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The	Gkeyll	Project	has	three	major	parts,		
“It	is	one	thing	to	mor.fy	curiosity,	another	to	conquer	it”	

•  Mul6fluid	models:	treat	
each	species	as	fluid,	
include	some	kine6c	
effects.	Beyond	single-fluid	
MHD	or	Hall-MHD	(J.	Ng,	L.	
Wang,	C.	Dong,	A.	
BhaJacharjee)	

•  Gyrokine6c	models(N.	
Mandell,	T.	Bernard,	M.	
Francisquez,	E.	Shi,	G.	
HammeJ)	

•  Vlasov-Maxwell	model	(J.	
Juno,	P.	Cagas,	J	TenBarge,	
B.	Srinivasan)	



Study	of	Earth’s	magnetosphere	is	of	
fundamental	importance	

•  Impact	on	
opera6ons	of	
satellites;	solar	
storms	can	cause	
damage	to	power-
lines	and	other	
electronic	
equipment	

•  We	would	like	to	

simulate	the	

complete	(global)	

magnetosphere	

with	advanced	
plasma	fluid	

models	

Wikipedia	



Resolving	all	scales	is	prac6cal	only	for	
smaller	solar	system	bodies	

Earth	is	very	large,	has	a	very	strong	magne6c	field.	As	test,	choose	Jupiter’s	moon	
Ganymede	and	the	inner	planet	Mercury.	Plenty	of	data	from	Galileo	mission	to	
Jupiter,	Hubble	Space	Telescope	and	Messenger	mission	to	Mercury.	

Wikipedia	



Mul6fluid	simula6ons	of	Ganymede	
give	insight	into	reconnec6on	and	

asymmetric	flows	
	
•  Domain	is	60^3	Rg	

and	uses	highly	non-
uniform	800^3	mesh	

•  Mul6fluid	model	
retains	all	six	
components	of	
pressure	tensor;	Hall	
currents;	electron	
iner6a	

•  New	insight	into	
reconnec6on	electric	
fields;	instabili6es;	
surface	brightness	



Hubble	Space	Telescope	measurements	
capture	Ganymede’s	“Northern	lights”	

6	

↑	simula6on	 	↓oxygen	emission	from	HST	(McGrath2013)	

Parallel	electric	field	at	
moon	surface	from	
simula6ons	

Oxygen	emission	
measured	by	Hubble	
Space	Telescope	



Gkeyll solves a general class of Hamiltonian evolution
equations

Evolution of distribution function can be described as Hamiltonian system

@f

@t
+ {f,H} = 0

f(t, z) is distribution function, H(z) is Hamiltonian and {g, f} is the Poisson
bracket operator. The coordinates z = (z1, . . . , zN ) label the N -dimensional
phase-space.
Defining ↵ = (ż1, . . . , żN ), where żi = {zi, H}, gives

@

@t
(J f) +rz · (J↵f) = 0

where J is Jacobian of the (potentially) non-canonical coordinates. Note that
flow in phase-space is incompressible, i.e. rz · (J↵) = 0.
We need three ingredients: Hamiltonian, Poisson Bracket, and field equation.
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Long wavelength limit of gyrokinetics with straight B field

From the Hamiltonian

H =
1

2
mv2k + µB + q�

and Poisson bracket

{F,G} =
1

m

✓
@F

@z

@G

@vk
� @G

@vk

@G

@z

◆
� c

qB
b ·rF ⇥rG.

we obtain a long wavelength limit of gyrokinetics in straight field lines

@f

@t
+

@

@z

�
v||f

�
+r · (~vEf) +

@

@v||

⇣ q

m
E||f

⌘
= C[f ] + S

The electrostatic field is determined by

�r? · (✏?r?�) = 4⇡
X

s

q

Z
d3vf ⌘ 4⇡%gc

where ✏?(~x) = c2/v2A0 = c24⇡n0(~x)mi/B
2 is the plasma perpendicular dielectric

coe�cient.
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It is important to preserve quadratic invariants of
Hamiltonian systems

For any Hamiltonian system we can show that
Z

K
H{f,H} dz =

Z

K
f{f,H} dz = 0

The first of this leads to conservation of total energy (on use of field equations),
while the second leads to conservation of

R
K f2dz (called enstrophy for

incompressible fluids, and related to entropy).

Energy conservation in Hamiltonian systems is indirect: we evolve the
distribution function and field equation. In fluid models, in contrast, the
energy conservation is direct, as we evolve the total energy equation (in
addition to density and momentum density equations). Hence, ensuring
energy conservation for Hamiltonian system is non-trivial, and di�cult in
finite-volume schemes.

