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Introduction

* The physical scenario under consideration is that of a kinetic system

such as a plasma, perturbed by an electric field wave. The evolution of

the wave near its instability threshold is studied.

* The normalized amplitude A of the wave has been found to obey the

following cubic equation near the instability threshold!2:34,
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T 1s the time measured in units of the linear growth time 1/y;

v, ﬁ and ¢ are all in units of y; ¢ measures the contribution

of the hot particles to the mode frequency.
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Wave Equation

1. For a wave of a plasma, linear theory can be used to give global spatial relation of the
electro-magnetic field, if the frequency is close enough to an eigen-frequency.

E(7.1)= C(t)exp| —ie,t |E(F,0(1))
where E(r; ®,) is the spatial form of eigen-mode amplitude and C(t) the mode amplitude.
G,(w,)= %jd-‘r[wnE*(f,wo)-E(f,w(,)-E(r-,w(,)— év xE (7,0,) Vx E(F.wﬂ)] =0,

2. Resulting wave evolution equation responding to linear and nonlinear
resonant particles and background dissipation
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wG,,|C|” = wave energy of the eigenmode

The perturbed resonant distribution function, [, = f(F,f?J)— Fy(E,u,F)) expressed
in to third order in the field amplitude C(?)E(7,®,)
and substituted into above field equation, to produce the

“time delayed cubic nonlinear equation” [Hickernell (1984), shear flow in fluids] and
[Berk-Breizman (1997), resonant kinetic response in plasmas] shown previous slide.



Brief description of the model

What does it do? |t describes the evolution of a wave in a kinetic
system near the instability threshold.

An inverted energetic-particle distribution function causes the
instability drive v, o< dFg/dv.

Wave instability happens when ~; surpasses the dissipation rate 7.
The difference is assumed small:

YEI—Vd K VL~ Vd;
leading to a perturbative expansion to cubic order in the mode

amplitude.

This theory is valid for time scales shorter than the bounce period
~ wpt (wp o |E[Y? is the bounce frequency),

and stochastic correlation time ~ 1/v

corr
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Evolution of the wave

» The evolution of the normalized mode amplitude A is determined by

dA ol® t/2 t—2z
= A(t)—7/ d222/ dy K A(t—z)A(t—z—y)A*(t—2z—y).
0 0

Diffusion: K = e—2°2°(22/3+¥). Annihilation: K :Ae_B(z”y);
Drag: K = e ié z(2+y).orK=exp[-\9322(22/3+y]—ﬁ(22+y)—1’6522[2+y)]

» For small drag (&), in order of decreasing values of o or j3:
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Extreme possibilities;
steady or oscillatory

1. steady; established with enough background
relaxation

2. Oscillatory; Cannot hover near marginal stability;
can be precursor to chirping

Point 1 was covered previous talks by Vinicius Duarte and applied to
experimental data in D-1lI-D and NSTX, to determine the compatibility

of model’s predictions [i.e. (a) chirping or (b) steady oscillations]

with experimental data

Part 2 of talk will discuss structure of ‘explosive’ solutions as a function
of the system parameter, ¢, when transport parameters are neglected.



Evolution of the wave

» The evolution of the normalized mode amplitude A is determined by

dA ol® t/2 t—2z
— = A(t)——/ d222/ dy K A(t—z)A(t—z—y)A*(t—2z—y)
dt 2 Jo 0

K=1

Now transport coefficients taken to be negligible.
What is the nature of the resulting explosive solution
as a function of the system parameter, ¢ ?



Explosive regime

» Two main features: Blows up in a finite time tp (A ~ (to — t)_5/2).

and oscillates with ever-increasing frequency.

> For the evolution equation to be valid, we require |A| < (y./7)*/?.

The cubic term competes with the linear term when |A| ~ 1. Hence,
we have the window

1 <Al < (n/7)”?

where the explosive behavior can be studied with this theory.



Simulations of the explosive regime

» An appropriate time variable is needed to resolve the oscillations. We
seek solutions of the form A = g(x)/(to — t)*/2, where g(x) is an
oscillatory function of x = — In(tg — t).

» Neglect 7. B’c’i

» We use a uniformly-spaced grid in x, which forces us to know ty a
priori. The number of data points one obtains is very sensitive to the
choice of tg. We run the code iteratively, correcting tp.



Reducing the evolution equation

» Substitute the form A = g(x)/(to — t)°/? into the evolution equation.

» By ignoring the linear term in the evolution equation, and setting the
transport parameters to zero, we obtain a reduced equation for the
oscillatory function g(x):

dg 5 e/?

2(U—¢)
=+ g = —7 dg/ dn V(&.1) g(x1)g(x2)g* (x3),

Where V(E,n) = &2/[(1+ &)1+ & +n)(1+ 2 +n)]>/? and the limit
= (t/2)/(to — t) is large in the explosive regime.



