Differentiating the coil geometry with respect to the plasma boundary

Stuart R. Hudson & Caoxiang Zhu (祝曹祥) Hangzhou International Stellarator Workshop 2018 Hangzhou, China

- 1) The Simplest Possible Algorithm[©] (SPA) for designing stellarator coils is described.
- 2) The coil geometry has "maximum freedom", and the target function is "minimally constrained".
- 3) Fast, reliable and insightful numerical algorithms are enabled by exploiting 1st and 2nd derivatives with respect to the coil geometry *and* the "target surface".
- 1) P. Merkel, Nucl. Fus., **27** 867 (1987)
- 2) R.L. Dewar, S.R. Hudson & P.F. Price, Phys. Lett. A., 194 49 (1994)
- 3) M. Landreman, Nucl. Fusion, 57 046003 (2017)

Vacuum fields in given domain uniquely defined by supplied boundary conditions

- 1. Given volume \mathcal{V} , with closed boundary, $\mathcal{S} \equiv \partial \mathcal{V}$.
- 2. Vacuum fields satisfy $\nabla \times \mathbf{B} = 0$, which suggests $\mathbf{B} = \nabla \Phi$.
- 3. Given a suitable boundary condition, e.g. $\mathbf{B} \cdot \mathbf{n}$ on \mathcal{S} .
- 4. Divergence-free fields, $\nabla \cdot \mathbf{B} = 0$, implies constraint of net flux $\oint_{\mathcal{C}} \mathbf{B} \cdot d\mathbf{s} = 0$.

5. Toroidal flux $\Psi \equiv \oint_{\mathcal{L}} \mathbf{A} \cdot d\mathbf{l}$, (require one loop integral per "hole").

6. In \mathcal{V} , solution to $\nabla \cdot \nabla \Phi = 0$ is unique.

Task is to design coils that provide required $\mathbf{B} \cdot \mathbf{n}$ on given surface.

Minima of "regularized" functional give required set of external current-carrying coils

- 1. Introduce $\mathbf{x}_i(l)$, $i = 1, ..., N_C$, to represent closed current-carrying curves.
- 2. Let $\bar{\mathbf{x}}(\theta, \zeta) \equiv S$ represent plasma boundary.
- 3. With finite degrees-of-freedom, cannot *exactly* recover arbitrary $B_n \equiv \mathbf{B} \cdot \mathbf{n}$ on \mathcal{S} .
- 4. Instead, minimize quadratic-flux functional with penalty on length,

$$\mathcal{F}[\mathbf{x}_i, \bar{\mathbf{x}}] \equiv \oint_{\mathcal{S}} \frac{1}{2} B_n^2 ds + \omega L, \quad \text{where} \ \ L[\mathbf{x}_i] = \sum_i \oint |\mathbf{x}_i'| \, dl. \tag{1}$$

- 5. Numerically need to find minima, perform sensitivity studies, and advantageous to construct derivatives.
- 6. Optimal coils for given surface are defined by $\frac{\delta \mathcal{F}}{\delta \mathbf{x}_i}\Big|_{\bar{\mathbf{x}}} = 0.$
- 7. Simple to include (i) an additional factor $\oint_{\mathcal{S}} \frac{1}{2} w_{m,n} |B_{m,n}^n| ds$ to reflect that some "error fields" are more important to control than others; and (ii) additional "engineering" penalties, such as coil-coil distance.

Variations in line integrals with respect to variations in the line: length

$$L \equiv \oint (\mathbf{x}' \cdot \mathbf{x}')^{1/2} \, dl \tag{1}$$

$$\delta L = \oint (\mathbf{x}' \cdot \mathbf{x}')^{-1/2} (\mathbf{x}' \cdot \delta \mathbf{x}') \, dl \tag{2}$$

$$= \oint \delta \mathbf{x} \cdot \mathbf{x}' (\mathbf{x}' \cdot \mathbf{x}')^{-3/2} \mathbf{x}' \cdot \mathbf{x}'' \, dl - \oint \delta \mathbf{x} \cdot \mathbf{x}'' (\mathbf{x}' \cdot \mathbf{x}')^{-1/2} \, dl \tag{3}$$

Correct, but not transparent. Do tangential variations, $\delta \mathbf{x} \times \mathbf{x}' = 0$, change length?

Variations in line integrals with respect to variations in the line: length

$$L \equiv \oint (\mathbf{x}' \cdot \mathbf{x}')^{1/2} \, dl \tag{1}$$

$$\delta L = \oint (\mathbf{x}' \cdot \mathbf{x}')^{-1/2} (\mathbf{x}' \cdot \delta \mathbf{x}') \, dl \tag{2}$$

$$= \oint \delta \mathbf{x} \cdot \mathbf{x}' (\mathbf{x}' \cdot \mathbf{x}')^{-3/2} \mathbf{x}' \cdot \mathbf{x}'' \, dl - \oint \delta \mathbf{x} \cdot \mathbf{x}'' (\mathbf{x}' \cdot \mathbf{x}')^{-1/2} \, dl \tag{3}$$

Correct, but not transparent. Do tangential variations, $\delta \mathbf{x} \times \mathbf{x}' = 0$, change length?

Use
$$(\delta \mathbf{x} \times \mathbf{x}') \cdot (\mathbf{x}' \times \mathbf{x}'') = (\delta \mathbf{x} \cdot \mathbf{x}') \cdot (\mathbf{x}' \cdot \mathbf{x}'') - (\delta \mathbf{x} \cdot \mathbf{x}'') \cdot (\mathbf{x}' \cdot \mathbf{x}').$$

$$\delta L = -\oint (\delta \mathbf{x} \times \mathbf{x}') \cdot \boldsymbol{\kappa}, \text{ where } \underbrace{\boldsymbol{\kappa} \equiv \frac{\mathbf{x}' \times \mathbf{x}''}{(\mathbf{x}' \cdot \mathbf{x}')^{3/2}}}_{\text{curvature}}$$
(4)

The Biot-Savart law gives the magnetic field, variation in curves gives variation in magnetic field

1. The magnetic field is from Biot-Savart,

$$\mathbf{B}_{i}(\bar{\mathbf{x}}) = I_{i} \oint_{i} \frac{\mathbf{x}_{i}^{\prime} \times \mathbf{r}}{r^{3}} \, dl, \qquad (1)$$

where I_i is the current and $\mathbf{r}(\theta, \zeta, l) \equiv \bar{\mathbf{x}}(\theta, \zeta) - \mathbf{x}_i(l)$ and $\mathbf{x}'_i \equiv \frac{\partial \mathbf{x}_i}{\partial l}$.

