of the problem).
» Problem: Pfirsch-Schliiter current diverges across certain surfaces.

» Historical conclusion: pressure gradients cannot be supported at

resonant rationals and thus pressure is either fractal or stepped.

[...] More precisely, our theorems insure the existence of sharp
boundary solutions for tori whose departure from axisymmetry is sufficiently small; they allow for
solutions to be constructed with an arbitrary number of pressure jumps. (€ 1996 John Wiley & Sons, Inc.

[Bruno and Laurence, 1996]



Existence of 3D ideal-MHD equilibria?

> j=uB+j, isnot the current, but the current density [A/m?] .

» Physically-valid equilibrium if the current J = / j-do across
>

any surface is finite (weak formulation of the problem).
» Problem: Pfirsch-Schliiter current diverges across certain surfaces.

» Historical conclusion: pressure gradients cannot be supported at

resonant rationals and thus pressure is either fractal or stepped.

How to compute 3D ideal equilibria with current sheets?

Are there 3D MHD equilibria with nested surfaces & smooth pressure?



Multiregion Relaxed MHD

N=1 N—> oo
[Dennis, 2013]
Taylor’s theory MRxMHD Ideal MHD
- / \_ / - /
Fewer constraints More constraints
Helicity is conserved globally Helicity is conserved discretely Helicity is conserved locally
F=w+5S( [ ABav—t,) F=3 [Wi+E(H - Ho)l W:/ (2= + B2>dV
2\ Jy — 2 v vy —1 2

H

SF=0 = VxB=uB |0F=0=— VXB;MB SW=0 —> jxB=Vp
[p+B?/2]] =0

[Taylor, 1974] [Dewar, Hole, Hudson, 2006] [Kruskal, Kulsrud, 1958]



Stepped-Pressure Equilibrium Code (SPEC)

An implementation of MRxMHD Input L
A/— Boundary J:geometry
Ry V xB =B / Two profiles — >
T:  [lp+B%2)=0 Output 2
t=12,..N B-field in each volume P
Shape of KZM surfaces - U]

SPEC runs in different geometries
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Stepped-Pressure Equilibrium Code (SPEC)




Complete shielding requires discontinuous transform

|{=2n. /008 _
/ m=1, n=1 perturbation: §;,/a = 102
LA
Te
=1
o
%
®
>
B C 4
? o
| e -1
| ° L=
e
®
>
1 1 1 r=+000000010

) [[Bol]yot s # 0
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A new class of 3D MHD equilibria

» Consider equilibria with discontinuous transform across resonances.

a T T

» This class of equilbria allows for

» Nested surfaces

» Arbitrary 3D geometry

» Arbitrary continuous and smooth pressure

> Integrable current sheets

[Loizu et al, Phys Plasmas 22 090704, 2015]

» This class of ideal- MHD states may be accessed when island-healing

mechanisms are at play. [Bhattacharjee PoP 1995, Hegna PoP 2012]
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Application: resonant magnetic perturbations

» Consider a screw-pinch axisymmetric equilibrium:

dp 1dr_», o 12 1r¢% B2
1+ - __|B R ] Z —
i+ gy B )| + gt =
-1
» Choose equilibrium profiles: A} L,=1/2
(1) = to — ¢1(r/a)® £ Ae/2 | >
p(r) = poll - 2(r/a + (/)] b4

» Outstanding question: what is the ideal response

to a resonant boundary perturbation ? > >

[Turnbull et al, PoP 2013; Reiman et al, NF 2015]
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|deal linear response toan RMP at =0

£q cos (mb + kz) ——\

» Perturbed equilibrium satisfies:
0.8r
0jl€] x Bo +j < 0Bfg] =0 |
%ﬂs
» Reduces to Newcomb equation: oA A
ecreasig t
d d¢ 0.2}
= (152) —ee=0
dr \" dr S
% 02 04 0.6 0.8 1
f=B%(t — ¢5)%kr? | r/a \
g = %(l\rzr'Q +m? - 1)+ Bz(t,i — t2)2]_\72t§’1' j= i

» Sine qua non condition for the existence of equilibria: || < 1

> Implies minimum current sheet: At > Atypin = 2t:s
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Existence space is reproduced in nonlinear calculations

CURRENT SHEET

Al
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|deal linear response toan RMP at >0

3.5
» Solve Newcomb equation: sl
d ( d& 2.5¢
— |/ —) —9§=0
dr dr . 2r €qcos (ml + kz) 1
s
f — f‘ﬁ:() ’ 1.51 _ .
9 3 increasing B
9 =9lp=o + kesrp 1t
0.5} o
» Pfirsch-Schlutter current: ~.

4 0o 0.2 0.4 0.6 018 1
' ' ' r/a
| J - . A
= . e _ i = [[B]] x dd(r — 1)
o)
ot
-4 - -
0.4 0.45 0.5 0.55 0.6

r/a

» Pressure-driven amplification and penetration of RMP in ideal MHD!
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SPEC nonlinear calculations exactly verified

+ SPEC
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—— Newcomb
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VMEC qualitatively reproduces same behaviour

0 0.2 0.4 0.6 0.8 1
r/a

An exact agreement with Newcomb’s solutions may require explicit handling

of discontinuities in the magnetic field.
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Saturated ideal kink satisfies sine qua non condition

boogn Matching to

|

|

| nonlinear solution for the displacement: = linear theory,

| z / h(B) = §,cos(B)/2
|

° - w0 =f,, & ([f(@fg(enm _1)”(6)

I SR : afr)

/:/ - | Maximize A[g]
| with / to obtain g(0)
1 ® ' 1

gy | o)== ‘ —12 ) e - 12
. som | | (§ ot r+r-) o 3§ g dwipn |+ g coss o

; ([ aar [ostwB) 12 A
N 0
Solve for f(x)

