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Introduction

Collisions are essential for the simulation of fusion plasma

In most kinetic codes, a linearized form of the Fokker-Planck
collision operator is used

f=fu+9f, 5—fN€<<1
fu
But in the plasma edge pedestal and scrape-off layer
* Ly, ~ orbit width
o Of/ff~1
* Non-thermal plasma
= Non-linear collision operator is needed for accurate results

A non-linear Fokker-Planck-Landau (FPL) operator for single-
species particle-in-cell simulations was developed by Yoon and
Chang (PoP, 2014)

This work: generalization to multi-species and HPC-efficient
implementation in XGC1 and XGCa



Non-maxwellian ions in the tokamak edge require a
non-linear collision operator

* Deviations of the ion distribution function from Maxwellian
become substantial in the edge pedestal and scrape-off layer

Distribution function at R=2.29, Z=0, wN=1 .02
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Differences between the Landau and the RMJ form of

the FP operator

e Landau form:

Integral definition of
drag and diffusion
coefficients Eand D -
impacts performance
[O(N?)]

Symmetry of tensor U
beneficial for
numerical
conservation laws

e RMJ form:
— Poisson-type

equations for drag and
diffusion coefficients
—> can be solved
efficiently [O(N)]
Achieving good
conservation requires

more complicated
algorithms

Carlfor 1) = 220 [(WG@ V.- 2%fGVHb] ]

V3G = 2H, :
) ’ ’ Requires f, and f, to be
V°Hy, = _47be7 H
o known in the same
Yab = W;Z—ZIM velocity boundaries!



Common simplifications of the
Fokker-Planck operator

* Linearization:
Fasp = fappd +0fap = Cab (fas fo) = Cab (6 fasps fo,nr) + Cab (fa,nr:05)

 The full linearized FP operator is still complicated because drag

and diffusion from 6f, need to be evaluated in the second term
(Belli, Candy PPCF 2012)

 The second term can be approximated so that mass,

momentum and energy are conserved, e.g. Hirshman-Sigmar
(Phys. Fluids 1976) or W. X. Wang (PPCF 1999)

* Lorentz pitch angle collision operator

* Justifiable for electron-ion collisions: m/m, <1



Collision operators in fusion codes

GYRO: pitch angle scattering or Krook operator (Gyro technical manual)
CGYRO: Hirshman-Sigmar (Phys. Fluids 1976), Lorentz model, and others

NEO: linearized FP in RMJ form with accurate field-particle term (Belli,
Candy, PPCF 2012) but with In Ay =In A, =In A,

XGCO: linear collision operator, Monte-Carlo (MC) (Boozer, Phys. Fluids
1981) collisions for test-particle term + Hirshman-Sigmar for field-particle
term

GTS and GTC-NEO: MC test-particle collisions, Wang’s method (PPCF
1999) for field particle collisions

GENE: linearized RMJ FP operator with simplified field-particle term (F.
Merz, dissertation 2008)

COGENT: non-linear FP in RMJ form (v | -u space) (Dorf et al., Contrib.
Plasma Physics 2014)

XGC1/XGCa: non-linear FP in Landau form (v,-v | space) (Yoon, Chang,
Phys. Plasmas 2014; Hager, Chang JCP 2016)
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Generalization of the Yoon-Chang opera

tor to multiple-

species is straightforward

* Yoon and Chang started from FPL collision operator
conservation properties

* Advection-diffusion equation = use finite volume d

for better

iscretization

* Assume that f and f’ are independent of the gyro-phase = simplification

of Eand D
* Simply sum over species:

2l [ batude =3 [ & (von /

/"

[(/d%’ Ui Uy Vfb)

Up

Jab —(/dQU/fl;EUJ_J_ UJ_HZ)

L —

Al

d Dab

* Time evolution of the distribution functions of all species has to be

evaluated together



Finite volume discretization

Discretize the FPL equation using a
uniform 2D (v,,-v,) velocity grid
spanning 3
-N vy sv sNvy

* 0<v, <Ny,

e Usually: N=3-4 with a 40x40 grid

* Midpoint quadrature for integrals
Distribution functions f,, are 1
evaluated on the full-integer grid,
fluxes J, are evaluated on the half-
integer grid

[NSIEN]

[\ [

Sl [9N)

N

Important question here: Do we have to use identical velocity grids for
each species? = enormous grids for m_ > m,!!!