- 2. For simplicity, set $I_i = 1$. (Trivial solutions avoided, ignore toroidal flux constraint.)
- 3. Variations in the curve induce variations in the field,

$$\delta \mathbf{B}(\bar{\mathbf{x}}) = \oint_{i} (\delta \mathbf{x}_{i} \times \mathbf{x}_{i}') \cdot \mathbf{R}_{i} \, dl, \qquad (2)$$

where $\mathbf{R} = \frac{3 \mathbf{r} \mathbf{r}}{r^5} - \frac{\mathbf{I}}{r^3}$, and \mathbf{I} is the "idemfactor", e.g. $\mathbf{I} = \mathbf{i} \mathbf{i} + \mathbf{j} \mathbf{j} + \mathbf{k} \mathbf{k}$.

4. Let me go through the algebra more slowly.

$$\mathbf{B} = \oint \frac{(\mathbf{x}' \times \mathbf{r})}{r^3} \, dl, \text{ where } \mathbf{r} \equiv \bar{\mathbf{x}} - \mathbf{x}, \ r \equiv \sqrt{\mathbf{r} \cdot \mathbf{r}}, \ \mathbf{x}' \equiv \partial_l \mathbf{x} \tag{1}$$

$$\mathbf{B} = \oint \frac{(\mathbf{x}' \times \mathbf{r})}{r^3} dl, \text{ where } \mathbf{r} \equiv \bar{\mathbf{x}} - \mathbf{x}, \quad r \equiv \sqrt{\mathbf{r} \cdot \mathbf{r}}, \quad \mathbf{x}' \equiv \partial_l \mathbf{x}$$

$$\delta \mathbf{B} = \oint \frac{(\delta \mathbf{x}' \times \mathbf{r})}{r^3} dl \qquad \qquad -\oint \frac{(\mathbf{x}' \times \delta \mathbf{x})}{r^3} dl + 3\oint \frac{(\mathbf{x}' \times \mathbf{r})(\mathbf{r} \cdot \delta \mathbf{x})}{r^5} dl$$
(1)

$$\mathbf{B} = \oint \frac{(\mathbf{x}' \times \mathbf{r})}{r^3} dl, \text{ where } \mathbf{r} \equiv \bar{\mathbf{x}} - \mathbf{x}, \quad r \equiv \sqrt{\mathbf{r} \cdot \mathbf{r}}, \quad \mathbf{x}' \equiv \partial_l \mathbf{x}$$
(1)

$$\delta \mathbf{B} = \oint \frac{(\delta \mathbf{x}' \times \mathbf{r})}{r^3} dl \qquad -\oint \frac{(\mathbf{x}' \times \delta \mathbf{x})}{r^3} dl + 3 \oint \frac{(\mathbf{x}' \times \mathbf{r})(\mathbf{r} \cdot \delta \mathbf{x})}{r^5} dl$$
(1)

$$= \oint \frac{(\delta \mathbf{x} \times \mathbf{x}')}{r^3} dl - 3 \oint \frac{(\delta \mathbf{x} \times \mathbf{r})(\mathbf{r} \cdot \mathbf{x}')}{r^5} dl - \oint \frac{(\mathbf{x}' \times \delta \mathbf{x})}{r^3} dl + 3 \oint \frac{(\mathbf{x}' \times \mathbf{r})(\mathbf{r} \cdot \delta \mathbf{x})}{r^5} dl$$

$$\mathbf{B} = \oint \frac{(\mathbf{x}' \times \mathbf{r})}{r^3} dl, \text{ where } \mathbf{r} \equiv \bar{\mathbf{x}} - \mathbf{x}, r \equiv \sqrt{\mathbf{r} \cdot \mathbf{r}}, \mathbf{x}' \equiv \partial_l \mathbf{x} \tag{1}$$

$$\delta \mathbf{B} = \oint \frac{(\delta \mathbf{x}' \times \mathbf{r})}{r^3} dl \qquad -\oint \frac{(\mathbf{x}' \times \delta \mathbf{x})}{r^3} dl + 3 \oint \frac{(\mathbf{x}' \times \mathbf{r})(\mathbf{r} \cdot \delta \mathbf{x})}{r^5} dl \\
= \oint \frac{(\delta \mathbf{x} \times \mathbf{x}')}{r^3} dl - 3 \oint \frac{(\delta \mathbf{x} \times \mathbf{r})(\mathbf{r} \cdot \mathbf{x}')}{r^5} dl - \oint \frac{(\mathbf{x}' \times \delta \mathbf{x})}{r^3} dl + 3 \oint \frac{(\mathbf{x}' \times \mathbf{r})(\mathbf{r} \cdot \delta \mathbf{x})}{r^5} dl \\
= 2 \oint \frac{(\delta \mathbf{x} \times \mathbf{x}')}{r^3} dl - 3 \oint \frac{(\delta \mathbf{x} \times \mathbf{r})(\mathbf{r} \cdot \mathbf{x}')}{r^5} dl \qquad + 3 \oint \frac{(\mathbf{x}' \times \mathbf{r})(\mathbf{r} \cdot \delta \mathbf{x})}{r^5} dl \tag{2}$$

Correct, but not "transparent". Do tangential variations, $\delta \mathbf{x} \times \mathbf{x}' = 0$, change **B**?

