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First part: introduction to SFQED

Why should we study Strong-Field QED?
- Intuitive explanation of the QED critical field
- Phenomena related to the nonlinear regime of QED

Lasers as a tool to study the critical field
- Nonlinear Compton scattering
- Nonlinear Breit-Wheeler pair production

From a single vertex to a QED cascade
- QED-PIC approach
- Formation region and hierachy of scales

Radiative corrections
- Quantum dressing: exact wave functions
- Fully nonperturbative regime of QED

More details can be found, e.g., in:
A. Di Piazza, et al., Rev. Mod. Phys. 84, 1177–1228 (2012)
W. Dittrich, H. Gies, Probing the Quantum Vacuum (Springer, 2000)
E.S. Fradkin, D.M. Gitman, S.M. Shvartsman, QED with Unstable Vacuum (Springer, 1991)
V. I. Ritus, J. Sov. Laser Res. 6, 497–617 (1985)
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Motivation: Why do we want to test nonlinear QED?
QED: eletrons, positrons and photons

LQED = ψ̄
(
i/∂ − e /A−m

)
ψ − 1

4FµνF
µν , Fµν = ∂µAν − ∂νAµ

Here, ε0, ~ and c are set to unity (sometimes restored for clarity)
The characteristic scales of atomic physics and QED are determined
by the electron mass (m) and charge (e < 0)

QED
E = mc2 ∼ 106 eV

nC = ~c/(mc2) ∼ 10−13 m
Ecr = (mc2)2/(|e| ~c) ∼ 1016 V/cm

Atomic physics
EH = (Zα)2E/2 ∼ Z 2 × 10 eV

aB = nC/(Zα) ∼ Z−1 × 10−10 m
Eeff = (Zα)3Ecr ∼ Z 3 × 1010 V/cm

α = e2/(4πε0~c) ≈ 1/137: fine-structure constant, Z : atomic number
Conceptual changes

Energy E nonrelativistic vs. relativistic description
Length nC classical vs. quantum field theory
Field Ecr vacuum vs. nonlinear QED
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Sauter-Schwinger vacuum instability

A pure electric field E ≥ Ecr is unstable, it decays spontaneously
First observation: Sauter (1931), First modern calculation: Schwinger (1951)

Vacuum fluctuations

nC

e
+

e
−

Instead of being empty, the vacuum is
filled with quantum fluctuations

Heuristic tunneling picture

e
+ e

−

−mc
2

+mc
2

“Tilted” energy levels −→ tunneling
Probability: ∼ exp (−πEcr/E)

Heuristic derivation of the critical field Ecr = 1.3× 1016 V/cm:
- Spatial extend of the fluctuations (Heisenberg): ∼ nC = ~/(mc)
- Energy gap between virtual and real (Einstein): ∼ mc2

- Work by the field (Lorentz force): ∼ E |e| nC −→ Ecr = mc2/(|e| nC )
In vacuum Icr = 4.6× 1029 W/cm2 is not achievable in the near future:

∼ ~ω Future facilities I (intensity) current

optical 1 eV CLF, ELI, XCELS,... 1024−25 W/cm2 1022 W/cm2

x-ray 10 keV LCLS-II, XFEL,... 1027 W/cm2 (goal) 1018 W/cm2
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Light-Light interaction in the local limit
In vacum (i.e. without real charges and currents) the Lagrangian
density for the electomagnetic field is given by L =

(
E2 − B2) /2.

Accordingly, the field equations are linear (superposition principle):
∇E = 0, ∇× E = −∂B/∂t, ∇B = 0, ∇× B = ∂E/∂t

In quantum field theory photons couple via virtual electric charges.
Effectively, we obtain nonlinear terms in the Lagrangian:

Euler-Heisenberg Lagrangian density (1936)

L = 1
2
(
E2 − B2)+ 2α

45 E 2
cr

[(
E2 − B2)2 + 7 (EB)2

]
+ . . .

