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A Talk in Two Acts

ACT 1: Statistical Construction of a quantum fluid starting from the
quantum equation of the elementary constituents

ACT 2: “Deriving" a nonlinear quantum mechanics starting from a fluid
energy momentum tensor
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The ‘advanced’ Statistical mechanics of Quantum particles
in an arbitrary electromagnetic field

Follow the standard statistical QM route but with EM interaction fully built in

The quantum plasma, that may serve as a model for high energy density matter,
will be constructed in the following steps:

First solve the relativistic quantum equations as eigenvalue problems: Find the
microscopic energy spectrum and the corresponding eigenfunctions,

Use the calculated energy spectrum to define the "Boltzmann" factor defining
the probability of a given micro state

We will find that the "Boltzmann" factor will be qualitatively different because
the loud presence of the EM field

Define fluid variables (fluxes, currents, and energy momentum tensor etc) by
taking quantum statistical averages

The quantum fluid equations are, then, simply the standard conservation laws.

Representative QM system- assembly of EM immersed Klein-Gordon (KG)/
Dirac Fields
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The new ‘quantum’: QPF= Quantum Particle+ EM field

We will dub the quantum fluid element as QPF- An effective composite of the
particle and the EM field.

For analytical convenience, we will explore the circularly polarized wave EM
wave(CPEM) described by the four potential Aµ (A0 = 0 = Az),
Ax = A cos(ωt − kz),Ay = −A sin(ωt − kz) = −A sin ζ,
E= ωA(êx sin ζ + êy cos ζ),B = kA(−êx cos ζ + êy sin ζ),

where A=constant amplitude, the four wave vector kµ = [ω, 0, 0, k] in the lab
frame, and the Minkowski signature tensor ηµν = diag[1,−1,−1,−1].

CPEMs are most amenable to analytical calculations because

AµAµ = (A0)2 − AiAi = A2 = Constant, (1)

A K-G particle of mass m and charge q, interacting with the CPEM, obeys
(~ = 1 = c, pµ = [p0 = E,p] is the energy momentum four vector)

(pµ + qAµ) (pµ + qAµ) Ψ = (i∂µ + qAµ) (i∂µ + qAµ) Ψ = m2Ψ (2)
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Dynamics of the QPF

The composite QPF entity, for the specified CPEM, obeys (ζ = ωt − kz)

∂2
t Ψ−∇2Ψ− 2iqA [cos ζ∂xΨ− sin ζ∂yΨ] +M2Ψ = 0, (3)

with the field-renormalized effective massM = m
√

1 + q2A2/m2 = mΓf .

Caution: Γf (andM) are Lorentz scalars not to be “conceptually identified” with standard
kinematic γ which is the zero component of the four velocity.

Realizing that (3) has three ignorable coordinates - x, y, and ρ = kt − ωz (conjugate to ζ), we seek
solutions of the form

Ψ(x, y, z, t) = eiK⊥(cosϕx+sinϕy)eiKρρψ(ζ) (4)

which reduces the eigenvalue problem to a Mathieu equation in ζ

d2ψ

dζ2
+ (µ+ λ cos ζ)ψ = 0, (5)

µ = K2
ρ +
M2 + K2

⊥
ω2 − k2

, λ =
2qAK⊥
ω2 − k2

, (6)

Kρ is the conserved “momentum" conjugate to the hybrid direction ρ
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The Mathieu equation

The Mathieu equation allows solutions of the Floquet (Bloch) form

ψ = ψ0eisζ f (ζ), (7)

f (ζ) is a periodic function of ζ, and s is determined from the exact equation

sin2(πs) = ∆0(µ, λ) sin2(π
√
µ) (8)

where ∆0(µ, λ) is an infinite determinant, a complicated function of µ and λ.

Regions of Instability: there are regions in λ− µ plane where s becomes
complex - the wave function becomes grows (or decays) with ζ = ωt − kz.