$$\mathbf{B} = \oint \frac{(\mathbf{x}' \times \mathbf{r})}{r^3} dl, \text{ where } \mathbf{r} \equiv \bar{\mathbf{x}} - \mathbf{x}, \ r \equiv \sqrt{\mathbf{r} \cdot \mathbf{r}}, \ \mathbf{x}' \equiv \partial_l \mathbf{x} \tag{1}$$

$$\delta \mathbf{B} = \oint \frac{(\delta \mathbf{x}' \times \mathbf{r})}{r^3} dl \qquad -\oint \frac{(\mathbf{x}' \times \delta \mathbf{x})}{r^3} dl + 3 \oint \frac{(\mathbf{x}' \times \mathbf{r})(\mathbf{r} \cdot \delta \mathbf{x})}{r^5} dl \\
= \oint \frac{(\delta \mathbf{x} \times \mathbf{x}')}{r^3} dl - 3 \oint \frac{(\delta \mathbf{x} \times \mathbf{r})(\mathbf{r} \cdot \mathbf{x}')}{r^5} dl - \oint \frac{(\mathbf{x}' \times \delta \mathbf{x})}{r^3} dl + 3 \oint \frac{(\mathbf{x}' \times \mathbf{r})(\mathbf{r} \cdot \delta \mathbf{x})}{r^5} dl \\
= 2 \oint \frac{(\delta \mathbf{x} \times \mathbf{x}')}{r^3} dl - 3 \oint \frac{(\delta \mathbf{x} \times \mathbf{r})(\mathbf{r} \cdot \mathbf{x}')}{r^5} dl \qquad + 3 \oint \frac{(\mathbf{x}' \times \mathbf{r})(\mathbf{r} \cdot \delta \mathbf{x})}{r^5} dl \tag{2}$$

Correct, but not "transparent". Do tangential variations, $\delta \mathbf{x} \times \mathbf{x}' = 0$, change **B**?

Use
$$\mathbf{r} \times [\mathbf{r} \times (\delta \mathbf{x} \times \mathbf{x}')] = \mathbf{r} \times [\delta \mathbf{x} (\mathbf{r} \cdot \mathbf{x}') - \mathbf{x}' (\mathbf{r} \cdot \delta \mathbf{x})] = (\mathbf{r} \times \delta \mathbf{x}) (\mathbf{r} \cdot \mathbf{x}') - (\mathbf{r} \times \mathbf{x}') (\mathbf{r} \cdot \delta \mathbf{x})$$

$$\delta \mathbf{B} = \oint \left[\frac{(\delta \mathbf{x} \times \mathbf{x}' \cdot \mathbf{r}) \, 3 \, \mathbf{r}}{r^5} - \frac{\delta \mathbf{x} \times \mathbf{x}'}{r^3} \right] \, dl \tag{3}$$

$$\mathbf{B} = \oint \frac{(\mathbf{x}' \times \mathbf{r})}{r^3} dl, \text{ where } \mathbf{r} \equiv \bar{\mathbf{x}} - \mathbf{x}, r \equiv \sqrt{\mathbf{r} \cdot \mathbf{r}}, \mathbf{x}' \equiv \partial_l \mathbf{x} \tag{1}$$

$$\delta \mathbf{B} = \oint \frac{(\delta \mathbf{x}' \times \mathbf{r})}{r^3} dl \qquad -\oint \frac{(\mathbf{x}' \times \delta \mathbf{x})}{r^3} dl + 3 \oint \frac{(\mathbf{x}' \times \mathbf{r})(\mathbf{r} \cdot \delta \mathbf{x})}{r^5} dl \\
= \oint \frac{(\delta \mathbf{x} \times \mathbf{x}')}{r^3} dl - 3 \oint \frac{(\delta \mathbf{x} \times \mathbf{r})(\mathbf{r} \cdot \mathbf{x}')}{r^5} dl - \oint \frac{(\mathbf{x}' \times \delta \mathbf{x})}{r^3} dl + 3 \oint \frac{(\mathbf{x}' \times \mathbf{r})(\mathbf{r} \cdot \delta \mathbf{x})}{r^5} dl \\
= 2 \oint \frac{(\delta \mathbf{x} \times \mathbf{x}')}{r^3} dl - 3 \oint \frac{(\delta \mathbf{x} \times \mathbf{r})(\mathbf{r} \cdot \mathbf{x}')}{r^5} dl \qquad + 3 \oint \frac{(\mathbf{x}' \times \mathbf{r})(\mathbf{r} \cdot \delta \mathbf{x})}{r^5} dl \tag{2}$$

Correct, but not "transparent". Do tangential variations, $\delta \mathbf{x} \times \mathbf{x}' = 0$, change **B**?

Use
$$\mathbf{r} \times [\mathbf{r} \times (\delta \mathbf{x} \times \mathbf{x}')] = \mathbf{r} \times [\delta \mathbf{x} (\mathbf{r} \cdot \mathbf{x}') - \mathbf{x}' (\mathbf{r} \cdot \delta \mathbf{x})] = (\mathbf{r} \times \delta \mathbf{x}) (\mathbf{r} \cdot \mathbf{x}') - (\mathbf{r} \times \mathbf{x}') (\mathbf{r} \cdot \delta \mathbf{x})$$

$$\mathbf{B} = \oint \frac{(\mathbf{x}' \times \mathbf{r})}{r^3} dl, \text{ where } \mathbf{r} \equiv \bar{\mathbf{x}} - \mathbf{x}, \ r \equiv \sqrt{\mathbf{r} \cdot \mathbf{r}}, \ \mathbf{x}' \equiv \partial_l \mathbf{x} \tag{1}$$

$$\delta \mathbf{B} = \oint \frac{(\delta \mathbf{x}' \times \mathbf{r})}{r^3} dl \qquad -\oint \frac{(\mathbf{x}' \times \delta \mathbf{x})}{r^3} dl + 3 \oint \frac{(\mathbf{x}' \times \mathbf{r})(\mathbf{r} \cdot \delta \mathbf{x})}{r^5} dl \\
= \oint \frac{(\delta \mathbf{x} \times \mathbf{x}')}{r^3} dl - 3 \oint \frac{(\delta \mathbf{x} \times \mathbf{r})(\mathbf{r} \cdot \mathbf{x}')}{r^5} dl - \oint \frac{(\mathbf{x}' \times \delta \mathbf{x})}{r^3} dl + 3 \oint \frac{(\mathbf{x}' \times \mathbf{r})(\mathbf{r} \cdot \delta \mathbf{x})}{r^5} dl \\
= 2 \oint \frac{(\delta \mathbf{x} \times \mathbf{x}')}{r^3} dl - 3 \oint \frac{(\delta \mathbf{x} \times \mathbf{r})(\mathbf{r} \cdot \mathbf{x}')}{r^5} dl \qquad + 3 \oint \frac{(\mathbf{x}' \times \mathbf{r})(\mathbf{r} \cdot \delta \mathbf{x})}{r^5} dl \tag{2}$$

Correct, but not "transparent". Do tangential variations, $\delta \mathbf{x} \times \mathbf{x}' = 0$, change **B** ?