−→

Leading-order contribution to the EH-Lagrangian (local limit)

This description is applicable if:
- The wave length is much larger than the Compton wavelength
- The field strength is much smaller than the critical field
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How to reach the critical field with existing technology
The laser intensity I is not a Lorentz scalar (I ′ ∼ γ2I, γ = ε/m)
Critical intensity Icr = 4.6× 1029 W/cm2 is obtainable in the boosted
frame if γ ∼ 103 − 104 even if I . 1022 W/cm2 (optical Petawatt system)
Electron-Laser interactions

e−

Electrons with an energy ε & GeV are
obtainable via laser-wakefield acceleration

Light-by-light scattering

γ

Photons with an energy ~ωγ & GeV are
obtainable via Compton backscattering

For very strong fields the simultaneous interaction with several laser
photons becomes important – describable using “dressed” states:

Compton scattering
pµ

kµ

qµ

p′µ

−→ p
µ

q
µ

p
′µ

Breit-Wheeler pair production

e−

e+

kµ

qµ

p
µ

1

p
µ

2

−→ γ

e
−

e
+

← q
µ

p
µ

1

p
µ

2
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Current laser-plasma wakefield acceleration record:
ε = 4 GeV (γ ∼ 104) W. P. Leemans, et al., PRL 113, 245002 (2014)

Current Compton-backscattering photon energy record:
~ωγ = 2.9 GeV N. Muramatsu, et al., NIMA 737, 184–194 (2014)
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Dressed states and the classical intensity parameter
Dressed states are solutions of the interacting Dirac equation:(

i/∂ −m
)
ψp = 0, ψp =

(
i/∂−e /A−m

)
Ψp =0, Ψp =

= + + + + · · ·

The dressed propagator/external line includes an arbitrary
number of interactions with the classical background field

A single interaction with the background scales as ∼ ξ (ξ = a0)

ξ∼ |e|
√
〈−A2〉

mc ∼ |e|Emc ω ,

Intensity parameter

= /p + m
p2 −m2 ∼

1
m ,

Free propagator

= −ie /A ∼ |e|
√
−A2

Coupling vertex
(E , ω: field strength and angular frequency of the laser field, respectively)

Perturbative regime
ξ � 1

Each coupling suppressed by ξ2 (probability)
n-photon absorption scales as ξ2n

Nonperturbative regime
ξ & 1

Dressing becomes important
[I & 1018 W/cm2 for optical lasers (~ω ∼ 1 eV)]

Semiclassical regime
ξ � 1

Probability amplitude is highly oscillating,
classical interpretation of stationary points
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Pair production and the quantum nonlinearity parameter
Sauter-Schwinger effect

e
+ e

−

−mc
2

+mc
2

Spontaneous decay of the vacuum

Sizable if E & Ecr = m2c3/(~ |e|)
(at the QED critical field)

Probability: ∼ exp (−πEcr/E )
(for a pure electric field)

Breit-Wheeler pair production

γ

e
−

e
+

← q
µ

p
µ

1

p
µ

2

Decay of an incoming photon

Sizable if χ & 1 (critical field
reached in the boosted frame)
Probability: ∼ exp [−8/(3χ)]

(if χ� 1 and ξ � 1)

Electron-positron photoproduction depends crucially on the
quantum nonlinearity parameter

χ ∼ |e| ~m3c4

√
〈qµF 2

µνqν〉 ∼ (2~ωγ/mc2)(E/Ecr )

[~ωγ : energy of the incoming photon; last relation assumes a head-on collision]
The photon four-momentum is transfered at the vertex
Pair is produced ultra relativistic, background field is boosted
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From a single vertex to a QED cascade
Photon emission

p
µ

q
µ

p
′µ

In general an electron can radiate more
than only once

Pair production

γ

e
−

e
+

← q
µ

p
µ

1

p
µ

2

The survival probability of a photon can
become exponentially small

The total probability P ∼ αξN for the fundamental processes can
become very large [α ≈ 1/137, N: number of laser cycles]
At a certain point processes with many vertices become important
Starting from a single particle a cascade developes

Trident pair production

qµ

e−

e+

pµp′µ

pµ
1

pµ
2

Simplest cascade process

QED cascade

Exponential increase of particles
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Seminal SLAC E-144 experiment:
ε = 46.6 GeV (γ ∼ 105), ~ω = 2.4 eV, I ∼ 1018 W/cm2 (ξ ≈ 1)

Nonlinear Compton scattering: C. Bula, et al. PRL 76, 3116 (1996)
Trident pair production: D. L. Burke, et al. PRL 79, 1626 (1997)
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PIC approach to QED cascades