This class of solutions→ totally new uncharted phenomena. Particle trapping (a
quantum particle always has a finite probability for tunneling out) in the trough
of the high amplitude wave (analogous to Brillouin zones)

Today, however, I will, analytically, illustrate salient features of this approach
by concentrating on the untapped particles.

I will further work with an approximate WKB solution.
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The Mathieu equation- an approximate WKB solution

The WKB solution may be succinctly written as

Ψ =

[
(µ+ λ)

16K(r)2(µ+ λ cos ζ)

]1/4

exp [iK⊥ · x⊥ + iKρ(kt − ωz) + iQ] (9)

Q =

∫
(µ+ λ cos ζ)1/2dζ = 2

√
λ+ µE

(
ζ

2
, γ

)
, (10)

γ =
√

2λ/(λ+ µ) = argument of the elliptic functions: K(γ), E(ζ/2, γ).

Since t, z) appear explicitly in the dynamics, the bare particle“energy” and z momentum are not
conserved. For the QPF, the expectation values: E and Kz:

E = i
∫ (

ψ∗
∂ψ

∂t

)
dζ,Kz = −i

∫ (
ψ∗

∂ψ

∂z

)
dζ

will serve as the energy, z-momentum. Thus the detailed QPF energy momentum relation becomes

E2 − K2
z = (ω2 − k2)

[
−K2

ρ +
(λ+ µ)π2

(2K(γ))2

]
(11)
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The Eigen value- Anistropic spectrum

The exact WKB is still hard to pursue analytically. We approximate further the
eigenvale

E2 = K2
z +M2 + (1− α)K2

⊥ ≡ m2 + q2A2 + K2
z + a2K2

⊥ (12)

with a2 = 1− α, and

α ≈ 3q2A2

2(M2 + K2
⊥)

(13)

measures the anisotropy in the energy contributed by the momenta along and
perpendicular to the direction and propagation. In general, the anisotropy index
is a very complex function of parameters (qA, ω, k)

Two fundamental features, in addition, to the field renormalized mass
1) The particle spectrum is anisotropic
2) neither the energy E nor the momentum Kz are constants of motion though
K⊥ and Kρ are: we have written Kρ in terms of the easier to relate E and Kz
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The Dirac Particle In CPEM
Though much more complicated, the eigenvalue problem for the Dirac particle is conceptually similar. One needs to solve The D.E

γ
µ

(i∂µ + qAµ)Ψ = mΨ (14)

where Ψ is the four component spinor

Ψ =


ϕ1
χ1
ϕ2
χ2

 (15)

γµ are the four by four Dirac matrices.
for a 1D model with

ϕ1 = P1eiζ/2−i(Et−Kzz)
, ϕ2 = P2eiζ/2−i(Et−Kzz)

χ1 = Q1e−iζ/2−i(Et−Kzz)
, χ2 = Q2e−iζ/2−i(Et−Kzz)

one obtains the energy eigenvalue

(W2
− − K2

− −M2)(W2
+ − K2

+ −M2) = q2A2(k2 − ω2) (16)

where W± = E ± ω/2 and K± = Kz ± k/2 are, respectively, the shifted energy
and z-momentum of the particle;
the shift is caused by the electromagnetic wave that affects different spin states
in different ways
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Building the Quantum fluid

Analytical "solutions" - the energy eigenvalues in CPEM define the micro-state
of the constituent QPF particles. Statistical mechanics of weakly interacting
QPF will lead to the Macroscopic characteristics - the fluxes, the energy
momentum tensor, the averaged induced current etc- of the quantum fluid.