Use
$$\mathbf{r} \times [\mathbf{r} \times (\delta \mathbf{x} \times \mathbf{x}')] = \mathbf{r} \times [\delta \mathbf{x} (\mathbf{r} \cdot \mathbf{x}') - \mathbf{x}' (\mathbf{r} \cdot \delta \mathbf{x})] = (\mathbf{r} \times \delta \mathbf{x}) (\mathbf{r} \cdot \mathbf{x}') - (\mathbf{r} \times \mathbf{x}') (\mathbf{r} \cdot \delta \mathbf{x})$$

$$\delta \mathbf{B} = \oint \left[\frac{\left(\delta \mathbf{x} \times \mathbf{x}' \cdot \mathbf{r} \right) \mathbf{3} \mathbf{r}}{r^5} - \frac{\delta \mathbf{x} \times \mathbf{x}'}{r^3} \right] dl$$
(3)

$$= \oint (\delta \mathbf{x} \times \mathbf{x}') \cdot \left(\frac{\mathbf{r} \, 3 \, \mathbf{r}}{r^5} - \frac{\mathbf{I}}{r^3}\right) \, dl, \text{ where } \mathbf{v} \cdot \mathbf{I} = \mathbf{I} \cdot \mathbf{v} = \mathbf{v}, \tag{4}$$

$$\mathbf{B} = \oint \frac{(\mathbf{x}' \times \mathbf{r})}{r^3} dl, \text{ where } \mathbf{r} \equiv \bar{\mathbf{x}} - \mathbf{x}, r \equiv \sqrt{\mathbf{r} \cdot \mathbf{r}}, \mathbf{x}' \equiv \partial_l \mathbf{x} \tag{1}$$

$$\delta \mathbf{B} = \oint \frac{(\delta \mathbf{x}' \times \mathbf{r})}{r^3} dl - 3 \oint \frac{(\delta \mathbf{x} \times \mathbf{r})(\mathbf{r} \cdot \mathbf{x}')}{r^5} dl - \oint \frac{(\mathbf{x}' \times \delta \mathbf{x})}{r^3} dl + 3 \oint \frac{(\mathbf{x}' \times \mathbf{r})(\mathbf{r} \cdot \delta \mathbf{x})}{r^5} dl \\
= \oint \frac{(\delta \mathbf{x} \times \mathbf{x}')}{r^3} dl - 3 \oint \frac{(\delta \mathbf{x} \times \mathbf{r})(\mathbf{r} \cdot \mathbf{x}')}{r^5} dl - \oint \frac{(\mathbf{x}' \times \delta \mathbf{x})}{r^3} dl + 3 \oint \frac{(\mathbf{x}' \times \mathbf{r})(\mathbf{r} \cdot \delta \mathbf{x})}{r^5} dl \\
= 2 \oint \frac{(\delta \mathbf{x} \times \mathbf{x}')}{r^3} dl - 3 \oint \frac{(\delta \mathbf{x} \times \mathbf{r})(\mathbf{r} \cdot \mathbf{x}')}{r^5} dl - 4 \tag{2}$$

Correct, but not "transparent". Do tangential variations, $\delta \mathbf{x} \times \mathbf{x}' = 0$, change **B**?

Use
$$\mathbf{r} \times [\mathbf{r} \times (\delta \mathbf{x} \times \mathbf{x}')] = \mathbf{r} \times [\delta \mathbf{x} (\mathbf{r} \cdot \mathbf{x}') - \mathbf{x}' (\mathbf{r} \cdot \delta \mathbf{x})] = (\mathbf{r} \times \delta \mathbf{x}) (\mathbf{r} \cdot \mathbf{x}') - (\mathbf{r} \times \mathbf{x}') (\mathbf{r} \cdot \delta \mathbf{x})$$

$$\delta \mathbf{B} = \oint \left[\frac{\left(\delta \mathbf{x} \times \mathbf{x}' \cdot \mathbf{r} \right) \mathbf{3} \mathbf{r}}{r^5} - \frac{\delta \mathbf{x} \times \mathbf{x}'}{r^3} \right] dl$$
(3)

$$= \oint (\delta \mathbf{x} \times \mathbf{x}') \cdot \left(\frac{\mathbf{r} \, 3 \, \mathbf{r}}{r^5} - \frac{\mathbf{I}}{r^3}\right) \, dl, \text{ where } \mathbf{v} \cdot \mathbf{I} = \mathbf{I} \cdot \mathbf{v} = \mathbf{v}, \tag{4}$$

$$\delta \mathbf{B} = \oint (\delta \mathbf{x} \times \mathbf{x}') \cdot \mathbf{R} \, dl \tag{5}$$

This is concise, and shows that tangential variations, $\delta \mathbf{x} \times \mathbf{x}' = 0$, do not alter the field.

The first variation with respect to variations in the curve is easy to calculate

1. The first variation of the penalized quadratic-flux, $\mathcal{F}[\mathbf{x}_i, \bar{\mathbf{x}}] \equiv \int_{\mathcal{S}} \frac{1}{2} B_n^2 ds + \omega L$, is

$$\delta \mathcal{F} = \oint_{i} \delta \mathbf{x}_{i} \cdot \frac{\delta \mathcal{F}}{\delta \mathbf{x}_{i}} \Big|_{\bar{\mathbf{x}}} dl, \text{ where } \left| \frac{\delta \mathcal{F}}{\delta \mathbf{x}_{i}} \right|_{\bar{\mathbf{x}}} \equiv \mathbf{x}_{i}' \times \left(\oint_{\mathcal{S}} \mathbf{R}_{i,n} B_{n} \, ds + \omega \, \boldsymbol{\kappa}_{i} \right).$$
(1)

2. "Slow motion" steepest-descent algorithm is easy to implement,

$$\frac{\partial \mathbf{x}_i}{\partial \tau} = -\left. \frac{\delta \mathcal{F}}{\delta \mathbf{x}_i} \right|_{\bar{\mathbf{x}}}, \quad \frac{\partial \mathcal{F}}{\partial \tau} = -\oint_i \left(\frac{\delta \mathcal{F}}{\delta \mathbf{x}_i} \right)^2 dl \le 0.$$
(2)

3. Coils cannot continuously pass through surface, as this would produce infinities; so the descent algorithm preserves

the Gauss linking integral
$$= \frac{1}{4\pi} \oint_i \oint_a \frac{\mathbf{x}_i - \mathbf{x}_a}{|\mathbf{x}_i - \mathbf{x}_a|^3} \cdot d\mathbf{x}_i \times d\mathbf{x}_a,$$

and thereby avoids the trivial solution that the coils are removed to infinity.