Energy conservation can be ensured using the famous finite-di↵erence
Arakawa scheme (widely used in climate modeling and one of the top-twenty
algorithms ever published in JCP). However, Arakawa scheme is dispersive
and can lead to huge oscillations for grid-scale modes.
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Discontinuous Galerkin algorithms represent state-of-art
for solution of hyperbolic partial di↵erential equations

DG algorithms hot topic in CFD and applied mathematics. First introduced
by Reed and Hill in 1973 for neutron transport in 2D.

General formulation in paper by Cockburn and Shu, JCP 1998. More than
700 citations.

DG combines key advantages of finite-elements (low phase error, high
accuracy, flexible geometries) with finite-volume schemes (limiters to produce
positivity/monotonicity, locality)

Certain types of DG have excellent conservation properties for, low noise and
low dissipation.

DG is inherently super-convergent: in FV methods interpolate p points to get
pth order accuracy. In DG interpolate p points to get 2p� 1 order accuracy.

DG combined with FV schemes can lead to best-in-class explicit algorithms
for hyperbolic PDEs.
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Essential idea of Galerkin methods: L2 minimization of
errors on a finite-dimensional subspace

Consider a general time-dependent problem

f 0(x, t) = G[f ]

where G[f ] is some operator. To approximate it expand f(x) with a finite set of
basis functions wk(x),

f(x, t) ⇡ fh(x, t) =
NX

k=1

fk(t)wk(x)

This gives discrete system

NX

k=1

f 0
kwk(x) = G[fh]

How to determine f 0
k in an optimum manner?

http://gkyl.rtfd.io (PPPL) The Gkeyll Project 4/24/2018 6 / 23



Essential idea of Galerkin methods: L2 minimization of
errors on a finite-dimensional subspace

Answer: Do an L2 minimization of the error, i.e. find f 0
k such that

EN =

Z " NX

k=1

f 0
kwk(x)�G[fh]

#2
dx

is minimum. For minimum error @EN/@f 0
m = 0 for all k = 1, . . . , N . This leads

to the linear system that determines the coe�cients f 0
k

Z
wm(x)

 
NX

k=1

f 0
kwk(x)�G[fh]

!
dx = 0

for all m = 1, . . . , N .
Projection of residual on the basis set chosen for expansion leads to minimum
errors in the L2 sense. For this reason DG/CG schemes are constructed by
projecting residuals of PDEs on basis sets.
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What does a typical L2 fit look like for discontinuous
Galerkin scheme?

Discontinuous Galerkin schemes use function spaces that allow
discontinuities across cell boundaries.

Figure: The best L2 fit of x4
+ sin(5x) with piecewise linear (left) and quadratic (right) basis

functions.
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How to discretize Hamiltonian systems? Use discontinuous
space to discretize distribution function, and continuous
space for fields

Defining ↵ = (ż1, . . . , żN ) as the phase-space velocity vector (assume J is
constant)

@f

@t
+r · (↵f) = 0

Discrete problem is stated as: find fh in our selected approximation space, such
that for all test functions w the discrete weak-formZ

Kj

w
@fh
@t

dz+

I

@Kj

w�
n ·↵hF̂ dS �

Z

Kj

rw ·↵hfh dz = 0

is satisfied. Here F̂ = F̂ (f�
h , f+

h ) is a numerical flux function.
The discrete Poisson equation is obtained in a similar way (integration by parts),
except, the basis set now is global The discrete Poisson equation is obtained in a
similar way (integration by parts), except, the basis set now is global

I

@⌦
 ✏?r?�h · ndS �

Z

⌦
✏?r? ·r?�h dx = �4⇡

Z

⌦
 %gc dx
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Requirement of energy conservation put constraints on
discrete Hamiltonian

To check if energy is conserved, use discrete Hamiltonian H
h

in the
discrete weak-form to get
Z

Kj

H
h

@f
h

@t
dz+

Z

@Kj

H�
h

n ·↵
h

F̂ dS �
Z

Kj

rH
h

·↵
h| {z }

=0 from {f,f}=0

f
h

dz = 0

On summation over all cells the second term will vanish only if H
h

is
continuous. I.e. we get the required identity

X

j

Z

Kj

H
h

@f
h

@t
dz = 0

Hence: H
h

must lie in the continuous sub-set of the space use to define f
h

.
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This results, combined with field equation can be used to
prove conservation of total energy

Use Hamiltonian and sum over species to get

X

s

X

Kj2T

Z

Kj

✓
1

2
mv2kh + µB + q�h(x, t)

◆
@fh
@t

dz = 0.