We will display the KG-QPF calculations in detail- just mention Dirac fluids

Though KGQPF are bosons, for explicit analytic calculations the high
temperature limit -The covariant relativistic M-B distribution for will be used

f = Ne−
KµUµ

T (17)

where Uµ= bulk four velocity, and Kµ = (E, aKx, aKy,Kz) is the “anisotropic"
microscopic QPF four vector obeying KµKµ =M2; the field renormalizedM
is the effective invariant mass. Averages calculated using the rest frame f = fR:

fR = Ne−
E
T = N exp

(
−ζ
√

1 + p2
)

(18)

ζ =M/T , adjusted momentum variables pz = Kz/M, px = aKx/M,
py = aKy/M, (p0 = E/M), and pµpµ = 1.
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Statistical Averaging-Macroscopic Quantities

Rest frame density (zero component of the flux Γ)- sets the normalization N

nR ≡ Γ0 =
NM3

a2

∫
d3p exp

(
−ζ
√

1 + p2
)
, (19)

N =
a2nRζ

4πK2(ζ)M3 =⇒ fR =
a2nRζ

4πK2(ζ)M3 e−E/T (20)

Evaluate the rest frame En-Mom tensor: TµνR =
∫

d3KE−1KµKν fR. Only
diagonal elements are non zero, TµνR = diag[E ,P‖,P⊥,P⊥]

E = T00
R =

∫
d3KEf =

nRζM
K2(ζ)

d2

dζ2

(
K1(ζ)

ζ

)
, (21)

P‖ = nRT, P⊥ =
nRT
a2 =

P‖
a2

Novel features = the field modified invariant massM replacing m. Pressure
anisotropy through differentiated parallel /perpendicular response to high
intensity CPEM. T⊥=(T‖/a2) > T‖.
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General En-Mom Tensor - The QPF fluid

Invoking Lorentz invariance, one constructs the general En-Mom tensor

Tµν = −ηµνP‖ + βµν
(
P‖ − P⊥

)
+
(
E + P‖

)
UµUν , (22)

Uµ= fluid four velocity, and βµν is the measure of the anisotropy (P‖ − P⊥).

For the QPF ( circularly polarized CPEM),

βµν =
FµκFκν

FαβFαβ
+

kµkν

kαkα
− AµAν

AαAα
(23)

is the most general tensor that satisfies all the technical requirements. For the
most general case, these equations could be very complicated

The ideal dynamics of this QPF fluid is, then, contained in

∂µ(nRUµ) = 0, ∂µTµν = 0 (24)

the continuity and the force balance equations
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Two Direct application - 1. A Maxwell-QPF system

First, neglecting anisotropy, The f average of the expectation value of the QPF
microscopic vector current 〈J⊥〉 = (qnRK1(ζ)/MK2(ζ))A⊥ when, inserted in
the Maxwell equation,

∂2A⊥
∂t2 −∇

2A⊥ = −4πq2nRK1(ζ)

MK2(ζ)
A⊥ , (25)

yield the dispersion relation (ωp =
√

4πq2nR/m is the invariant plasma
frequency)

ω2 − k2 =
ωp

2

Γf Γth
≡ ω2

eff (26)

Of the two Gammas (Lorentz scalars) decreasing ω2
eff

Γf =M/m ≡
√

1 + q2A2/m2, Γth = K2(ζ)/K1(ζ), ζ =M/T

the first depends only on the EM field, while the second is a temperature-field
strength hybrid.
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Dispersion Relation- Induced Plasma Transparency

Induced transparency, decrease in the effective plasma frequency, is caused by
1) Γf , effective mass enhanced via the EM field,
2) Γth further inertia enhancement through thermal effects.

In Laser-Plasma literature, the transparency induced by Γf is, often, called
relativistic transparency; it is attributed to the relativistic mass increase - Γf ,
however, is entirely due to the inertia contributed by the electromagnetic field to
the particle- electromagnetic system, and has little to do with the kinematic
γ =

√
1 + K2/m2 (which measures the standard kinematic mass increase).

The thermal enhancement factor ζ =
√

(m2 + q2A2)/T , registers the field
enhanced inertia

√
(m2 + q2A2) rather than the "bare" mass m.

That Γth is a function of
√

(m2 + q2A2)/T rather than m/T is profound because
it resets the scale of temperature. Originally: super relativistic=T � m,
non-relativistic= T � m -WithM replacing m, a 10 MeV electron
(m = .5MeV) temperature becomes "sub-relativistic" for |qA|/m = 100 !.