Flexible Optimized Coils Using Space (FOCUS) curves Caoxiang Zhu, Stuart R. Hudson *et al., "New method to design stellarator coils without the winding surface"*, Nucl. Fusion **58**, 016008 (2017)

Second derivatives can be calculated, allows fast algorithms and sensitivity analysis

1. Let $\mathbf{c} \equiv {\mathbf{x}_{i,n}}$, degrees-of-freedom that parameterize external currents.

For example, $\mathbf{x}_i(l) = x_i(l)\mathbf{i} + y_i(l)\mathbf{j} + z_i(l)\mathbf{z}$ where

$$x_i(l) = \sum_n \left[x_{i,n}^c \cos(nl) + x_{i,n}^s \sin(nl) \right]$$
(1)

$$y_i(l) = \sum_n \left[y_{i,n}^c \cos(nl) + y_{i,n}^s \sin(nl) \right]$$
(2)

$$z_i(l) = \sum_n \left[z_{i,n}^c \cos(nl) + z_{i,n}^s \sin(nl) \right]$$
(3)

2.
$$\mathcal{F}(\mathbf{c} + \delta \mathbf{c}) \approx \mathcal{F}(\mathbf{c}) + \nabla_{\mathbf{c}} \mathcal{F} \cdot \delta \mathbf{c} + \frac{1}{2} \delta \mathbf{c}^T \cdot \nabla_{\mathbf{cc}}^2 \mathcal{F} \cdot \delta \mathbf{c}$$

- 3. Inverting Hessian allows Newton method.[C. Zhu, S.R. Hudson *et al.*, Plasma Phys. Control. Fusion, in press (2018)]
- 4. Eigenvalues of Hessian describe sensitivity to coil placement errors. [C. Zhu, S.R. Hudson *et al.*, Plasma Phys. Control. Fusion, in press (2018)]
- 5. A piecewise-linear representation is under construction.

1. Parametrized surface, $\mathbf{x}(\theta, \zeta)$, tangent vectors $\mathbf{x}_{\theta} \equiv \frac{\partial \mathbf{x}}{\partial \theta}$ and $\mathbf{x}_{\zeta} \equiv \frac{\partial \mathbf{x}}{\partial \zeta}$,

normal
$$\mathbf{n} \equiv \frac{\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}}{|\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}|}, \quad d(\text{area}) \quad ds \equiv |\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| \, d\theta d\zeta.$$
 (1)

where $|\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| = [(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}).(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta})]^{1/2}.$

1. Parametrized surface, $\mathbf{x}(\theta, \zeta)$, tangent vectors $\mathbf{x}_{\theta} \equiv \frac{\partial \mathbf{x}}{\partial \theta}$ and $\mathbf{x}_{\zeta} \equiv \frac{\partial \mathbf{x}}{\partial \zeta}$,

normal
$$\mathbf{n} \equiv \frac{\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}}{|\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}|}, \quad d(area) \quad ds \equiv |\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| \, d\theta d\zeta.$$
 (1)

where $|\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| = [(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}).(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta})]^{1/2}.$

2. Variations $\mathbf{x}(\theta,\zeta) \to \mathbf{x}(\theta,\zeta) + \delta \mathbf{x}(\theta,\zeta)$ induce $\delta \mathbf{x}_{\theta} \equiv \partial_{\theta} \delta \mathbf{x}, \quad \delta \mathbf{x}_{\zeta} \equiv \partial_{\zeta} \delta \mathbf{x}$

$$\delta |\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| = \frac{1}{2} [(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}).(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta})]^{-1/2} 2 (\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}).(\delta \mathbf{x}_{\theta} \times \mathbf{x}_{\zeta} + \mathbf{x}_{\theta} \times \delta \mathbf{x}_{\zeta})$$
(2)

1. Parametrized surface, $\mathbf{x}(\theta, \zeta)$, tangent vectors $\mathbf{x}_{\theta} \equiv \frac{\partial \mathbf{x}}{\partial \theta}$ and $\mathbf{x}_{\zeta} \equiv \frac{\partial \mathbf{x}}{\partial \zeta}$,

normal
$$\mathbf{n} \equiv \frac{\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}}{|\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}|}, \quad d(area) \quad ds \equiv |\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| \, d\theta d\zeta.$$
 (1)

where $|\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| = [(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}).(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta})]^{1/2}.$

$$\delta |\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| = \frac{1}{2} [(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}).(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta})]^{-1/2} 2 (\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}).(\delta \mathbf{x}_{\theta} \times \mathbf{x}_{\zeta} + \mathbf{x}_{\theta} \times \delta \mathbf{x}_{\zeta}) \quad (2)$$

= $\mathbf{n} \cdot (\delta \mathbf{x}_{\theta} \times \mathbf{x}_{\zeta} - \delta \mathbf{x}_{\zeta} \times \mathbf{x}_{\theta})$ (3)

1. Parametrized surface, $\mathbf{x}(\theta, \zeta)$, tangent vectors $\mathbf{x}_{\theta} \equiv \frac{\partial \mathbf{x}}{\partial \theta}$ and $\mathbf{x}_{\zeta} \equiv \frac{\partial \mathbf{x}}{\partial \zeta}$,

normal
$$\mathbf{n} \equiv \frac{\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}}{|\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}|}, \quad d(\text{area}) \quad ds \equiv |\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| \, d\theta d\zeta.$$
 (1)

where $|\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| = [(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}).(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta})]^{1/2}.$

$$\delta |\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| = \frac{1}{2} [(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}).(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta})]^{-1/2} 2 (\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}).(\delta \mathbf{x}_{\theta} \times \mathbf{x}_{\zeta} + \mathbf{x}_{\theta} \times \delta \mathbf{x}_{\zeta})$$
(2)

$$= \mathbf{n} \cdot (\delta \mathbf{x}_{\theta} \times \mathbf{x}_{\zeta} - \delta \mathbf{x}_{\zeta} \times \mathbf{x}_{\theta})$$
(3)

$$= \delta \mathbf{x}_{\theta} \cdot (\mathbf{x}_{\zeta} \times \mathbf{n}) - \delta \mathbf{x}_{\zeta} \cdot (\mathbf{x}_{\theta} \times \mathbf{n})$$
(4)