S-matrix approach
Ab initio calculation, all effects
included, arbitrarily precise
Only asymptotic probabilities,
no description of the dynamics
Complicated if many vertices
must be taken into account

PIC-approach
Separates quantum processes
from classical propagation
Intuitive picture, complicated
processes can be considered
No reliable error estimates,
question of applicability

PIC schemeEXTENDED PARTICLE-IN-CELL SCHEMES FOR PHYSICS . . . PHYSICAL REVIEW E 92, 023305 (2015)

FIG. 7. Extension of the PIC approach for taking into account novel channels of energy transformation that could be triggered by laser
fields of extreme intensity.

C. Transition to quantum description

The evident limitation of the classical expression for the
synchrotron emission is that it implies the emission of photons
whose energy can be larger than the electron has. In case
of strong fields, this leads to overestimation of the spectrum
spread and of the radiation losses rate. The simple estimate
for the transition between classical and quantum description
is commonly characterized by the dimensionless parameter χ

defined by the Lorentz invariant expression [60]

χ = e�
m3c4

√
pμF 2

μνp
ν

= e�
m3c4

√(
εE
c

+ p × H
)2

− (p · E)2. (4)

As one can see from Eqs. (1) and (3), the χ parameter has
a simple meaning for the classical synchrotron theory; it
determines the ratio of the typical photon energy to the electron
kinetic energy:

χ = 2

3

�ωs

mc2γ
(5)

(the factor 2
3 can be attributed to the definition of the

typical photon energy). Thus, the values χ 	 1 correspond
to the classical case, whereas χ � 1 indicates that quantum
corrections are essential.

As one can see from the above-mentioned expressions,
on the other hand the parameter χ represents a measure of
transverse acceleration:

χ = γ
Heff

ES

, (6)

where ES = m2c3/e� � 1018 V/m is the Sauter-Schwinger
limit. The second simple meaning of χ is ratio of the efficient
magnetic field to ES in the rest frame of the particle.

Note that the classical expression for the total intensity of
emission can be given via the χ parameter:

I cl = 2

3

e2m2c3

�2
χ2. (7)

Assuming that the photons are emitted against the direction
of propagation, we can determine the average force originated
from recoils due to emission of photons:

fcl
RR = −2

3

e2m2c

�2
χ2v. (8)

As one can see, this expression coincides with the dominant
(for ultrarelativistic case) term in the expression for the
radiation reaction force in the Landau-Lifshitz form [15].

D. Discreteness of radiation losses

One consequence of quantum effects, in particular the
quantization of emission, is the discreteness of radiation
losses when, e.g., an electron emits photons, as described in
Secs. III B 1 and III D 2. We can define a typical time interval
between acts of photon emission as the ratio of the typical
photon energy �ωt to the total radiation intensity I :

τt = �ωt

I
. (9)

If Tt is the typical time scale of the problem of interest,
then we can characterize the discreteness of emission by the
dimensionless parameter

ξ = 2π
τt

Tt

. (10)

If τt is small enough as compared with the time scale of the
problem (ξ 	 1), one can expect that discreteness of radiation
losses can be smoothed out and thus can be reasonably well
described by a continuous radiation reaction force. In fact,
as it is well known (but is perhaps counterintuitive), the
interval between photon emission is large (ξ � 1) for the
nonrelativistic problem of an electron rotating in a constant

023305-7

A. Gonoskov, et al. Phys. Rev. E 92, 023305 (2015)
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Many recent papers on QED cascades:

Grismayer, Vranic, Martins, Fonseca, and Silva, arXiv:1511.07503 (2015)
Tamburini, Di Piazza, and Keitel, arXiv:1511.03987 (2015)

Gelfer, Mironov, Fedotov, Bashmakov, Nerush, Kostyukov, and Narozhny, PRA (2015)
Gonoskov, Bastrakov, Efimenko, Ilderton, Marklund, Meyerov, et al., PRE (2015)

Green and Harvey, CPC (2015)
Lobet, Ruyer, Debayle, d’Humières, Grech, Lemoine, and Gremillet, PRL (2015)

Vranic, Grismayer, Martins, Fonseca, and Silva, CPC (2015)
Bashmakov, Nerush, Kostyukov, Fedotov, and Narozhny, POP (2014)