The anisotropy factor a2 is missing due to simplifying approximations.
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2. Thermal Anisotropy on- differential transparency-A
Polarizer at Work-Stark et al, PRL, 115 (2015)-3D PIC

Simulate using 3D/3V particle in cell
code EPOCH a 50 fs,
a = eE0/mecω = 0.2
cirularly-polarized laser pulse incident on
a 8µm plasma (propagating in the
x-direction) of n = 2.70n∗ (classically
overdense). Ions are fixed throughout the
simulation.

The reflected and transmitted pulses are
shown in the top figure, depicting how
only the y-polarization can propagate
through the plasma. The polarization
aligned along the "hotter" direction is
preferentially transmitted.

We monitored the growth of the Weibel
instability through the total magnetic field
energy throughout the simulation, along
with a measure of the anisotropy in the

distribution,
√
< p2

y > / < p2
z >.

Here we observe that the anisotropy
persists in the plasma over a sufficiently
long timescale to be probed. The pulse
has already passed through the plasma
well before the anisotropy has
appreciably diminished.
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3D PIC Simulation- A Waveplate

This effect does not just apply to
overcritical targets but to
underdense plasmas as well. The
phase velocity is strongly
determined by the critical density
for propagation through a
near-critical plasma, so any
difference between the
polarizations in critical density
would show up as a phase shift
between two initially identical
beams of different polarization.

Simulate a low-intensity (a = 0.4)
50 fs linearly-polarized laser pulse
(with Ey = Ez) incident on a
25µm plasma of n = 1.75n∗ . The
plasma has the same distribution as
before, so this is transparent to both
polarizations.

For comparison, we tested an
anisotropic non-relativistic plasma
(α = 500.0, ε = 0.45, n =
0.7n∗, a = 0.1) to show that it
induced a negligible phase shift,
confirming that this is a purely
relativistic effect.
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Examining Filamentation Instability at Relativistic
Intensities

Perform 2D/3V particle-in-cell simulations of a continuous,
linearly-polarized laser pulse incident on a constant density
plasma. We introduce a periodic perturbation in the intensity

I = 1.24× 1019 (1 + δcos(kyy)
)

cos2 (kxx− ωt) W/cm2

to seed the instability.

Wavelength- λ = 1.06µm

Density- ne = 0.5nc

First we tested how initial relativistic temperatures in the
plasma affect the development of the instability. Using
δ = 0.02 and ky = 8π/30µm, we performed T = 1 keV,
100 keV, 1 MeV, 3 MeV and observed the filamentation
(intensity and density snapshots from 200-250 fs).

T=1 keV

T=3 MeV

Density and intensity profiles
for the 3 MeV simulation

reveal the structure within the
plasma
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Effect of Electron Mass on Filamentation

We extended the study to look at the dependence of the filamentation on the electron mass: m = me, 2me, 3me

These results demonstrate that the heavier particles can delay the onset of filamentation and additionally prolong the duration of the
filamentation period.

m = me

50-250 fs

m = 3me

50-300 fs
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Summing UP- first part

Quantum dynamics of a KG (Dirac) particle in an arbitrary amplitude EM wave was interpreted as
the dynamics of a a QPF (combined quantum particle+field) system with an effective field enhanced
mass,M2 = m2 + q2A2 and an anisotropic “energy spectrum":

E2 = m2 + q2A2 + K2
z + a2K2

⊥ ≡M
2 + K2

z + a2K2
⊥, a2 6= 1

anisotropy stems from violation of rotational symmetry. The asymmetry parameter, in general, is a
complicated function of q2A2, ω and k. For the Dirac QPF, the energy spectrum is split; the
degeneracy between the positive and negative energy states, and between the spin up and spin down
states in either class is broken. Thus the statistical mechanics of the QPF will, again, be profoundly
different from that of the standard Dirac electron (without the field).

A statistical mechanics of weakly interacting QPF was constructed. The "Boltzmann" factor,
deciding the probability of a given micro state, was dictated by the energy spectrum of the QPF.

