

Example of BAAEs in DIII-D and the evaluation of the chirping criterion

<u>Vinícius Duarte</u>¹, Nikolai Gorelenkov¹, Herb Berk², Eric Fredrickson¹, Bill Heidbrink³, Mirjam Schneller¹, David Pace⁴, Mario Podestà¹, Mike Van Zeeland⁴

> ¹Princeton Plasma Physics Laboratory ²University of Texas, Austin ³University of California, Irvine ⁴General Atomics

> > ITPA EP September 2018

Two types of frequency shift observed experimentally

Frequency sweeping

- frequency shift due to time-dependent background equilibrium
- MHD eigenmode
- timescale: ~100ms

Frequency chirping

- frequency shift due to trapped particles
- does not exist without resonant particles
- timescale: ~1ms

Chirping modes can degrade the confinement of energetic particles

Up to 40% of injected beam is observed to be lost in DIII-D and NSTX

Chirping is ubiquitous in NSTX but rare in DIII-D. Why??

Outline

- Theory of nonlinear instability near theshold
- BAAE identification
- Chirping criterion analysis via TRANSP to infer scattering rates

Nonlinear dynamics of driven kinetic systems close to threshold

Starting point: kinetic equation plus wave power balance

Assumptions:

- Perturbative procedure for $\omega_b \ll \gamma$
- Truncation at third order due to closeness to marginal stability

Cubic equation: lowest-order nonlinear correction to the evolution of mode amplitude A:

$$\frac{dA}{dt} = A - \int_0^{t/2} d\tau \tau^2 A \left(t - \tau\right) \int_0^{t-2\tau} d\tau_1 e^{-\frac{\nu_{scatt}^3}{2(2\tau/3 + \tau_1) + \frac{i\nu_{drag}^2}{2}(\tau + \tau_1)} A \left(t - \tau - \tau_1\right) A^* \left(t - 2\tau - \tau_1\right)$$

stabilizing destabilizing (makes integral sign flip)

- If nonlinearity is weak: linear stability, solution saturates at a low level and f merely flattens (system not allowed to further evolve nonlinearly).
- If solution of cubic equation explodes: system enters a strong nonlinear phase with large mode amplitude and can be driven unstable (precursor of chirping modes).

Generalization to tokamak geometry: cubic equation with collisional coefficients varying along resonances and particle orbits

Outline

- Theory of nonlinear instability near theshold
- BAAE identification
- Chirping criterion analysis via TRANSP to infer scattering rates

Common features observed in the DIII-D chirping BAAE discharges

- high ion temperature (8-13 keV on axis)
- q_{min}~1.6-2.1
- strong toroidal rotation (35-50 kHz on axis)
- BAAEs appear to be located close to q_{min}
- the emergence of chirping correlates with a marked drop in the microturbulence level

NOVA identification of n=1 BAAE in DIII-D via best match of frequency and of ECE data for mode structure

Changes in mode structure with time are accounted for in the chirping criterion

NOVA calculations including the modes acoustic component

10

Outline

- Theory of nonlinear instability near theshold
- BAAE identification
- Chirping criterion analysis via TRANSP to infer scattering rates

Characterization of a rarely observed chirping mode in DIII-D

Correlation between chirping onset and a marked reduction of the

turbulent activity in DIII-D

This observation motivated DIII-D experiments with negative triangularity that showed more prevalent chirping under lower turbulence

The thermal ion heat

conductivity is used

ion anomalous

transport

as a proxy for the fast

TRANSP values taken near the mode peak Ion temperature was quite high in these shots (~12keV on axis)

Summary

- Chirping BAAEs have been observed and categorized in DIII-D.
- The level of micro-turbulence appears as a plausible candidate for changing the BAAE spectral character.

Recent outcome

- This chirping study motivated dedicated shots in DIII-D under negative triangularity [Van Zeeland, IAEA oral 2017]. Chirping was observed to be more prevalent in less turbulent scenarios.
- Nonlinear gyrokinetic GTS simulations have been employed to infer turbulence levels in NSTX.
- Predictive studies of the likely Alfvénic spectral behavior in ITER has been recently performed [Duarte, APS oral 2018, NF 2018].

Complementary material

Ion and electron density, temperature, and their gradients for the DIII-D shots with transition to chirping

