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Komarov, Churazov, Kunz & Schekochihin (2016, MNRAS) 
‣   mirrors on ion-Larmor scales reduce κ by ≈1/5 

Roberg-Clark, Drake, Reynolds & Swisdak (2016, ApJ; 2018, PRL) 
‣   see next talk 
‣   also Komarov, Schekochihin, Churazov & Spitkovsky (2018)
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more on this 
in this talk A student of  mine, 

Denis St-Onge,  
and I now do.  
(but likely won’t have 
 time to talk about)



Consider a plasma with                             (ICM at large scales) ⇢i ⌧ �mfp ⌧ L

imagine two magnetically connected fluid elements in LTE 
with different flow velocities and temperatures

B



These gradients will distort the distribution function in each fluid element: 
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distortion in  f  caused by 
differences in flow velocity 

between different fluid elements

distortion in  f  caused by 
differences in temperature 

between different fluid elements

⇠ O(�mfp/L)These distortions are                      , which is ~0.01－0.1 in ICM.  

They drive collisional exchange of  momentum and heat along field lines. 
(Braginskii 1965)



Marsch (2006)
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You can easily  
see these 

distortions in  
the collisionless 

solar wind.



The momentum exchange is proportional to the pressure anisotropy :
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This renders the Braginskii equations potentially unstable 
to ion-Larmor-scale instabilities:

firehose mirror
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in ICM  ⇠ O(M�mfp/L) ⇠ 0.01
which might sound small



Here’s a simple example 
(following Squire et al. 2016, ApJL)

Consider a standing, shear-Alfvén wave:
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Thus, a nonlinear shear-Alfvén wave could  
produce enough pressure anisotropy to drive 

a weakly collisional plasma unstable. 



At collisionless scales,  
pressure anisotropy is produced by adiabatic invariance:
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At collisionless scales,  
pressure anisotropy is produced by adiabatic invariance:
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Now, how much pressure anisotropy was driven 
by this decrease in field strength?

(Chew, Goldberger & Low 1956)
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If , plasma goes firehose unstable.

Note that these can have                         ! �B?/B0 ⌧ 1

dB/dt < 0



What happens at these wave-amplitude thresholds?

1.  Wave is “interrupted” and can’t oscillate/propagate. 
 
 
 
 
 
 
 
Alfvén wave nonlinearly removes its own restoring force. 

2. Plasma is unstable to a sea of  ion-Larmor-scale fluctuations, 
which trap and scatter particles and viscously decay the wave.
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Let’s see this in action…



MHD:

B0

linearly polarized, standing Alfvén wave



linearly polarized, standing Alfvén wave

MHD:

B0
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linearly polarized, standing Alfvén wave

Squire, Kunz, Quataert & Schekochihin (2017), Phys. Rev. Lett.
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linearly polarized, standing Alfvén wave

Squire, Kunz, Quataert & Schekochihin (2017), Phys. Rev. Lett.
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linearly polarized, standing Alfvén wave

Squire, Kunz, Quataert & Schekochihin (2017), Phys. Rev. Lett.
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�Bz

linearly polarized, traveling Alfvén wave

B0 = B0x̂

Squire, Kunz, Quataert & Schekochihin (2017), Phys. Rev. Lett.

interrupts, slows way down, then viscously decays
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Conclusion: 

linearly polarized Alfvén waves cannot be sustained 
with amplitudes                          .�B?/B0 & ��1/2

(some evidence for this in the solar wind — not shown here)

Measured ion viscous heating is Braginskii-like (of  practical use) 



Sub-grid model?

Many large-scale aspects of  the interrupted AW  
behavior can be captured using a modified Braginskii model; 

others with a modified Landau-fluid model. 
(see Squire, Quataert & Schekochihin 2017, NJP) 

Jono Squire and I are  
working further on this. 

 
Snowcluster 2021?



What about compressive fluctuations?

A. Schekochihin: “[in a collisionless hot plasma] no one will hear you scream”

well, not necessarily… 
what if  compressive fluctuations drives pressure anisotropy, 

which excites mirror/firehose, which makes the plasma act “MHD-like”

In a magnetized, weakly collisional plasma: !2 = k2a2 � i!k2µ

But for (small) viscous losses (and steepening), sound waves propagate just fine

In a magnetized, collisionless plasma: !
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redacted



key idea: 
these kinetic instabilities restore  

fluid-like behavior to collisionless systems  
by limiting departures from  

local thermodynamic equilibrium 

℅ Jono Squire



Implications, Predictions, and Wild Speculation

In a high-ß low-collisionality plasma…  

• There should be a ß-dependent maximum amplitude for different 
polarizations of  Alfvén waves  (testable prediction in SW, not in ICM…) 

• Compressive fluctuations with amplitudes above a ß-dependent  
threshold should propagate easier than they would otherwise 

• Direct energy transfer from macroscales to microscale fluctuations 
and thermal energy, w/o customary scale-by-scale cascade (Re ~ 1) 
    implies that stable viscous-heating model in Kunz et al. (2011) might be right! 

• Impact on cosmic-ray-driven instabilities and CR diffusion in ICM; 
what if  CR-driven AWs suffer from interruption physics? 

• Modern theories of  Alfvén-wave turbulence (e.g., GS95) most 
likely don’t apply at sufficiently high ß 