Relevant macroscopic physical quantity -fluxes (Γµ), currents (Jµ), and energy momentum
tensor(Tµν ) etc- were calculated. The conservation laws constitute the equations of motion of this
effective quantum fluid.

Two spectacular examples of straightforward applications were given- 1) How the field-enhanced
mass sets a very different scale for temperature measurement, 2) The anisotropy in the energy
spectrum of the QPF translates into a temperature anisotropy in the QPF fluid, that leads to
differential transparency; such an anisotropic fluid is a highly effective polarizer.

The formalism and the model is ready for criticism, applications and further investigation.

19 / 27



Nonlinear Quantum Mechanics- Perspective

The quantum/fluid enterprise has spanned two complementary paths:

Quantum to Classical: traditional quantum plasmas, and the statistical building
up the fluid made from weakly interacting QPF.

Classical to Quantum- The complementary path where we figure out a way to
“quantize" a fluid element when the classical En-Mom tensor Tµν /Hamiltonian
is known. In contradistinction to the elementary particle quantization, the fluid
elements obey a "nonlinear quantum mechanics=NQM".

The subject of Proposing and examining NQM has a rich history: Mielnik (74),
Bialynicki-Birula and Mycielski (1976), Haag and Bannier (1978), Kibble(78),
Weinberg (1989), Gisin, Gisin et al (1990 -2000), Jordan (- 2006)- Polemical
discussion still on - Can nonlinear QM can appear at a fundamental level?

Much More modest aim: Can we have a semi-phenomenological QM that may
capture the more important collective modes of a very high energy density fluid.

The theory is both heuristic, and hypothetical, but is consistent and rigorous.
We will work with the (intrinsic) spin-less fluid (KG) for simplicity.
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Nonlinear Quantum Mechanics of Hot fluids

Particle QM begins with the prescription (pµ = [E,p] = four momentum)

pµ = −i~∂µ (27)

into the classical dispersion

H2 ≡ p02 = p2 + m2 → [~2∂µ∂
µ + m2]Ψ = 0 KGE (28)

Seeking a similar prescription for the ‘quantum’ of a hot fluid, we start with an
isotropic relativistic (thermally and kinematically) perfect fluid of particles with
no internal degree of freedom: its En-Mom tensor is

Tµν = (nf/w) pµpν + Π ηµν , (29)

where pµ =fluid momentum, Π=pressure, f =enthalpy, n=rest frame number
density, and w= a mass constant (nf/w = U + Π, where U = T00)

Classical dynamics of this fluid is in the continuity and force balance equations

∂µ(npµ) = 0, ∂µTµν = 0 (30)
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Canonical Momentum-Fluid Quantization

the kinematic momentum pµ ceases to be the right dynamic variable in terms of
which the equations of motion have a “simple structure". The “canonical
momentum" is the thermally modified “effective momentum" (g = n/fw)

Pµ = f pµ ⇒ ∂µ(gPµ) = 0, ∂µTµν = ∂µ(g PµPν + Π ηµν) = 0 (31)

This is the classical dynamics of a fluid made of quasi (non elementary)
particles - Fluidons- a thermally dressed electron, for example.

The transition to the equivalent ‘quantum mechanics of a Fluidon’ is affected by
the prescription (c.f Bohm Potential)

gPµPν =⇒ g
(

PµPν +
~
2i
∂µ

~
2i
∂ν ln g

)
, compare pµ = −i~∂µ (32)

The transformed Tµνq (q for quantum) and the quantum equation of motion:

Tµνq = g PµPν + Π ηµν − ~2

4
g∂µ∂ν ln g ⇒ QEM, ∂µTµνq = 0 (33)
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Quantum Eq. of Motion of Fluidons- The Wave Function

The rest is technical manipulation invoking an Eq. of state Π = Π(g), throwing in the EM field,
choosing the irrotational canonical momentum field Pµ + qAµ = ∂µS, executing Cole-Hopf
transformation via the inverse Madelung decomposition

