Generation of Laser-Driven, High-Mach-Number Magnetized Collisionless Shocks

Derek Schaeffer

Princeton University

HEDLA

Kurashiki, Japan

May 29, 2018

Supported by: DOE and NNSA

Collaborators

- Will Fox (PPPL)
- Amitava Bhattacharjee (PU/PPPL)
- Gennady Fiksel (U. Michigan)
- Dan Haberberger (LLE)
- Daniel Barnak (LLE)
- Suxing Hu (LLE)
- Russ Follett (LLE)
- Kai Germaschewski (U. NH)

Collisionless Shocks are Prevalent in Many Space and Astrophysical Systems

Solar Wind

Supernovae Remnants

Heliopause

Active Galactic Nuclei

- Collisionless shocks convert the ram pressure of incoming supersonic flows to thermal pressure over length scales much shorter than the collisional mean free path
- Known to be the source of very highenergy particle acceleration, including cosmic rays
- Currently, most shock data limited to ~1-D spacecraft trajectories.

Through appropriate scaling, these systems can be studied in the laboratory.

Laboratory Experiments can Reproduce the Physics of Space and Astrophysical Collisionless Shocks in a Controlled Setting

- Laboratory experiments can complement spacecraft and remote sensing measurements
 - Wide range of Mach numbers (M_A<40)
 - 2D and 3D datasets
 - Quasi-perpendicular and quasi-parallel magnetic geometries
- Criteria for high-Mach-number, pistondriven shocks
 - M_A > 4
 - Collisionless ambient-ambient interaction
 - B/B_0 and $n/n_0 > 2$
 - Shock width $\lesssim 1~d_{_{\rm i0}}$
 - Separation of shock from piston

Experimental Setup for High-M_A Shocks on Omega EP

- Diagnostics:
 - Angular Filter Refractometry (AFR)
 - Shadowgraphy
 - Proton radiography
 - Thomson scattering (on Omega 60)

Experimental Setup for High-M_A Shocks on Omega EP

MIFEDS coils provide background magnetic field ~ 8T Precursor beam ablates ambient plasma 12 ns before drive beams Drive beams create supersonic piston plumes that expand into ambient plasma

Ambient (Upstream) Plasma Characterized with Thomson Scattering

Electron density $n_{e0} = 2x10^{18}$ cm⁻³ Electron temperature $T_{e0} = 30$ eV

Density Evolution Measured with AFR

Without background magnetic field or ambient plasma, only piston plumes observed.

Shock-Like Gradients Observed with $B_0 > 0$ and $n_0 > 0$

T0 + 3.85 ns

v₀ ≈ 700 km/s (**M**_A ≈ 15)

Shock-Like Gradients Observed with $B_0 > 0$ and $n_0 > 0$

Compression width $\Delta \sim 0.5 \text{ c}/\omega_{pi}$

Shock-Like Gradients Observed with $B_0 > 0$ and $n_0 > 0$

Density compression $n/n_0 \approx 7$

Magnetic Compressions Observed with Proton Radiography

Magnetic Compressions Observed with Proton Radiography

Magnetic compression $B/B_0 \approx 3$

PIC Simulations Indicate Formation of High-M_A Shock

- Magnetic cavity formed as magnetic flux is swept out by piston into thin, compressed region
- Piston ions get trapped behind this magnetic compression
- Ambient ions are reflected off magnetic compression, a hallmark of high-M_A shocks
- A double "bump" in the density profile develops, corresponding to the separation of the shock from the trapped piston ions

Data Profiles Show Density Evolution that is Consistent with High- M_A Shock Formation

 $M_A \sim 15$ magnetized collisionless shock observed!

Schaeffer, et al., PRL, POP, 2017

- We have observed for the first time the formation and evolution of a laser-driven, high-M_A magnetized collisionless shock. The results agree well with PIC simulations.
- The development of this platform allows key questions of high-M_A shocks to be addressed:
 - Spatial and temporal scales of shock formation and reformation
 - Shock heating and energy partitioning
 - Particle injection and acceleration
 - Interplay between shocks, reconnection, and turbulence