After a sufficient number of iterations (for ¢ = 0.3):
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Repeat for different values of ¢ and we can observe the variation of
the spectrum as a function of ¢:
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» Color indicates Fourier amplitude.

» For ¢ = 0 we find a response that is close to a solution proposed in
Berk et al., PRL, 1996. For ¢ > 0.782 ~ 7 /4 we observe the exact,
one-component solution found in Breizman et al., Phys. Plas., 1997.

» No significant transients except for very small.¢ (£ 0.05). = =




Solving the reduced equation

» Previous attempts assumed a Fourier series expansion
g — E CmeImO'X,
m

or even a simple one-term oscillation
g = Ceiax

which is actually an exact solution.

» We propose a superposition of incommensurate pseudo frequencies:

_ _ioogx im-ax
g =e E Cr; € :
m



Predicted chirping

In view of our form (g = €'7°% >~ ¢, €'™?%), an arbitrary term in g
oscillates as

exp[i(oo + m - )x] = exp[—i(o0 + m - &) In(to — t)].
The (real) frequencies of the wave in the explosive regime are thus

d o _Uo—l—rﬁ-c_f
E[—(ag%—m-a)ln(to—t)]— P

The pseudo-frequency og + m - & of each component determines the
direction and strength of the chirping effect.
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our theoretical prediction (black curves). prediction.

» No significant change in simulation spectra with different pseudo time
step size Ax (recall x = —In(tp — t)). The match with the theoretical
prediction improves with smaller Ax, this being most evident around

¢ = 0.35.



Stability

» Our form replicates the simulations spectra. Why do the other
solutions not show up?

» We find that for ¢ < 0.782 the exact solution, g = ce'?% is unstable
to an oscillation at a frequency that agrees well with the component
that emerges at this point in our simulations.
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Stability

» Thus, for ¢ < 0.782, we require two frequency variable, og and o7:

» Then, a stability analysis of this solution shows that it is unstable for
¢ < 0.418, at which point side bands develop.
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Stability

» We need yet another frequency variable for ¢ < 0.418:

g:eloox § : le,mzel(m101+m202)x.

mi,ma3

» This form reproduces the observed side bands which then evolve to
the observed spectral components.

» This explains the whole ¢ domain, although some issues remain for
¢ < 0.05.



Amplitude

Simulation vs. analytical approximations

» We have implicitly defined three regions (in increasing level of
complexity):

l. ¢ > 0.782, II. 0.418 < ¢ < 0.782, I1l. ¢ < 0.418.

» For comparison with simulations, we submit our analytic solutions to
the same processes as the simulations.
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Amplitude

Simulation vs. analytical approximations

» We have implicitly defined three regions (in increasing level of
complexity):

. $>0782,  11.0.418 < ¢ <0.782,  lIl. ¢ < 0.418.

» For comparison with simulations, we submit our analytic solutions to
the same processes as the simulations.
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Some remarks

» When more than one equilibria are available to the system, it attracts
to the more complex one.

» Strong trend towards complexity as ¢ decreases.
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Issues in the small ¢ (< 0.05) region

Note jaggedness for ¢ < 0.05 in simulation spectrum. The match
with predictions is also somewhat worse than for other ¢ values.
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Issues in the small ¢ (< 0.05) region

» Transient behavior observed in this region: our solution may still be
correct but it may be taking longer for an equilibrium to establish. Or
perhaps it has a more complicated form that the one we assumed.
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» Number of doubling times n can be estimated from

5/2
to — t;
on _ (to t’) — na 112,
0 — Lf

Apparently, this is enough to obtain a converged solution everywhere
in the ¢ domain, except in this small ¢ region.




Other attempts at explaining ¢ < 0.05

» The response for = 0 is close to being a simple Fourier series
expansion, as was proposed by Berk et al., PRL, 1996:

g = Z cme ™. o ~ 6.58.
m

» Analytically, we find that this solution is unstable to side bands that
develop halfway in-between the preexisting components. This has
correspondence with the simulations.
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Closing remarks and future work

» During the explosion, the cubic equation eventually breaks down.
However,

» The solutions found are the precursors of the full nonlinear evolution
that has been studied via a code that solves Liouville-type equations.

» The chirping effect of the explosion continues beyond the applicability
of the cubic equation with the formation of a hole and/or clump in
phase space.



Chirping modes can degrade the confinement of
energetic particles
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Summary

» By direct simulations and analytic work, new explosive solutions to
the Hickernell /Berk-Breizman equation have been found.

» Over most of the ¢ domain, we found a family of analytical solutions
that agrees well with the simulations. We find that when this
agreement happens, the analytical solutions are linearly stable. Out of
all the explosive solutions that are possible, the system is attracted to
a specific solution that depends on the parameter ¢.

» There are some discrepancies in the region ¢ < 0.05, but the overall
structure of the theoretical prediction is not far off from the
simulations.  The possibility of two attractors in this region is being considered.



Thank You
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