Ψ =
√

n/f eiS/~, Ψ∗Ψ = n/f ,

one derives the thermally-dictated nonlinear EM-KG equation

[−(i~∂µ − qAµ)(i~∂µ − qAµ)− λΠ̄(Ψ∗Ψ)− m2]Ψ = 0, (34)

In the cold limit ( no internal energy), the enthalpy factor f → 1, Π(Π̄)→ 0- the world goes back
to sanity- the linear KG. The internal energy, however, changes the world and the effective QM of a
fluidon is fully nonlinear. The Aµ = 0 “dispersion relation" is amplitude dependent

E2 = P2 + m2 + λΨ0
2(Γ−1) (35)

this result requires summing up of an infinite number of diagrams in High temp field theories The
non relativistic limit becomes the Landau-Ginzburg for Γ = 2

i~
∂Ψ

∂t
= [−

~2

2µ

(
∂k −

iq
~

Ak
)2

+ qφ+ λ|Ψ∗Ψ|2(Γ−1)]Ψ, (36)
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Internal degrees of freedom-Fermions- Dirac system

How do we generalize the NLQ to include the spin degrees of freedom.

We will present now a rigorous NLQ generalization of Dirac fluid through its
Feynman-GellMan version .

it is algebraically very complex- However, I will give a short summary

Start from the relativistic version of the Spin Stress: EnMom tensor

T µν = gPµPν + Πηµν + g
~2

8
∂µMαβ∂

νM∗αβ , (37)

with Mαβ = Ψ†σαβΨ/Ψ†Ψ; σαβ = iγαγβ , and γα are the Dirac matrices.

Our standard prescription yields the quantum EnMom tensor

T µνq = g
(

PµPν +
~
2i
∂µ

~
2i
∂ν ln g

)
+ Πηµν + g

~2

8
∂µMαβ∂

νM∗αβ (38)
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NLQ-Feynman Gell-Mann Eq- Essential Steps

The FG-NLQ equation of motion is manipulated, first, by defining an extended
"vorticity" free four vector

Pµ + qAµ − ς∂µω = ∂µS (39)

with the property

∂µPν − ∂νPµ = −qFµν − ~Ωµν ,Ωµν = −∂µς∂νω + ∂νς∂µω (40)

Ωµν is a spin specific vorticity curvature.

With tons of algebra, and manipulations, we derive[
DµDµ +

q~
2c
σαβFαβ + m2 + λΠ̄(Ψ†Ψ)

]
Ψ = 0, (41)

where Dµ = i~∂µ − qAµ. Nonlinerarity λΠ̄(Ψ†Ψ). Notice that F-G operator
differs from the KG operator only through the spin coupling- (q~/2c)σαβFαβ-
to the EM field (cf Gordon decomposition)
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SOLITONS- A Nonlinear Necessity

Let us do a simple 1+1 problem in z and t for the thermal NKG: one seeks

Ψ = ψ(z, t)eiKz−iWt, ψ(z, t) = ψ(z− (K/W)t) ≡ ψ(ζ)(42)

ψ(ζ) is the envelope function, propagating at the group velocity of the plane
wave.

The NKG , then, becomes

α
d2ψ

dζ2 +4ψ − Π̄(ψ2)ψ = 0

where ∆ = W2 − m2 − K2 and α = (W2 − K2)/W2.

α is positive definite, while ∆ can be either sign.
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Dark and Localized SOLITONS- Model nonlinearity

Normal matter for which the simplest model

Π̄(ψ2) = 2aψ2, a > 0

allows us the First integral of the equation for the envelope function

α

(
dψ
dζ

)2

+4ψ2 − aψ4 = Const.

This choice leads to a Kink (dark) soliton:

ψ =

√
4
2a

tanh

√
4
2α

ζ

For exotic matter (a < 0) and for ∆ < 0, we have a localized soliton

ψ =

√
4
|a|

sech

√
|4|
α
ζ
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