Mironov, Narozhny, and Fedotov, PLA (2014)
Narozhny and Fedotov, EPJST (2014)

Ridgers, Kirk, Duclous, Blackburn, Brady, Bennett, Arber, and Bell, JCP (2014)
Tang, Bake, Wang, and Xie, PRA (2014)

...
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Hierarchy of scales

QED processes in strong laser fields

e−

ƛCδλλ L

Important length scales for plane-wave laser fields
1 L = NλL: total length of the laser pulse (N: number of cycles)

Characterizes the space-time volume which contains a strong field
2 λL: laser wavelength (scale on which the field changes its sign)

Determines the highest possible classical energy transfer
3 δλ: formation region of the basic single vertex QED processes

Its relation to λL determines the qualitative properties of the QED processes
4 nC : electron/positron Compton wavelength

Fundamental length scale of QED (quantum fluctuations become important)
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Intermezzo: classical dynamics in a plane-wave field

Equation of motion
The electron four-momentum Pµ is determined by the Lorentz force:

dPµ
dτ = e

mFµνPν −→
dPµ(φ)

dφ = e
kP0

Fµν(φ)Pν(φ),

τ : proper time, φ = kx : laser phase, F µν : field tensor, kP0 = kP(φ) is conserved

The position four-vector xµ is obtained by integrating:

xµ(φ) = xµ0 +
∫ φ

φ0
dφ′ Pµ(φ′)

kP0
,

dφ
dτ = kP0

m , Fµν(φ) =
∑
i=1,2

f µνi ψ′i (φ)

Solution for a plane-wave field
Result depends only on the integrated field tensor:

Pµ(φ) = Pµ0 + eFµν(φ, φ0)P0ν
kP0

+ e2F2µν(φ, φ0)P0ν
2(kP0)2 ,

Fµν(φ, φ0) =
∫ φ

φ0
dφ′ Fµν(φ′) =

∑
i=1,2

f µνi [ψi (φ)− ψi (φ0)].
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Plane-wave dynamics: qualitative properties
Classical electron four-momentum

Pµ(φ) = Pµ0 +
∑
i=1,2

{
e

kP0
f µνi P0ν [ψi (φ)− ψi (φ0)]︸ ︷︷ ︸

transverse acceleration

+ kµ m2

2kP0
ξ2

i [ψi (φ)− ψi (φ0)]2︸ ︷︷ ︸
ponderomotive force

}

Fµν(φ)=
∑
i=1,2

f µνi ψ′i (φ), f µνi =kµaνi − kνaµi , ξi = |e|m

√
−a2

i , ξ=
√
ξ2

1 + ξ2
2

Normalization: |ψi (kx)| , |ψ′i (kx)| . 1; no dc component: ψi (±∞) = ψ′i (±∞) = 0

Lawson-Woodward theorem:
- no net acceleration [Pµ(+∞) = Pµ(−∞)]
- Important exception: acceleration of particles created inside the field

Momentum and energy scales:
- Transverse momentum: linear term, ∼ mξi
- Energy absorption: quadratic term (ponderomotive force)
- Absorption inside δφ . 1 around φ0: kµ[m2/(2kP0)][ξiψ

′
i (φ0)δφ]2

Conservation of kP:
- kP is both classically and quantum mechanically conserved
- Quantum nonlinearity parameter [χe = (kP0/m2)ξ] is conserved
- Inside a plane-wave field a QED cascade stops at a certain point
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Formation region: mulitphoton vs. tunneling process

A plane-wave field depends only on the laser phase φ = kx
Accordingly, four-momentum is conserved up to a multiple of kµ:

pµ1 + pµ2 = qµ + nkµ, n ≥ 2m2/kq (threshold: pµ1 = pµ2 )
Within the (small) formation region δφ the four-momentum nkµ with
n ∼ (ξδφ)2(m2/kq) can be absorbed (classically) from the laser field:

(ξδφ)2(m2/kq) ∼ m2/kq −→ δφ ∼ 1/ξ
Two different regimes can be distinguished:

Multiphoton regime

γe−

e+

← qµ

kµ→
kµ→

kµ→
kµ→

p
µ

1

p
µ

2

ξ � 1: Large formation region, the
process “feels” an oscillatory field

Tunneling & classical propagation

γ

e
−

e
+

← q
µ

←−−−−→

p
µ

1

p
µ

2

ξ � 1: Small formation region, the
process happens instantaneously
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Nonlinear Breit-Wheeler process in the multiphoton regime:
(important application: x-ray lasers)

M. J. A. Jansen and C. Müller, arXiv:1511.07660 (2015)
M. J. A. Jansen and C. Müller, PRA 88, 052125 (2013)
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Comparison with ionization in atomic physics

Multiphoton pair production (ξ � 1)
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Tunneling pair production (ξ � 1)
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Pair production is similar to ionization in atomic physics
The Keldysh parameter distinguishes the two regimes:
AP: γ = ω

√
2mIp/(|e|E ), SFQED: 1/ξ = ωmc/(|e|E ) (Ip = 2mc2)

[ω, E : laser angular frequency/field strength, Ip : atomic ionization potential]
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Single vertex processes revisited
Meaning of laser-dressed Feynman diagrams
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Decay into a single e+e−–pair

This interpretation is correct if the total probability remains small
For large probabilities radiative corrections become important
The S-matrix is unitary −→ optical theorem (cutting rules):

Mass operator
∣∣∣∣∣∣∣∣∣

pµ

∣∣∣∣∣∣∣∣∣

2

∼ ℑ pµ pµ

Total emission probability

Polarization operator
∣∣∣∣∣∣∣∣∣

γ
e−

e+

← qµ

∣∣∣∣∣∣∣∣∣

2

∼ ℑ qµqµ

Total decay probability

The imaginary part of loop diagrams ensures a unitary time evolution
SM and A. Di Piazza, PRL 107, 260401 (2011)
SM, K. Z. Hatsagortsyan, C. H. Keitel, and A. Di Piazza, PRD 91, 013009 (2015)
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Total pair-creation probability: Numerical results
By combining available optical petawatt lasers with existing GeV
gamma sources, the pair-production probability can become very large

0 2 4 6 8 10

χ

100

101

102

W
d ‖
,W
‖[

%
]

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

ωγ [GeV]

0

10

20

30

40

50

W
d ‖
,W

d ⊥
[%

]

dashed lines: without wave-function decay
ξ = 10, 20, 50, 100, 200 (N = 5)

F µν(x) = f µν sin2[φ/(2N)] sin(φ), φ = kx

solid: F µν(x) = f µν sin2[φ/(2N)] sin(φ)
dashed: F µν(x) = f µν sin4[φ/(2N)] sin(φ)

ξ = 100, N = 5, ω = 1.55 eV

Problem: For certain values of χ, ξ the evaluation of the
leading-order Feynman diagram violates unitarity

Solution: The back-reaction of the decay on the photon wave
function must be taken into account

SM, K. Z. Hatsagortsyan, C. H. Keitel, and A. Di Piazza, PRD 91, 013009 (2015)
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Radiative corrections: exact wave functions

Photon

= + + + · · ·

a) Exact photon wave function (includes radiative corrections)

= + + + + · · ·

b) Polarization operator (all one-particle irreducible diagrams)

Electron

= + + + · · ·

c) Exact electron wave function (includes radiative corrections)

= + + + + · · ·

d) Mass operator (all one-particle irreducible diagrams)

Exact wave functions obey the Schwinger-Dyson equations, e.g.,

−∂2Φinµ
q (x) =

∫
d4y Pµν(x , y)Φin

qν(y), Φinµ
q (x) : incoming photon
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From radiative corrections to full nonperturbativity
Furry-picture approach to strong-field QED:

Strong background fields (ξ & 1) are included exactly (dressed states)
The radiation field (non-occupied modes) is treated perturbatively
−→ QED becomes a nonperturbative theory (like QCD?) for αχ2/3 & 1

Full breakdown of perturbation theory

=

︸ ︷︷ ︸
O(αχ2/3)

+ + +

︸ ︷︷ ︸
O(α2χ4/3)

+ · · ·

Mass operator: perturbation theory with respect to the radiation field

Different regimes for strong background fields (ξ � 1):
1 χ� 1: classical regime

Quantum effects are very small, pair production is exponentially suppressed
2 χ & 1, αχ2/3 � 1: quantum regime