Integrating out (summing over) the velocity space we get

X

⌦j2T
x

Z

⌦j

✓
@Eh
@t

+ �h(x, t)
@%gc
@t

◆
dx = 0,

Take time-derivative of discrete Poisson equation and use �h as test function to
show the conservation of total energy

@

@t

Z

⌦

⇣
Eh(x, t) +

✏?
8⇡

|r?�h(x, t)|2
⌘
dx = 0,
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Summary of conservation properties of scheme

The hybrid discontinuous/continuous Galerkin scheme has the following provable
properties

Proposition

Total number of particles are conserved exactly.

Proposition

The spatial scheme conserves total energy exactly.

Proposition

The spatial scheme exactly conserves the second quadratic invariant of the

distribution function when using a central flux, while monotonically decaying it

when using an upwind flux.

We were first to note a version of DG used by Liu & Shu (2000) for 2D hydro can
be extended to conserve energy for general Hamiltonian systems.
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Gkeyll	can	solve	5D	gyrokine6c	
equa6ons	on	open	field-lines	

Cross-sec2on	of	typical	

NSTX	plasma	

SOL	

LAPD	linear	device	

An energy-conserving DG algorithm is used for this work

We recognized that a conservative DG algorithm for 2D incompressible Euler and
Navier-Stokes equations3 is more general than the authors had thought.

Spatial scheme exactly conserves energy even with upwinding/limiting of numerical
fluxes

Distribution function is solved using discontinuous Galerkin methods
Hamiltonian is represented using continuous finite elements

Developed a solver for the general equation

@ (J f )
@t

+r · (J {z,H}f ) = 0

Potential Applications

Many systems can be written in this form, so this algorithm has uses beyond fluid and
gyrokinetic simulations.

3J.-G. Liu and C.-W. Shu, J. Comput. Phys. 160, 577 (2000)

Eric Shi Gyrokinetic continuum simulations of turbulence in LAPD... Sherwood 12 / 45

Schaffner	2012	
Stolzfus-Dueck	



A	plasma	sheath	forms	when	plasma	
touches	wall	Sheath Boundary Conditions

Parallel Coordinate
φw

φsh

P
o
te
n
ti
a
l

∆φ = φsh − φw

Region Resolved in Simulation

ni = neni > ne

Need to model sheath using BCs due to GK quasineutrality condition

Get �
sh

from solving GK Poisson equation, then use �� = �
sh

� �
w

to reflect low
vk electrons entering sheath

Kinetic version of sheath boundary conditions used in some fluid models that
determined vk,e BC from �

5,6

Allows currents in and out of the wall

Currently exploring possible improvements to the sheath boundary conditions

5B.N. Rogers and P. Ricci, Phys. Rev. Lett. 104, 145001 (2010)
6B. Friedman et al., Phys. Plasmas 20, 055704 (2013)

Eric Shi Gyrokinetic continuum simulations of turbulence in LAPD... Sherwood 18 / 45



Goal: Understand kinetic physics in plasma from
first-principles

We would like to solve the Vlasov-Maxwell system, treating it as a
partial-di↵erential equation (PDE) in 6D:

@f
s

@t
+r

x

· (vf
s

) +r
v

· (F
s

f
s

) = 0

where F

s

= q
s

/m
s

(E+ v ⇥B). The EM fields are determined from
Maxwell equations

@B

@t
+r⇥E = 0

✏
0

µ
0

@E

@t
�r⇥B = �µ

0

J
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Question: Can we solve the VM system e�ciently while
conserving important invariants?

We know that the Vlasov-Maxwell system conserves, total number of
particles; total (field + particle) momentum; total (field + particle) energy;
other invariants. Can a numerical scheme be designed that retains (some
or all) of these properties?

For understanding solar-wind turbulence and other problems, we would like
a noise-free algorithm that allows studying phase-space cascades correctly,
in a noise-free manner.
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We use DG for both Vlasov and Maxwell equations

Start from Vlasov equation written as advection equation in phase-space:

@f
s

@t
+r

z

· (↵f
s

) = 0

where advection velocity is given by ↵ = (v, q/m(E+ v ⇥B)).

To derive the semi-discrete Vlasov equation using a discontinuous Galerkin
algorithm, we introduce phase-space basis functions w(z), and derive the
discrete scheme:

Z

Kj

w
@f

h

@t
dz+

I

@Kj

w�
n · F̂ dS �

Z

Kj

r
z

w ·↵
h

f
h

dz = 0
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We use DG for both Vlasov and Maxwell equations

Multiply Maxwell equations by basis ' and integrate over a cell. We have terms
like

Z

⌦j

'r⇥E| {z }
r⇥('E)�r'⇥E

d3x.