Fortunately, we find excellent conservation properties when cutting off the
velocity grids of individual species at N v, ; with N being a small integer

( f~exp(-(v/vys)°)
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Implicit time stepping

Explicit time integration, e.g. 6f_, = 6t C(f,f’), requires very

small time steps between subsequent collision operations

(t.<1)

Therefore, we use implicit time marching (backward Euler)
ft+0t) — f(t)

ot

This equation is solved using a Picard iteration scheme

together with direct solvers (LAPACK, SuperlLU) or iterative

solvers (PETSc)

= C(f(t+ 1), f(t + 6t))

faz—l—l faz _ZC (k:) (k 1))

a,i+1 b ,i+1

— E and D are evaluated with fof the previous iteration step
The relative errors of total mass, momentum and energy are
used as convergence criterion



Mesh-particle interpolation needed to combine PIC
simulation with grid based collision operator

* For the collision operation, the plasma distribution functions
of each species need to be compiled on the v-space grid

* Linear interpolation between particles and velocity grid
ULy i i i+1 ULh i i i+1

j+1 j+1

]
W o
Particles > f >< j 5f%< i Of , 2> dw,
[

particle col

-1 -1

> >
Y| Y|

* Mesh-particle interpolation is another source of error 2 can
be controlled by the number of particles per collision cell and
Av
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Conservation laws

e Start with weak form

0
5 2 / Podofa=y / d* l% 2 Cav(fa fé)]
a a b

— _Z/d%%v Jap = Z/d%vﬁba Jap
a,b a,b

* For each species pair

/ a2 / A2V [$aC(far f1) + $4C(f1, fa)] =

= /dzv//d2vl [mbfa <V¢a : QE - %V’¢§, QlD)
b

—Mma f (V% -Up — Z—ZV’% 'Q/E> ' Vfa] =0
— For mass (¢,=m,),
— Momentum (¢,=m, v ), \
— Energy (¢p,=m_ v?/2) =0 independently -

— Due to symmetries of U, and U, detailed conservation laws
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Discrete conservation laws are exact

9 N M UL(J)A
1

g;;;m(ﬂ S)6afa -
N—-1M-1 . . ) ] / '
=2 AVa(J + ) (V)T + 5.7+ 3) 2
ab I=1 J=1 2 2 2 5 %: .

1 1 -
Tl + 5.+ 3) 2 /: .

LS - -

—— - — —— s —

= %; Z zz; |:mbfa (V¢a -Up — Z_ZV/% QID) -V'fy /%//:

—maféIEwa.QD—%V’cbg-QﬁE)-Vfa}=o %1 -//W////
b T, 2, 5, a0

1 3 5 7
2 2 2 2
e Distribution functions f are evaluated on the (1,J) grid
* FluxesJ are evaluated on staggered grid (1+1/2,]1+1/2)

V -Jis evaluated on the faces of the finite volume elements
* Jis zero outside of the (l,J) grid (f=V {=0)
= No flux of phase space density into or out of the velocity grid (1,J)
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Temperature (eV)

XGCa collision operator shows excellent conservation

e Simultaneous relaxation of (realistic) parallel flows, temperature

anisotropy, and T.-T, difference, frozen particles, ~30,000 collisions
* Tl (t=0)=300 eV, T, (t=0)=390 eV, u, Ie(t=0)= 59.9 km/s
R T (t=0)=200 eV, T ,(t=0)=260 eV, u, Ii(t=0)= 1.3 km/s

Energy
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XGCa collision operator shows excellent conservation