1. Parametrized surface, $\mathbf{x}(\theta, \zeta)$, tangent vectors $\mathbf{x}_{\theta} \equiv \frac{\partial \mathbf{x}}{\partial \theta}$ and $\mathbf{x}_{\zeta} \equiv \frac{\partial \mathbf{x}}{\partial \zeta}$,

normal
$$\mathbf{n} \equiv \frac{\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}}{|\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}|}, \quad d(area) \quad ds \equiv |\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| \, d\theta d\zeta.$$
 (1)

where $|\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| = [(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}).(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta})]^{1/2}.$

$$\delta |\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| = \frac{1}{2} [(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}).(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta})]^{-1/2} 2 (\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}).(\delta \mathbf{x}_{\theta} \times \mathbf{x}_{\zeta} + \mathbf{x}_{\theta} \times \delta \mathbf{x}_{\zeta})$$
(2)

$$= \mathbf{n} \cdot (\delta \mathbf{x}_{\theta} \times \mathbf{x}_{\zeta} - \delta \mathbf{x}_{\zeta} \times \mathbf{x}_{\theta})$$
(3)

$$= \delta \mathbf{x}_{\theta} \cdot (\mathbf{x}_{\zeta} \times \mathbf{n}) - \delta \mathbf{x}_{\zeta} \cdot (\mathbf{x}_{\theta} \times \mathbf{n})$$
(4)

$$\int \delta |\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| \, d\theta d\zeta = -\int \delta \mathbf{x} \cdot (\mathbf{x}_{\zeta\theta} \times \mathbf{n} + \mathbf{x}_{\zeta} \partial_{\theta} \times \mathbf{n}) \, d\theta d\zeta + \int \delta \mathbf{x} \cdot (\mathbf{x}_{\theta\zeta} \times \mathbf{n} + \mathbf{x}_{\theta} \partial_{\zeta} \times \mathbf{n}) \, d\theta d\zeta$$
(5)

1. Parametrized surface, $\mathbf{x}(\theta, \zeta)$, tangent vectors $\mathbf{x}_{\theta} \equiv \frac{\partial \mathbf{x}}{\partial \theta}$ and $\mathbf{x}_{\zeta} \equiv \frac{\partial \mathbf{x}}{\partial \zeta}$,

normal
$$\mathbf{n} \equiv \frac{\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}}{|\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}|}, \quad d(area) \quad ds \equiv |\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| \, d\theta d\zeta.$$
 (1)

where $|\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| = [(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}).(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta})]^{1/2}.$

$$\delta |\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| = \frac{1}{2} [(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}).(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta})]^{-1/2} 2 (\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}).(\delta \mathbf{x}_{\theta} \times \mathbf{x}_{\zeta} + \mathbf{x}_{\theta} \times \delta \mathbf{x}_{\zeta})$$
(2)

$$= \mathbf{n} \cdot (\delta \mathbf{x}_{\theta} \times \mathbf{x}_{\zeta} - \delta \mathbf{x}_{\zeta} \times \mathbf{x}_{\theta})$$
(3)

$$= \delta \mathbf{x}_{\theta} \cdot (\mathbf{x}_{\zeta} \times \mathbf{n}) - \delta \mathbf{x}_{\zeta} \cdot (\mathbf{x}_{\theta} \times \mathbf{n})$$
(4)

$$\int \delta |\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| \, d\theta d\zeta = -\int \delta \mathbf{x} \cdot (\mathbf{x}_{\zeta\theta} \times \mathbf{n} + \mathbf{x}_{\zeta} \partial_{\theta} \times \mathbf{n}) \, d\theta d\zeta + \int \delta \mathbf{x} \cdot (\mathbf{x}_{\theta\zeta} \times \mathbf{n} + \mathbf{x}_{\theta} \partial_{\zeta} \times \mathbf{n}) \, d\theta d\zeta$$
(5)
$$= -\int \delta \mathbf{x} \cdot (\mathbf{x}_{\zeta} \partial_{\theta} - \mathbf{x}_{\theta} \partial_{\zeta}) \times \mathbf{n} \, d\theta d\zeta$$
(6)

1. Parametrized surface, $\mathbf{x}(\theta, \zeta)$, tangent vectors $\mathbf{x}_{\theta} \equiv \frac{\partial \mathbf{x}}{\partial \theta}$ and $\mathbf{x}_{\zeta} \equiv \frac{\partial \mathbf{x}}{\partial \zeta}$,

normal
$$\mathbf{n} \equiv \frac{\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}}{|\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}|}, \quad d(area) \quad ds \equiv |\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| \, d\theta d\zeta.$$
 (1)

where $|\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| = [(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}).(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta})]^{1/2}.$

2. Variations $\mathbf{x}(\theta, \zeta) \to \mathbf{x}(\theta, \zeta) + \delta \mathbf{x}(\theta, \zeta)$ induce

$$\delta |\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| = \frac{1}{2} [(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}).(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta})]^{-1/2} 2 (\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}).(\delta \mathbf{x}_{\theta} \times \mathbf{x}_{\zeta} + \mathbf{x}_{\theta} \times \delta \mathbf{x}_{\zeta})$$
(2)

$$= \mathbf{n} \cdot (\delta \mathbf{x}_{\theta} \times \mathbf{x}_{\zeta} - \delta \mathbf{x}_{\zeta} \times \mathbf{x}_{\theta})$$
(3)

$$= \delta \mathbf{x}_{\theta} \cdot (\mathbf{x}_{\zeta} \times \mathbf{n}) - \delta \mathbf{x}_{\zeta} \cdot (\mathbf{x}_{\theta} \times \mathbf{n})$$
(4)

$$\int \delta |\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| \, d\theta d\zeta = -\int \delta \mathbf{x} \cdot (\mathbf{x}_{\zeta\theta} \times \mathbf{n} + \mathbf{x}_{\zeta} \partial_{\theta} \times \mathbf{n}) \, d\theta d\zeta + \int \delta \mathbf{x} \cdot (\mathbf{x}_{\theta\zeta} \times \mathbf{n} + \mathbf{x}_{\theta} \partial_{\zeta} \times \mathbf{n}) \, d\theta d\zeta$$
(5)

$$= -\int \delta \mathbf{x} \cdot (\mathbf{x}_{\zeta} \partial_{\theta} - \mathbf{x}_{\theta} \partial_{\zeta}) \times \mathbf{n} \, d\theta d\zeta$$
(6)

 $= -\int \delta \mathbf{x} \cdot \mathbf{n} \, (\nabla \cdot \mathbf{n}) ds, \quad \text{and only normal variations matter.} \tag{7}$

The quadratic-flux is an analytic function of the surface. So, what happens if the surface varies?

