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an excerpt from my talk at Snowcluster 2015:

What I’d love to see at Snowcluster 20 1‘7\8

Someone will provide a model for the parallel conductivity.

Simulations of 1CM gas dynamics will be using (at least)
Bragi nski-MHD (with appropriate limits imposed on parallel viscnsiry)

* I might have a kinetic simulation of fluctuation dynamo
in a collisionless plasma.

| Komarov, Churazov, Kunz & Schekochihin (2016, MINRAS)

» mirrors on ion-Larmor scales reduce ® by =1/5

Roberg-Clark, Drake, Reynolds & Swisdak (2016, .Ap[; 2018, PRL)

» sce next talk
» also Komarov, Schekochihin, Churazov & Spitkovsky (2018)



an excerpt from my talk at Snowcluster 2015:

What I’d love to see at Snowcluster 20 1\7\8

* Someone will provide a model for the parallel conductivity.

we ° Simulations of 1CM gas dynamics will be using (at least)
| Bragi nski-MHD (with appropriate limits imposed on parallel viscosiry)

* I 'might have a kinetic simulation of fluctuation dynamo g
in a collisionless plasma. \

more on this

) this talk A student of mine,

Denis St-Onge,
and I now do.

(but likely won’t have
time to talk about)



Consider a plasma with p; <K Amfp << L 10M at large scales)

imagine two magnetically connected fluid elements in LTE
with different tlow velocities and temperatures
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These gradients will distort the distribution function in each fluid element:
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distortion in f caused by distortion in f caused by
differences in flow velocity differences in temperature

between different fluid elements between different fluid elements

These distortions are ~ O(Anfp/L) , which 1s ~0.01 = 0.1 in ICM.

They drive collisional exchange of momentum and heat along field lines.

(Braginskii 1965)



You can easily
see these
distortions in
the collisionless
solar wind.
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The momentum exchange 1s proportional to the pressure anisotropy :
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which might sound small

1

...but, then again, so 1s —

B

This renders the Braginskii equations potentially unstable
to 1on-Larmor-scale instabilities:
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Here’s a simple example
(tollowing Squire ez a/. 2016, ApJL)

Consider a standing, shear-Alfvén wave:
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Thus, a nonlinear shear-Alfvén wave could
produce enough pressure anisotropy to drive
a weakly collisional plasma unstable.



At collisionless scales,

pressure anisotropy is produced by adiabatic invariance:
(Chew, Goldberger & Low 1950)
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At collisionless scales,

pressure anisotropy is produced by adiabatic invariance:
(Chew, Goldberger & Low 1950)
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_ L ~ const 5 [ cdnst
nB N3

Now, how much pressure anisotropy was driven
by this decrease in field strength?
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Note that these can have d B /g < 1!




What happens at these wave-amplitude thresholds?

1. Wave is “interrupted” and can’t oscillate/propagate.
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Altvén wave nonlinearly removes its own restoring force.

2. Plasma 1s unstable to a sea of ion-Larmor-scale fluctuations,
which trap and scatter particles and viscously decay the wave.



Let’s see this 1n action...



linearly polarized, standing Altvén wave
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linearly polarized, standing Altvén wave




linearly polarized, standing Alfvén wave

By = Box
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Squire, Kunz, Quataert & Schekochihin (2017), Phys. Rev. Lett.



linearly polarized, standing Altvén wave
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Squire, Kunz, Quataert & Schekochihin (2017), Phys. Rev. Lett.



linearly polarized, standing Alfvén wave

By = Box
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Squire, Kunz, Quataert & Schekochihin (2017), Phys. Rev. Lett.



linearly polarized, #raveling Altvén wave

By = Box

0B,

x/pi

interrupts, slows way down, then viscously decays

Squire, Kunz, Quataert & Schekochihin (2017), Phys. Rev. Lett.



Conclusion:
linearly polarized Alfvén waves cannot be sustained

with amplitudes 5B, /By > /2.

(some evidence for this in the solar wind — not shown here)

Measured ion viscous heating i1s Braginskii-like (of practical use)
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Sub-grid model?

Many large-scale aspects of the interrupted AW
behavior can be captured using a modified Braginskii model;

others with a modified LLandau-fluid model.
(see Squire, Quataert & Schekochihin 2017, NJP)
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Jono Squire and I are
working further on this.

Snowcluster 20217



What about compressive fluctuations?

In a magnetized, weakly collisional plasma: w? = k?a? — iwk?p

But for (small) viscous losses (and steepening), sound waves propagate just fine

In a magnetized, collisionless plasma:

solving this... 1 . _1 if T ~ T,

A. Schekochihin: “/zn a collisionless hot plasmal no one will hear you scream”

well, not necessarily...
what if compressive fluctuations drives pressure anisotropy,
which excites mirror/firehose, which makes the plasma act “MHD-like”



redacted



key idea:

these kinetic instabilities restore
fluid-like behavior to collisionless systems
by limiting departures from
local thermodynamic equilibrium

~ Changing B creates
' an unstable plasma ‘

"High-beta
plasma
fluid
- dynamics”

_ . g C .
Microinstabilities feed back o 7% Jono Squire

wal larce-scale motion




Implications, Predictions, and Wild Speculation

In a high-/ low-collisionality plasma...

» 'There should be a f~dependent maximum amplitude for different
pOlﬂfiZﬂtiOﬂS of Alfvén waves (testable prediction in SW, not in ICM...)

Compressive fluctuations with amplitudes above a f~dependent
threshold should propagate easier than they would otherwise

» Direct energy transter from macroscales to microscale fluctuations

and thermal energy, w/o customary scale-by-scale cascade (Re ~ 1)
implies that stable viscous-heating model in Kunz ¢/ a/. (2011) might be right!

Impact on cosmic-ray-driven instabilities and CR dittusion in ICM;
what if CR-driven AWSs sutfer from interruption physics?

* Modern theories of Alfvén-wave turbulence (e.g., GS95) most
likely don’t apply at sutticiently high ff