S o f(x)+g(6) I t=ut — ___—T given g(0)

[Rosenbluth et al, Physics of Fluids 16, 1973]

Notice: lim % _ —1 thus sine qua non condition marginally satisfied!

x—0 Ox 21



Saturated ideal kink has discontinuous transform

0.351
0.3r
025! 1 05 r 9 = O T
' g~ 552 cos® (6/2)
N 0.2t
= 0=m/2
&

Jump in magnetic field (current sheet):

2.5¢
> r,
. [Bol) = 222 B4\ /9(0) /€3
1.57
1| Jump in rotational transform:
0.5¢

Ae =26, 7{ V9(0) /€2 df ~ 0.44 ¢,
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Summary and perspectives

On the importance of 3D ideal-MHD

» Exact computation of singular current densities.
[Loizu et al, Phys Plasmas 22 022501, 2015]

» New class of 3D MHD equilibria allows for nested surfaces and smooth pressure.

[Loizu et al, Phys Plasmas 22 090704, 2015]

» Novel prediction: amplification and penetration of RMP even within ideal MHD.

[Loizu et al, Phys Plasmas 23, 055703, 2016 ]

» ldeal kink states [Rosenbluth et al, 1973] belong to this class of equilibria.
» What generally determines the value of AL remains to be investigated.

On partially relaxed 3D MHD equilibria

23



Wendelstein 7-X

» W7-X was optimised with respect to [Grieger et al, Phys Fluids B, 1992]

» Good MHD stability
» Improved neoclassical confinement
» Good fast-particle confinement

» Low bootsrap current

» Main goals of W7-X:
> Large triple product nTty~ 102 m?3keV s

» Quasi-stationary discharges c.a. 30 min

» Operation with an island divertor e.g. 1,=5/5

24



A\

Two problems require physics understanding

Effect of finite bootstrap current

Perturbation in ¢, is harmful for the SOL.

ECCD clamping of ¢,

ay open islands.

Need equilibrium code with islands.

09k _ _ ___---
0.8
t 0.7
0.6
05 - -

0.4 ] | ] ] |
0O 0.1 02 03 04 05
r[m]

[J. Geiger et al, NF, 2015]

Unknown B-limit

» Probably determined by the equilibrium.
» Possible degradiation at high {.

» Need for a robust, reliable, and fast code.

z/m

05k

I

05-

t—
[M. Drevlak et al, NF, 2005]
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SPEC used first to compute stellarator vacuum fields

classical stellarator
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SPEC verified for stellarator vacuum fields

Ea = %/ds%d@%dg& J(s,0,0)[(VxB—uB)-Va|

classical [ = 2 stellarator

-4
8 X * X x *
_6V * * S * *
* 8 * x X x
-8 o o
(o]
(o]
-10 o
o o
(o]
120 =2 o
oL _,=8 (o]
14+
o 8
16 machine precision o
2 4 6 8 10 12 14
IIv‘polz Ntor

16

log10( € )

W7-X limiter configuration

0.
2t

3

6 ° e
-4

] o $ o
-6+ o o 0
¢
_8f
_10,
° LH:! =6
-12+ o
14}
. machine precision
6 8 10 12 14 16
Mpol= Ntor

27



SPEC verified for multi-volume stellarator equilbria

» N =2volumes 1 L 0 )
o 1
> Impose L+/- = Lhoble L OLnOble p
» Impose edge , and W, k0 g0 P,
» Impose p;=p,=0 > 5> U
b, b,
Hmn ~ 1071

(o)

0 ++
€0 + +
€ + +

@0 + +

(o)
(o)
) (o]
o inner volume (@)
+ outer volume
. ! : machine precision
19 195 20 20.5 4 6 8 10 12

R |v'pol = Ntor 28



>

» Example: recover vacuum state

0.5

SPEC can find zero-current stellarator equilibria

Iterate on , and W,

to constraint current , ,

A
La
L Lnoble *
M #0 My #0
m > |
1
0.245¢ -
o Mp~10 ’
o ”1,2"’10—5
0.24+ 5 u1’2~10_7
* u=0
0.235¢ o
8 8
0.23} %gg
(o]
3338e°
N

P1

P>

b,

20
start

20.2 2F?.3 204 205
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Magnetic islands and chaos can appear at finite

Ideal 3-limit in an /=2 stellarator T
B~ € ¢
here gives 3 =0.2% . 0o
[J. P. Freidberg, Ideal MHD, p.273, 2014]
N0

Shafranov shift is clearly observed.
For 3> 0.1%, islands start to appear. e
For 3> 0.2%, chaos emerges.

-1F
Free-boundary SPEC will allow 19

studying (3-limit in stellarators
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Summary and perspectives

On the importance of 3D ideal-MHD

» First numerical proof of the existence of singular current densities.
[Loizu et al, Phys Plasmas 22 022501, 2015]

» New class of 3D MHD equilibria allows for nested surfaces and smooth pressure.

[Loizu et al, Phys Plasmas 22 090704, 2015]

» Novel prediction: amplification and penetration of RMP even within ideal MHD.

[Loizu et al, Phys Plasmas 23, 055703, 2016 ]

» ldeal kink states [Rosenbluth et al, 1973] belong to this class of equilibria.

» What determines the value of AL remains to be investigated.

On partially relaxed 3D MHD equilibria
» Stellarator equilibria with islands have been computed and verified with SPEC.
[Loizu et al, Phys Plasmas, submitted]

» Free-boundary version of SPEC will allow to study, e.g., stellarator B-limit. .