1. The variation in \mathcal{F} resulting from variations, $\delta \mathbf{x}_i$ and $\delta \bar{\mathbf{x}}$, in the geometry of the *i*-th coil and the surface is

$$\delta^{2} \mathcal{F} \equiv \oint_{i} \delta \mathbf{x}_{i} \cdot \oint_{\mathcal{S}} \frac{\delta^{2} F}{\delta \mathbf{x}_{i} \delta \bar{\mathbf{x}}} \cdot \delta \bar{\mathbf{x}} \, ds \, dl, \qquad (1)$$

$$\frac{\delta^2 \mathcal{F}}{\delta \mathbf{x}_i \delta \bar{\mathbf{x}}} = \mathbf{x}'_i \times (\mathbf{R}_S \cdot \nabla B_n + \mathbf{B}_S \cdot \nabla \mathbf{R}_n + B_n \, \mathbf{R} \cdot \mathbf{H}) \, \mathbf{n}, \tag{2}$$

where

- i. $\mathbf{B}_S \equiv \mathbf{B} B_n \mathbf{n}$ is projection of \mathbf{B} in the tangent plane to $\bar{\mathbf{x}}$, and $\mathbf{R}_S \equiv \mathbf{R} \mathbf{R}_n \mathbf{n}$,
- ii. the mean curvature can be written $\mathbf{H} \equiv -\mathbf{n} (\nabla \cdot \mathbf{n})$,
- iii. the calculus of variations of the quadratic-flux w.r.t. surface variations was presented by Dewar *et al.* [Phys. Lett. A **194**, 49 (1994)].
- 3. The shape of the optimal coils must change with the surface to preserve $\nabla_{\mathbf{c}} \mathcal{F} = 0$,

 $\nabla_{\mathbf{c}} \mathcal{F}(\mathbf{c} + \delta \mathbf{c}, \mathbf{s} + \delta \mathbf{s}) \approx \nabla^2_{\mathbf{cc}} \mathcal{F} \cdot \delta \mathbf{c} + \nabla^2_{\mathbf{cs}} \mathcal{F} \cdot \delta \mathbf{s} = 0$, and from this

$$\frac{\partial \mathbf{c}}{\partial \mathbf{s}} = -\left(\nabla_{\mathbf{cc}}^2 \mathcal{F}\right)^{-1} \cdot \nabla_{\mathbf{cs}}^2 \mathcal{F}.$$
(3)

Part Two:

Can the surface be varied to simplify the coils under the constraint of conserved plasma properties?

1. Introduce a measure of coil complexity, $C(\mathbf{c})$, that we wish to minimize,

e.g. integrated torsion,
$$C \equiv \oint \frac{\mathbf{x}' \cdot \mathbf{x}'' \times \mathbf{x}''}{|\mathbf{x}' \times \mathbf{x}''|^2} dl$$

which quantifies the "non-planar-ness" of the coils.

- 2. Introduce a plasma property, $\mathcal{P}(\bar{\mathbf{x}})$, that we wish to constrain.
- 3. Can minimize coil complexity subject to constrained plasma properties, i.e. extremize

$$\mathcal{G}(\bar{\mathbf{x}}) \equiv \mathcal{C}(\mathbf{x}_i(\bar{\mathbf{x}})) + \lambda \left[\mathcal{P}(\bar{\mathbf{x}}) - \mathcal{P}_0 \right], \tag{1}$$

where λ is a Lagrange multiplier.

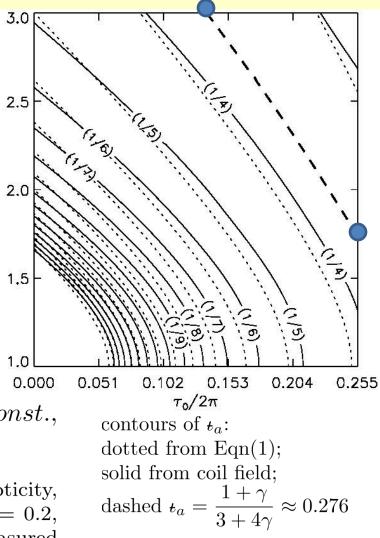
5. Solutions satisfy
$$\frac{\partial \mathbf{x}_i}{\partial \bar{\mathbf{x}}} \cdot \frac{\partial \mathcal{C}}{\partial \mathbf{x}_i} + \lambda \frac{\partial \mathcal{P}}{\partial \bar{\mathbf{x}}} = 0.$$

Example: rotational-transform on axis depends on "ellipticity" and torsion of axis.

- 1. Rotational-transform on axis, t_a , can be produced in vacuum [Mercier (1964)]
 - i. by shaping the boundary (i.e., rotating ellipse),
 - ii. by shaping the magnetic axis (through torsion),
 - iii. or by both;

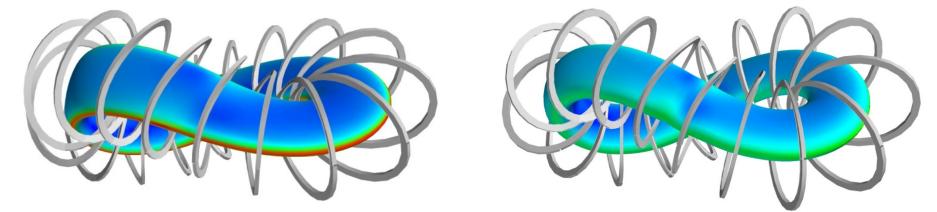
$$\iota_a = \frac{(\epsilon - 1)^2}{\epsilon^2 + 1} \frac{N}{2} + \frac{2\epsilon}{\epsilon^2 + 1} \bar{\tau}.$$
 (1)

- 2. There is freedom to change boundary at $t_a = const.$, which can be used to simplify the coils.
- 3. A two-parameter family of surfaces parametrized by ellipticity, ϵ , and integrated axis torsion, $\bar{\tau}$, with R = 1.0 and a = 0.2, is constructed; coils constructed using FOCUS, ι_a measured numerically.