Gauss law can be used to convert one volume integral into a surface integral
Z

⌦j

r⇥ ('E) d3x =

I

@⌦j

ds⇥ ('E)

Using these expressions we can now write the discrete weak-form of Maxwell
equations as

Z

⌦j

'
@Bh

@t
d3x+

I

@⌦j

ds⇥ ('�
Êh)�

Z

⌦j

r'⇥Eh d
3
x = 0

✏0µ0

Z

⌦j

'
@Eh

@t
d3x�

I

@⌦j

ds⇥ ('�
B̂h) +

Z

⌦j

r'⇥Bh d
3
x = �µ0

Z

⌦j

'Jh d
3
x.
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Is energy conserved? Are there any constraints on basis
functions/numerical fluxes?

Answer: Yes! If one is careful. We want to check if

d

dt

X

j

X

s

Z

Kj

1

2
m|v|2fh dz+

d

dt

X

j

Z

⌦j

✓
✏0
2
|Eh|2 +

1

2µ0
|Bh|2

◆
d3x = 0

Proposition

If central-fluxes are used for Maxwell equations, and if |v|2 is projected to the

approximation space, the semi-discrete scheme conserves total (particles plus

field) energy exactly.

The proof is rather complicated, and needs careful analysis of the discrete
equations (See Juno et. al. JCP 2018)

Remark
If upwind fluxes are used for Maxwell equations, the total energy will decay

monotonically. Note that the energy conservation does not depend on the fluxes

used to evolve Vlasov equation.
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Is momentum conserved?

Answer: No. Errors in momentum come about due to discontinuity in
electric field at cell interfaces. However, momentum conservation errors are

independent of velocity space discretization, and drop rapidly with

increasing configuration space resolution.
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Entropy increases monotonically

In order to correctly understand entropy production, one needs to ensure
that discrete scheme either maintains or increase entropy in the
collisionless case. We can show

Proposition

If the discrete distribution function f
h

remains positive definite, then the

discrete scheme grows the discrete entropy monotonically

X

j

d

dt

Z

Kj

�f
h

ln(f
h

) � 0
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To give and not to count the cost ...

Question: Are continuum schemes competitive compared to PIC schemes
in terms of cost for a given accuracy?

I am not completely sure and it probably depends on what you are looking
for.

In general, if one is interested in detailed phase-space structure of
distribution function, then continuum scheme can be very e�cient as the
lack of noise allows interpretation of data (for turbulence, for example)
easier.

Our recent algorithmic innovations in constructing special basis sets has
reduced cost of out continuum schemes significantly. This is potentially a
game-changer as e�ciency improves dramatically (at the cost of (probably
incomprehensible) auto-generated code).
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Application: 2D turbulence in magnetized plasmas

We have performed 2X/3V simulations of 2D turbulence in a magnetized
plasma

Orszag-Tang initial conditions.
Widely used to benchmark MHD
codes and study physics of turbulence
in 2D. We add a guide field of 5.
40⇥ 40⇥ 83 mesh, with 112 nodes
per cell. (90 million DOFs)

Figure: The out of plane current Jz with
magnetic field contours superimposed
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Energy spectrum of turbulence

Figure: The energy spectra for Vlasov (solid lines) and 10 moment two fluid (dashed lines) at
t = 35⌦

�1
cp of the Orszag-Tang vortex simulation. The perpendicular and parallel magnetic

energy spectra are directions with respect to the magnetic field. The various slopes denote the
fitted spectra at each of the spectral breaks. These compare well with previous results which
suggest that at scales kdp < 1, the spectra in k? is fitted by a -5/3 slope, before steepening at
kdp > 1, kde < 1, and steepening further at kde > 1.
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Conclusion: The Gkeyll Project has developed robust
schemes for various plasma equations

We have implemented finite-volume schemes for multi-fluid equations,
and high-order discontinuous Galerkin algorithm for the solution of
gyrokinetic and Vlasov-Maxwell equations
Our algorithm conserves particles and energy exactly; momentum
conservation is not exact, but is independent of velocity space
resolution
We have performed extensive benchmarks simulating basic plasma
physics problems
We have performed initial studies of sheath bounded turbulence in
straight-field line machines, as well as tokamak SOL with simplified
geometry.
We have applied our algorithms to study physics of plasma shocks,
Weibel instability and 2D plasma turbulence
Current work is aimed towards improving performance via algorithmic
improvements and code optimization
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