Ideal and relaxed equilibrium β-limits

in classical stellarators

Joaquim Loizu

in collaboration with S. Hudson, C. Nührenberg, J. Geiger, P. Helander

Equilibrium β-limit in stellarators is unknown

$>\beta$-limit probably determined by the equilibrium, not its stability. [P. Helander et al, PPCF, 2012]
$>$ Possible degradiation of flux-surfaces at high β.
$>$ Need for a robust, reliable, and fast code.
> Ongoing parallel efforts:
$>$ HINT [Y. Suzuki et al, NF, 2006]
> SIESTA [S. Hirshman et al, PoP, 2011]
$>$ SPEC [S. Hudson et al, PoP, 2012]

[M. Drevlak et al, NF, 2005]
> SPEC follows the "equilibrium philosophy", namely it addresses the question:
What is the equilibrium magnetic field that is consistent with the established equilibrium pressure and toroidal current profiles?
$>$ My philosophy to approach an understanding of β-limits:
Use numerical experiments to guide our theories towards a distilling of the physics

Stepped-Pressure Equilibrium Code (SPEC)

Uses variational principle to find equilibria with islands:

$$
\begin{array}{cl}
\mathcal{R}_{l}: & \nabla \times \mathbf{B}=\mu_{l} \mathbf{B} \\
\mathcal{I}_{l}: & {\left[\left[p+B^{2} / 2\right]\right]=0}
\end{array}
$$

$l=1,2, \ldots N$

Input

SPEC runs in different geometries

Tokamak
Stellarator

Consider $l=2$ stellarator with simple pressure pedestal

Consider a rotating-ellipse stellarator:

Boundary

$$
\begin{aligned}
R(\theta, \varphi) & =R_{00}+\cos \theta+0.25 \cos \left(\theta-N_{p} \varphi\right) \\
Z(\theta, \varphi) & =-\sin \theta+0.25 \sin \left(\theta-N_{p} \varphi\right)
\end{aligned}
$$

Ideal β-limit scaling:

$$
\beta \sim \epsilon t_{v}^{2} \sim \frac{N_{p}^{2}}{R_{00}}
$$

[Freidberg, Ideal MHD, 2014]

Pressure vs Flux

$>$ Simplest model of a pedestal
> 2 maximally-relaxed force-free volumes
$>$ SPEC naturally describes this system
> VMEC can be used with steep-but-not-stepped pressure

Zero-net-current versus Fixed-iota

> Shafranov shift increases with β in both cases.
$>\Delta_{\mathrm{ax}}$ increases faster for the zero-net-current stellarator.
$>$ A separatrix forms at $\beta \approx 0.4 \%$ in the zero-net-current stellarator.
$>$ Islands and chaos emerge at $\beta \approx 1.4 \%$ in the fixed-iota stellarator.

Expected scaling of $\beta_{0.5}$ is reproduced in all cases

$>\beta_{0.5}$: beta at which Shafranov shift of the axis is half the minor radius. $\beta_{0.5} \sim \epsilon t_{v}^{2} \sim \frac{N_{p}^{2}}{R_{00}}$

$>$ In all cases, $\beta_{0.5}$ scales as expected in ideal-MHD.
$>$ Small amount of current provides access to higher β.

HBS theory explains macroscopic differences

Ideal MHD: $\beta_{l i m}=\epsilon_{a} t_{v}^{2} \approx 0.4 \%$
Ideal MHD: no β-limit

$$
t_{a}=t_{v} \sqrt{1-\left(\frac{\beta}{\epsilon_{a} t_{v}^{2}}\right)^{2}}
$$

[Freidberg, Ideal MHD, 2014]

$$
\mu_{0} I_{\varphi}=\frac{t_{v} R_{0}}{2 \Psi_{a}}\left[\sqrt{\frac{1}{2}\left(1+\sqrt{1+4\left(\frac{\beta}{\epsilon_{a} t_{v}^{2}}\right)^{2}}\right)}-1\right]
$$

[Freidberg, Ideal MHD, 2014]

HBS theory explains macroscopic differences

Ideal MHD: $\beta_{\text {lim }}=\epsilon_{a} t_{v}^{2} \approx 0.4 \%$
Ideal MHD: no β-limit

$$
\mu_{0} I_{\varphi}=\frac{t_{v} R_{0}}{2 \Psi_{a}}\left[\sqrt{\frac{1}{2}\left(1+\sqrt{1+4\left(\frac{\beta}{\epsilon_{a} t_{v}^{2}}\right)^{2}}\right)}-1\right]
$$

HBS theory explains macroscopic differences

Ideal MHD: $\beta_{l i m}=\epsilon_{a} t_{v}^{2} \approx 0.4 \%$

Ideal MHD: no β-limit

Fractal dimension of field-lines increases with β

A theory for the non-ideal β-limit

$>$ Expect that chaos emerges due to the overlaping of islands. [Chirikov, Phys Reports, 1979]
$>$ Expected island width due to a resonance is: [Boozer, Rev Mod Phys, 2004]

$$
w \sim \sqrt{B_{m n} /\left(m t^{\prime}\right)}
$$

$>$ As β increases, $\mathrm{I}_{\boldsymbol{\varphi}}$ increases and modifies the rotational transform.
> Hypothesis: islands and chaos will emerge when:

$$
t_{I}(\beta) \sim t_{v}
$$

namely when

$$
\begin{aligned}
& \text { perturbations in the } \\
& \text { poloidal field due to } \sim \\
& \text { toroidal current }
\end{aligned} \quad \begin{aligned}
& \text { vacuum } \\
& \text { poloidal field }
\end{aligned}
$$

$>$ Inserting ansatz in HBS theory for the current,

$$
1=\sqrt{\frac{1}{2}\left(1+\sqrt{1+4 \frac{\beta_{c h a o s}^{2}}{\epsilon_{a}^{2} t_{v}^{4}}}\right)}-1 \Longrightarrow \beta_{\text {chaos }}=\sqrt{12} \epsilon_{a} t_{v}^{2}
$$

Conclusions and perspectives

> Basic study of equilbrium β-limit indicates that

1. Macroscopic features behave as predicted by ideal-MHD
2. Zero-net-current stellarator behaves "ideally"
3. Fixed-iota stellarator $\left(\mathrm{I}_{\varphi}>0\right)$ shows "non-ideal β-limit"
> SPEC has been used to assess whether or not magnetic islands and chaos can emerge at high β in simple stellarators configurations.

We studied "worst-case-scenario" of maximum relaxation: how to incorporate the possibility of pressure-induced island-healing?

Can we extend the theory to more complex geometries and non-trivial pressure profiles?

Non-trivial pressure profile (low resolution)

W7-X OP1.1 limiter configuration (low resolution)

This is not an experimental prediction. This simlpy emphasizes that the equilibrium β-limit may be determined as in simpler geometries.

