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Collisionless Shocks are Prevalent in Many Space and Astrophysical 
Systems

• Collisionless shocks convert the ram 
pressure of incoming supersonic flows to 
thermal pressure over length scales much 
shorter than the collisional mean free path
• Known to be the source of very high-

energy particle acceleration, including 
cosmic rays
• Currently, most shock data limited to ∼1-D 

spacecraft trajectories.
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Through appropriate scaling, these systems can be studied in the laboratory.



Laboratory Experiments can Reproduce the Physics of Space and 
Astrophysical Collisionless Shocks in a Controlled Setting
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Model for Piston-Driven Shock Formation
• Laboratory experiments can complement 

spacecraft and remote sensing 
measurements
• Wide range of Mach numbers (MA<40)
• 2D and 3D datasets 
• Quasi-perpendicular and quasi-parallel 

magnetic geometries

• Criteria for high-Mach-number, piston-
driven shocks
• MA > 4
• Collisionless ambient-ambient interaction
• B/B0 and n/n0 > 2
• Shock width ≲ 1 di0
• Separation of shock from piston
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Experimental Setup for High-MA Shocks on Omega EP

• Diagnostics: 
• Angular Filter Refractometry (AFR)
• Shadowgraphy
• Proton radiography
• Thomson scattering (on Omega 60)
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Experimental Setup for High-MA Shocks on Omega EP
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MIFEDS coils 
provide background 
magnetic field ~ 8T

Precursor beam 
ablates ambient 
plasma 12 ns 
before drive beams

Drive beams create 
supersonic piston 
plumes that expand 
into ambient plasma



Ambient (Upstream) Plasma Characterized with Thomson Scattering
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Electron density ne0 = 2x1018 cm-3

Electron temperature  Te0 = 30 eV
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Density Evolution Measured with AFR
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Without background magnetic field or ambient plasma, only piston plumes observed.



Shock-Like Gradients Observed with B0>0 and n0>0
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Shock-Like Gradients Observed with B0>0 and n0>0
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Magnetic Compressions Observed with Proton Radiography
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Magnetic Compressions Observed with Proton Radiography

Magnetic compression B/B0 ≈ 3



PIC Simulations Indicate Formation of High-MA Shock

• Magnetic cavity formed as 
magnetic flux is swept out by 
piston into thin, compressed 
region
• Piston ions get trapped behind 

this magnetic compression
• Ambient ions are reflected off 

magnetic compression, a 
hallmark of high-MA shocks
• A double “bump” in the density 

profile develops, corresponding 
to the separation of the shock 
from the trapped piston ions
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Data Profiles Show Density Evolution that is Consistent with High-MA
Shock Formation

Early time density compression 
mostly associated with pile-up of 
piston ions

At late time clear double 
bump feature associated with 
shock and trapped piston ions

Schaeffer, et al., PRL, POP, 2017MA ∼ 15 magnetized collisionless shock observed!
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Summary and Outlook

• We have observed for the first time the formation and evolution of a 
laser-driven, high-MA magnetized collisionless shock.  The results agree 
well with PIC simulations.
• The development of this platform allows key questions of high-MA

shocks to be addressed:
• Spatial and temporal scales of shock formation and reformation
• Shock heating and energy partitioning
• Particle injection and acceleration
• Interplay between shocks, reconnection, and turbulence