A circular cross-section with axis torsion gives simpler coils than a rotating ellipse with circular magnetic axis

- 1. "Simple" in this case means more planar.
- 2. The following have
 - i. the same rotational-transform on axis, $t_a \approx 0.276$, and good flux surfaces,
 - ii. total volume = $0.799m^3$, 18 coils, $N_{FP} \equiv$ field-periods = 1,
 - iii. average length and complexity of the coils is
 - $\langle L \rangle = 3.07m$ and $\langle C \rangle = 0.66m^{-1}$, and $\langle L \rangle = 2.88m$ and $\langle C \rangle = 0.12m^{-1}$.



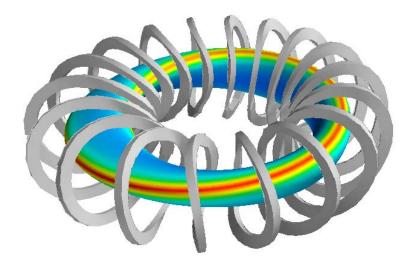
3. Color indicates mean curvature.

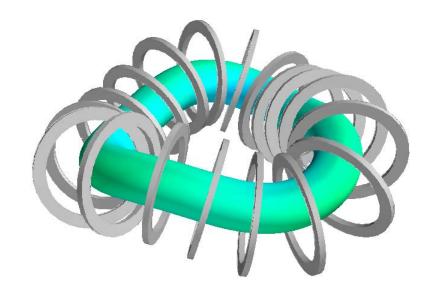
Another example: one purely elliptical, the other purely torsion

- 1. The following have
 - i. the same rotational-transform on axis, $t\approx 0.101,$ and good flux surfaces,
 - ii. total volume = $0.7986m^3$, 18 coils, $N_{FP} = 1$,

The average complexity of the coils is:

 $\langle \mathcal{C} \rangle = 0.800 m^{-1}, \qquad \langle \mathcal{C} \rangle = 0.005 m^{-1}.$





Summary

- 1) The Simplest Possible Algorithm[©] (SPA) for designing stellarator coils is described.
- 2) The coil geometry has "maximum freedom", and the target function is "minimally constrained". (Additional constraints can be added.)
- 3) Fast, reliable and insightful numerical algorithms are enabled by exploiting 1st and 2nd derivatives with respect to the coil geometry *and* the "target surface".

Some relevant papers

- 1) P. Merkel, Nucl. Fusion 27, 867 (1987)
- 2) R.L. Dewar, S.R. Hudson & P.F. Price, Phys. Lett. A 194, 49 (1994)
- 3) M. Landreman, Nucl. Fusion 57, 046003 (2017)
- 4) Caoxiang Zhu, Stuart R. Hudson *et al., "New method to design stellarator coils without the winding surface"*, Nucl. Fusion **58**, 016008 (2017)
- 5) Caoxiang Zhu, Stuart R. Hudson *et al.*, *"Designing stellarator coils using a Newton method"*, Plasma Phys. Control. Fusion, in press (2018)
- 6) Caoxiang Zhu, Stuart R. Hudson *et al.*, *"Hessian matrix approach for determining error field sensitivity to coil deviations"*, Plasma Phys. Control. Fusion, in press (2018)

area =
$$\int_{\mathcal{S}} ds$$
, where $ds \equiv |\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| d\theta d\zeta$, and $\mathbf{x}_{\theta} \equiv \partial_{\theta} \mathbf{x}$ (1)

$$|\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| = [(\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}) \cdot (\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta})]^{1/2}$$
(2)

$$\delta |\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}| = \mathbf{n} \cdot (\delta \mathbf{x}_{\theta} \times \mathbf{x}_{\zeta} - \delta \mathbf{x}_{\zeta} \times \mathbf{x}_{\theta}), \text{ where } \mathbf{n} = (\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}) / |\mathbf{x}_{\theta} \times \mathbf{x}_{\zeta}|$$
(3)

$$\delta(\text{area}) = \int_{\mathcal{S}} \partial_{\theta} \delta \mathbf{x} \cdot \mathbf{x}_{\zeta} \times \mathbf{n} \, d\theta d\zeta - \int_{\mathcal{S}} \partial_{\zeta} \delta \mathbf{x} \cdot \mathbf{x}_{\theta} \times \mathbf{n} \, d\theta d\zeta \tag{4}$$

$$= -\int_{\mathcal{S}} \delta \mathbf{x} \cdot (\mathbf{x}_{\zeta\theta} \times \mathbf{n} + \mathbf{x}_{\zeta} \partial_{\theta} \times \mathbf{n}) \, d\theta d\zeta$$
(5)

$$+ \int_{\mathcal{S}} \delta \mathbf{x} \cdot (\mathbf{x}_{\theta\zeta} \times \mathbf{n} + \mathbf{x}_{\theta} \partial_{\zeta} \times \mathbf{n}) \, d\theta d\zeta \tag{6}$$

$$= -\int_{\mathcal{S}} \delta \mathbf{x} \cdot (\mathbf{x}_{\zeta} \partial_{\theta} - \mathbf{x}_{\theta} \partial_{\zeta}) \times \mathbf{n} \, d\theta d\zeta$$
⁽⁷⁾

$$= -\int_{\mathcal{S}} \delta \mathbf{x} \cdot (\mathbf{n} \times \nabla) \times \mathbf{n} \, ds, \text{ where } \mathbf{n} = \nabla s / |\nabla s| \text{ and } \nabla \equiv \nabla s \, \partial_s + \nabla \theta \, \partial_\theta + \nabla \zeta \, \partial_\zeta, \quad (8)$$
$$= -\int_{\mathcal{S}} \delta \mathbf{x} \cdot \mathbf{n} \, (\nabla \cdot \mathbf{n}) \, ds \qquad (9)$$

$$= -\int_{\mathcal{S}} \delta \mathbf{x} \cdot \mathbf{n} \left(\nabla \cdot \mathbf{n} \right) \, ds \tag{9}$$

$$= -\int_{\mathcal{S}} \delta \mathbf{x} \cdot \mathbf{H} \, ds, \quad \text{mean curvature } \mathbf{H} \equiv \mathbf{n} \left(\nabla \cdot \mathbf{n} \right) \tag{10}$$

1) R.L. Dewar, S.R. Hudson & P.F. Price, Phys. Lett. A., **194** 49 (1994)

ſ