Dynamlcs of the ELMs in the | re-crash and crash
suppressed period in KSTAR
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Talk

1 Edge Localized Modes in KSTAR

] New findings in pre-ELM crash period with advanced diagnostic
systems (ECEI and RF emission)

] Validation of the observed ELMs through global simulation (MHD
vs. full kinetic)

dChallenge for the physics of suppression of the ELM-
crash

J ELM dynamics and ELM-crash suppression under the resonant
magnetic perturbation (RMP)

 Interaction between the ELMs and turbulence induced by the RMP

0.




The edge localized mode and suppression

O Edge Localized Mode (ELM)
) ASDEX [Keilhacker 1984] for semi-periodic

edge-localized relaxation phenomena (cf. | &‘o\e N g
PDX, Kaye 1984), .(\%&‘

J Nonlinear theory and modelling (Connors, Qee\\\“(\\ He' /-
Wilson, Snyder, Hegna, Becoulet) identified as N\ '/' Ballooning
the relaxation event of the growth of Peeling L unstable
and Ballooning modes stable (high n)

 Suppression/mitigation of the ELM crash vp

] Stochasticity induced by Magnetic Perturbation Interpretation and classification
(Evans, etc.) of the ELM-crash are vastly
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In this talk, “ELM” and “ELM-crash’” refer to coherent mode and burst event, respectively




Advanced diagnostic capabilities of KSTAR

Visualization revealed that the
edge-localized mode (ELM)
evolves through multiple stages.
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ELM dynamics from”"RF” emissiont.
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ELM dynamics before the crash

Shot 14143
(2.14 T; 500 kA; 240 kJ)

H, signal is only an
aftermath of crash

ECE signal
spectrogram
provides
information on the
mode activities.
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Dynamic RF s ectrum at ELM crash
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Validation of the ELLM structure

 Modeling of the ELMs is in progress via collaboration with the simulation
groups: BOUT++, M3D, M3Dc1, JOREK
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a) Linear simulation of ELM with n=10

b) 2D image with emission broadening and antenna responses
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(d) Measured 2D image by ECEI system




Global simulation of the ELM (MHD vs. Kinetic)

n = 12 simulation « KSTAR #9380 n =12 simulation
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Magnetic perturbation system in KSTAR

 Magnetic perturbation (n=1,2) with variety of phase and
amplitude by IVCC

Flexible modular 3x4 coils for low
n magnetic perturbationt

n=1, +90 phase n=2,even n=1& 2 even
oo 1] BRI EEIEED
-] T I -
Pt LI MR MG | | .

TH.K. Kim, Fusion Eng. Design 2009

d In KSTAR, ELM-crash
suppression has been
demonstrated with MP
induced by IVCC (n=1,2)
with variety of phase and
amplitude
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ELM-crash suppression w/ n=1 and n=2 (KSTAR)

« Positioning plasmas is critical (optimum coupling of MP?)
« Effective in both n=1 and n=2 attempts, but needs more robust

control
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Dynamics of the ELMs and ELM-crash under RMP

shot 7821
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Physics of ELM-crash has been mainly based on Hg signal !!

In Peeling-Ballooning model, mode is unstable (A) &> is it stable (B) ?
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Variety of ELM burst/crash processes (large, small, tiny)

Small-scale burst localized to
very thin edge layer

Pedestal collapse
&P (initial phase of suppression)

o V24
@ Normal ELM crash (“ELM”) Frequent RF bursts = Grassy (small) crash
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Suppressmn dynam|cs under n= 1 RMP
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Change of fluctuation amplitude
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Z [cm]

» The correlation analysis clearly shows the existence of broadband and low
frequency coherent modes (f<70kHz) along the vertical direction in narrow radial
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2D turbulence under the RMP.

= There are two components; (1) ELM at ~20 kHz, (2) turbulent eddies
» The turbulence movie was made using high frequency components only (40-80
kHz), excluding the ELM (~20 kHz).
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Interaction between the ELM and turbulence

J.H Lee (2016)
Sum of spectral power
(5-30kHz : blue, 30-70kHz : red)

Auto-bispectrum estimation B(f1, f2)
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» The spectral power of the turbulence (30-70kHz) increases with IRMP while the

spectral power of the ELM (5-30kHz) decreases.
= Bispectrum is defined by B(f ., f,) = F(f,)F(f,)F"(f, + f.,), where F denotes

the Fourier transform.
= As expected from nonlinear interaction between a narrow-band coherent wave
(i.e. ELM) and broad-band waves (i.e. turbulence), the auto-bispectrum shows

line features which suggest that the turbulence dissipates the free energy for the
ELM growth.
18




Characteristics of turbulence

Spectral power distribution S (ke, w)
. . . for shot #10186 @ 15.7-1 5.855
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near the pedestal region only. | _RBM v Vp 1 np. keps~O.1) Ball
MTM | VTe , edia. Kkgpg~0.1, Tear




Responses of global ELM behaviors by RMP
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Summary

d New ELM physics in KSTAR

1 ECEI and RF emission data revealed new findings of the ELM and
ELM-crash physics

J Theoretical modeling validated the observed ELM structure in the
saturated linear regime

1 ELMs at HFS and LFS require more than PB model
1 Simulation results from full kinetic and MHD model

W Turbuelnce measurement under the RMP
) Successful ELM-crash suppression with n=1, 2 RMP (IVCQC)

] Role of the turbulence induced by magnetic perturbation in
reduction of the ELM strength
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