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Collaborators

« Jerome Daligault (LANL)
— All aspects of this work: theory, simulations

» Starrett, Saumon and Sjostrom (LANL)
— Warm Dense Matter calculations
— First-principles quantum simulations
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What is warm dense matter?
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Intersection of different disciplines
(plasma and condensed matter)



What is warm dense matter?

 lons: Moderate-strongly coupled & classical
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« Electrons: Weak-moderately coupled & degenerate
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« Too dense for plasma theory, too hot for condensed
matter theory



WDM In Astrophysics

102 102

BD core Neutron stars (NS)
White dwarfs (WD)

N .Jupiter core

¥ Earth core

-

. N
X -

102 10° 108
Density (g/cm?)

_/_\

Solar planets
Exo-planets

. Browh Dwarfs (BD)
http://www.lanl.gov/projects/dense-plasma-theory/




Inertial Confinement Fusion

ICF experiments start from a
cryogenic sample of gas and solid, all
the way to extreme ignition conditions,

going across the hot dense matter regime
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HEDP Experiments

Seeded LCLS §

spectrum

8 keV
Seeded LCLS x-ray laser

« Significant advancements in X-ray free-electron lasers
(XFELSs) have enabled detailed WDM experiments

» World leading facility: Linac Coherent Light Source (LCLS)
at SLAC



Research Needs

» Hydrodynamics (or rad-hydro) simulations
— Transport coefficients
— Equation of state

* Need to be cheap to evaluate
— Table lookup
— Formula

» Currently no accurate theory is available
— Large-scale simulations (MD, DFT) dominate
— Far too expensive to build tables with



Outline of this talk

 Effective Potential Theory
— From static [g(r)] to dynamic (transport)
— Very efficient to evaluate

* One-component plasmas
— Hypernetted chain approximation (input)
— Validation using molecular dynamics

* Warm dense matter

— Quantum hypernetted chain approximation

— Validation using orbital free density functional
theory



Traditional Plasma Transport Theory

Coulomb Potential (with cutoff)
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Classical Molecular Dynamics

» Solves F=ma for every particle
— Large periodic box

— We use P3M method (separates close and distant
interactions)

— Transport coefficients from Green-Kubo relations

One Component Plasma (OCP)

* Model system that allows ab-initio simulations
— Electrons form a uniform neutralizing background
— Good model for ion transport in some systems
— Good test bed for theory



Plasma Theory Breaks Down at
Strong Coupling
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Using the Debye-Huckel Potential
Fixes the Divergence
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Particle trajectories in MD

[=0.2 [=50 =150

ime=0.0/plasma frequency
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Small angle Large angle, Trapped
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The Potential of Mean Force

* The potential obtained when taking two
particles at fixed positions and averaging
over the positions of all other particles
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» = Debye-Huckel at weak coupling
* g(r) is the radial distribution function



Phase Diagram of the OCP




The Effective Potential Theory (1.0)

Potential of mean force
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Hypernetted Chain Approximation

* A closure scheme to approximate g(r)

g(7) = exp|—v(7)/kpT + n/c(|'F’— 7 Nh(7)d7

h(k) = é(k)[1 + nh(k)]

— Coulomb potential: v(7)/kgT =Ta/r
— Total correlation function: h(r) =g(r) — 1
* Theory input is then

g(r) = e~c?/ket



HNC works for Coulomb systems
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EPT is accurate and efficient
* From equilibrium [g(r)] to dynamic [D]
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EPT can be improved

* Account for the “Coulomb hole”
— Increased scattering due to excluded volume

— Analogy with Enskog’s kinetic equation for hard
spheres

Hard Sphere Coulomb

&
~—
—~
o
~—
8

1 - 2 o Molecular Dynamics  °
— Hypernetted Chain

N

-
(&)

0.5

| bp=o001 Y7 N\
~

o
3

Pair Distribution Function, g(r)
Pair Distribution Function, g(r)

o

3 10° 10° 10°
Radial distance, r/a Radial Distance, r/a

—_
o



Enskog developed a kinetic theory
for hard spheres

C = [ [ v thot @R x(F+ 3o £.(7) P+ oR) x(F= Lo R) £ (7o) |

* X accounts for the occupied volume
* Relaxes the molecular chaos approximation



Analogy with Coulomb hole

* Find radius from g(r)=0.87
— This value was determined “empirically”
— Expect the value to be universal

* Get X by equating Enskog EOS and
virial expansion

X = 1+ 0.6250bp + 0.2869(bp)* + 0.115(bp)* + ...

Co-Volume: pp = 2 no?
3

» Collision frequency multiplied by X



The approximation is not perfect
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Find excellent agreement with MD
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Similar results for other systems

Yukawa OCP Temperature relaxation
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Limitations
» Caging
— Particles get trapped in potential wells
— Corresponds to onset of liquid-like behavior

A

We assume colliding particles
start far apart

— )

But some may start trapped
in a potential well
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Radial Distance



EPT for Warm Dense Matter

* So far, we have discussed simple electron
models (OCP or YOCP)
* lon transport in WDM
— Electron behavior is not simple
— Must account for degeneracy
— Need g;(r) as input to EPT
* First principles simulations

— Quantum orbital free MD (QOFMD)
(state of the art, but expensive)

— Puedoatom MD (approximate, but accurate)



Quantum Orbital Free MD

electron density

Deuterium at 10 g/cc and 10 eV

http://www.lanl.gov/projects/dense-plasma-theory/



Benchmark using QOFMD

* g(r) came from the QOFMD simulation
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Average Atom + HNC

* Average atom model

— Describes electron cloud around an ion of
charge Z

— Finite temperature Density Functional Theory

* Two-component plasma model

— AA is coupled with the integral equation theory
of fluids

— Called the Orstein-Zernike Equation
* Result is a quantum HNC approximation

Starrett, Saumon PRE 85, 026403 (2012)



Average atom model

Two component plasma
model

DFT electron model (Thomas-Fermi/Schrédinger/Dirac)
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g(r)

Average Atom Two-Component
Plasma (AA-TCP)
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D (cm?s-?)

Aluminum: HEDP experiments
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Hydrogen: ICF
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lron: Giant Planet Interiors

/4 =8 to ~ 184,
o1 T = 39 to 0.6,
kBT/EF = 0.4 to 200.
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Mutual diffusion coefficient

Carbon-Helium: White Dwarfs
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Computational Cost

» A few minutes on your PC (per point)

— Would take hundreds of processor hours with
MD

— Many regimes are simply unattainable with
DFT (or any QMD)

» Building tables becomes feasible



Future directions

Electron transport

— Use the quantum Boltzmann equation

— Diffraction in addition to degeneracy
Liquid-like regime

— Promising avenues for caging models
Magnetized plasmas

— Gyroradius smaller than interparticle spacing

g(r) from experimental data



Summary

 EPT is efficient and accurate
— Very low computational cost
— Accurate for '<30 (up to liquid-like state)

* First practical theory for computing
transport coefficients in WDM

— lonic transport
— Can build tables for real plasmas