* Conservation without mesh-particle interpolation = error due to
collision solver only

e Accuracy is adjustable by the convergence criterion (# of iterations) of
the implicit time integrator

Energy Momentum
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XGCa collision operator shows excellent conservation

» Conservation with mesh-particle interpolation = additional
interpolation error (Monte-Carlo type error if particles were not frozen)

* Accuracy needed for long time simulations is adjustable by the number
of particles and convergence criterion

Energy Momentum
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Good cross-verification with conserving linear

collision operators where linearization is justified

el
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* Inthe local regime (orbit width < Lg,), excellent agreement
between XGCa, XGCO/NEO (with conserving linear collision

operator) is observed

Good agreement in circular and realistic tokamak geometry
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Velocity-space scaling

e Overall scaling dominated by solver [O(N)] for the practical
mesh sizes used in XGC1 and XGCa

» Calculation of drag and diffusion coefficients scales like O(N?)
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Weak scaling

10,188, 22,109, 40,197, 81,936 configuration space grid points, 41x41 velocity space
grid points, 10,000 particles per configuration space grid point, 100 time steps

Edison: 128, 256, 512, 1,024 nodes, 2 MPI/node, 24 OMP threads/MPI, all OpenMP
threads used in outer level OpenMP parallelization

Realistic and artificially enhanced electron mass

3840
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240}
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Strong scaling

s)

~—"

Runtime

20694 configuration space grid points, 41x41 velocity space grid points, 100 time steps

Edison: 256 nodes, 2 MPI/node, 24 OMP threads/MPI, all OpenMP threads used in
outer level OpenMP parallelization

2 - 108 particles with realistic, 108 particles with artificially enhanced electron mass

Compute nodes

128 256 512 1024 2048

16 32 64

7,680 | :
practical scale:
3,840 f 500-800
compute nodes
1,920
960
480
240 1
120 |
60 |
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— Electron push ----- Electron push (enh. elec. mass)
15 | — Collisions """ Collisions (enh. elec. mass)
7.5

512 1024 2048 4096

8192 16384 32768 65536 131072

MPI tasks x OpenMP threads

Saturation when all threads
are used in the outer
OpenMP level and # of
computational threads ~ #

of configuration space grid
points

Shifting some threads to
inner OpenMP level
restores scalability
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Alternative approaches using the
non-linear RMJ operator

* Pataki, Greengard (JCP 2011):
3D velocity space, cylindrical coordinates,
* Use Fourier space for v | and the gyro-phase
* needs high resolution in and high cut-off velocity for good
conservation properties
* Dorf et al. (Contrib. Plasm Physics 2014):
— 2D velocity space (v -u)
— finite difference solver
e Taitano, Chacdn et al. (JCP 2015):
— 2D velocity space (v |-v,)
— Finite volume approach with special attention on accurate
conservation laws and preservation of positivity

— 2nd order implicit time stepping with Jacobian-free Newton-Krylov
solver

25



Alternative time stepping schemes

* Simple explicit time stepping, instead of our implicit time
stepping, is too expensive for many applications

— Larroche (JCP 2007) uses an explicit sub-cycling technique with
individual time steps for each velocity space cell

1) Determine the update frequency of vip 1
the fluxes on each cell face from
stability condition.

2) Whenever a flux is updated, the
distribution functions on which it
depends must be updated, too.

3) The update frequency of any cell
must be equal to or higher than the
update frequencies of the fluxes
through its boundaries

— Saves computing time o

i i+1
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Summary

The non-linear Fokker-Planck-Landau collision operator by Yoon
and Chang was generalized to multiple species and efficiently
implemented in total-6f codes XGC1 and XGCa: enabling non-
Maxwellian edge simulation

Multi-species collision operator verified in

— simple relaxation tests and

— full simulations in the local regime (where linearized collision
operators can be used)

— Good agreement with theory and NEO code

Performance engineering is essential to make non-linear collisions
affordable

Alternative approaches using the non-linear RMJ collision operator
or optimized explicit time stepping are also available