Recoil and pair production are important, but the radiation field is a perturbation
3 αχ2/3 & 1: fully nonperturbative regime

Perturbative treatment of the radiation field breaks down
V. I. Ritus, J. Sov. Laser Res. 6, 497–617 (1985)
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Second part: nonlinear Breit-Wheeler process

Semiclassical description
- Classical interpretation of the stationary points
- Difference between classical and quantum absorption
- Initial conditions for the classical propagation

Numerical results
- Momentum distribution of the created pairs
- Importance of interference effects

More details can be found in:
SM, C. H. Keitel, and A. Di Piazza, arXiv:1503.03271 (2015)
SM, K. Z. Hatsagortsyan, C. H. Keitel, and A. Di Piazza, PRL 114, 143201 (2015)
SM, K. Z. Hatsagortsyan, C. H. Keitel, and A. Di Piazza, PRD 91, 013009 (2015)
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Nonlinear Breit-Wheeler process

Leading-order Feynman diagram
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Photon: four-momentum qµ (q2 = 0)
Electron: four-momentum pµ1 (p2 = m2)
Positron: four-momentum pµ2 (p′2 = m2)

(we do not introduce dressed momenta!)

Semiclassical approximation
We assume a strong plane-wave laser pulse (ξ � 1)
The S-matrix is solvable analytically (to leading order)
Stationary-phase analysis: main contribution to the process at φ = φk

We propagate the final momenta back in time pµ1,2 −→ pµ1,2(φ)

pµ1 (φ) + pµ2 (φ) = qµ + n(φ)kµ

At the stationary phases φk n(φ) > 0 is minimal
Process happens where the pair becomes real as easy as possible!

SM, C. H. Keitel, and A. Di Piazza, arXiv:1503.03271 (2015)
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Classical vs. quantum absorption
Global conservation law

pµ1 + pµ2 = qµ + nkµ
Local conservation law

pµ1 (φ) + pµ2 (φ) = qµ + n(φ)kµ

Classical absorption
nclkµ = pµ1 + pµ2 − [pµ1 (φk) + pµ2 (φk)]

Propagation from the stationary point

Quantum absorption
nqkµ = pµ1 (φk) + pµ2 (φk)− qµ

Absorption during the creation

Pair production at φ: n(φ)kµ must be absorbed “non-classically”
−→ n(φ)kµ is a measure for the effective tunneling distance
Stationary-phase condition obeyed at φ = φk :
−→ n(φk): minimum laser four-momentum needed to be on shell

Implications for the QED-PIC community

We obtain the scaling laws: nq ∼ ξ/χ and ncl ∼ ξ3/χ, respectively
The energy transver from the laser to the particles is dominated by
classical physics (taken into account self-consistently in a PIC code)
The quantum absorption is not taken into account in a PIC code
−→ We have a definite error estimate now!
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Four-momenta in the canonical light-cone basis

Characteristic four-vectors of the problem
The Breit-Wheeler process is characterized by the quantitites:

qµ,︸︷︷︸
gamma photon

kµ,︸︷︷︸
laser photons

f µν1 , f µν2︸ ︷︷ ︸
laser polarizations

−→ Λµi = f µνi qν
(qf 2

i q)1/2

They allow us to construct a canonical light-cone basis:
kµ, k̄µ = qµ/kq, eµ1 = Λµ1 , eµ2 = Λµ2 , (q2 = 0, kq 6= 0, Λ2

i = −1)

Invariant momentum parameters
We define the Lorentz-invariant momentum parameters R, t1 and t2:

pµ1 = (1/2 + R)qµ + s ′kµ + t1mΛµ1 + t2mΛµ2 , p2
1 = m2,

pµ2 = (1/2− R)qµ − skµ − t1mΛµ1 − t2mΛµ2 , p2
2 = m2

From the on-shell conditions we obtain the relations (n = s ′ − s):

s = 1
(2R − 1)

m2

kq (1 + t2
1 + t2

2 ), s ′ = 1
(2R + 1)

m2

kq (1 + t2
1 + t2

2 )
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Initial conditions for the classical propagation

To include quantum processes into a PIC code, the initial conditions
for the classical propagation of the created particles must be known
Approach so far:

- Ignore the transverse degree of freedom
- All particles move initially into the forward direction

From first principles:
- We need to provide initial values for R, t1 and t2
- Constant-crossed field rate: distribution for R and t2

Question: which initial value for t1? Our answer: t1 = 0

Momentum distribution of the created pairs
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Both R and t2 are constants of motion
for a plane-wave (constant-crossed) field
The corresponding distributions are not
changed by the classical propagation

Parameters:
χ = 1, ξ = 10, N = 5, φ0 = π/2
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Pair production: Transverse momentum spectrum
Scaling of the transverse momentum distribution
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The extend of the spectrum is
determined by classical physics
t1 ∼ ξ (classical acceleration)
t2 ∼ 1 (quantum distribution)

Parameters:
N = 5, φ0 = π/2, χ = 1,
ξ1 = ξ = 20, 10, 5 (a,b,c)

CEP dependence of the spectrum
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The spectrum exhibits a strong
CEP-dependence [K. Krajewska
et al, PRA 86, 052104 (2012)]
Can be completely understood
from classical electrodynamics

Parameters:
N = 2, χ = 1, φ0 = 0/π, ξ = 5/10

Laser pulse shape: ψ′1(φ) = sin2[φ/(2N)] sin(φ+ φ0), ψ′2(φ) = 0 (linear polarization)
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Semiclassical approximation

Total/Differential probability

W (q, ε) = m2

(kq)2

∑
spin

∫ +1/2

−1/2
dR
∫ +∞

−∞
dt1dt2

w
8

1
(2π)3 |M(p1, p2; q)|2

w = 4/(1− 4R2)

Reduced S-matrix element: iM(p1, p2; q) = εµ ūp1G
µ(p1, q,−p2)vp2

Gρ = (−ie)
{
γµ

[
G0gµρ +

∑
j=1,2

(G1Gj,1f µρj + G2Gj,2f 2µρ
j )

]
+ iγµγ5

∑
j=1,2

G3Gj,1f ∗µρj

}
,

The nontrivial information is contained in the master integrals

G0 =
∫ +∞

−∞
dφ eiS̃Γ(t1,t2;φ), Gj,l =

∫ +∞

−∞
dφ [ψj(φ)]leiS̃Γ(t1,t2;φ).

For strong fields (ξ � 1): stationary-phase approximation

G0 ≈
kq
m2

2
w

[
w/2
|χ(φk)|

]2/3
2π Ai(ρ) e ĩSΓ(φk ), ρ =

{
w

[2 |χ(φk)|]

}2/3
(1 + t2

2 )

The Airy functions typical for processes inside constant-crossed fields
are obtained but also a phase factor (interference effects!)
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Pair production: Importance of interference effects
Local constant-crossed field approximation
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χ = 1, ξ = 5, N = 5 cycle, e.g., ωγ = 17 GeV and 1020 W/cm2

Stationary-phase approximation possible for ξ � 1
Location of the stationary points: classical equation of motion
Probability amplitude: pair-creation inside a constant-crossed field
However: interference between different formation regions important

SM, C. H. Keitel, and A. Di Piazza, arXiv:1503.03271 (2015)
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Applied on the probability level, the local constant-crossed field
approximation cannot reproduce the substructure!

This was observed for Compton scattering in:
Harvey, Ilderton, King, PRA 91 013822 (2015)
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Applied on the probability level, the local constant-crossed field
approximation cannot reproduce the substructure!

This was observed for Compton scattering in:
Harvey, Ilderton, King, PRA 91 013822 (2015)



Summary: main topics of the talk

Why should we study Strong-Field QED?
- Intuitive explanation of the QED critical field
- Phenomena related to the nonlinear regime of QED

Lasers as a tool to study the critical field
- Nonlinear Compton scattering
- Nonlinear Breit-Wheeler pair production

From a single vertex to a QED cascade
- QED-PIC approach
- Formation region and hierachy of scales

Radiative corrections
- Quantum dressing: exact wave functions
- Fully nonperturbative regime of QED

Nonlinear Breit-Wheeler process
- Semiclassical description
- Difference between classical and quantum absorption
- Initial conditions for the classical propagation
- Momentum distribution of the created pairs
- Importance of interference effects

Thank you for your attention and your questions!
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