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Fluid equations are v(n)-moments of the kinetic equation:

• Kinetic equation combines free-streaming via the Vlasov operator d/dt
and dissipation via the collision operator Css′ [fs, fs′ ], according to

dfs
dt

=
∑
s′

Css′ [fs, fs′ ].

• Fundamental fluid quantities evolve according to the moment equations

∂tρs + ∂x ·Ks =
∑
s′

ms

∫
dvCss′ [fs, fs′ ],

∂tKs + ∂x ·Πs =
es
ms

(ρsE +Ks ×B) +
∑
s′

ms

∫
dv vCss′ [fs, fs′ ]

∂tEs + ∂x ·Qs =
es
ms
Ks ·E +

∑
s′

ms

2

∫
dv v2Css′ [fs, fs′ ]

• mass density, momentum density, energy density, stress tensor and
energy-density flux are defined:

{ρs,Ks, Es,Πs,Qs} ≡ ms

∫
dv{1,v, v2/2,vv,vv2/2}fs
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Every fluid theory faces two fundamental issues:

1 Evolution equation for v(n)-moment of the distribution function always
depends on the v(n+1)-moment.
In order to close the system, the highest moment must be prescribed in
terms of lower moments :

Π =?(ρ,K, E), Q =?(ρ,K, E)

2 Moments of the collision operator must be expressed in terms of the fluid
variables

ms

∫
dv v(n)Css′ [fs, fs′ ] =??(ρ,K, E)

Note: only in single-species systems with elastic collisions, the null-space
of the collision operator allows this requirement to be relaxed
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Chapman-Enskog (1916,1917) leads to Braginskii equations (1957)

Basic idea
• Expressions for stress tensor Π and energy flux Q obtained via multi-scale
perturbation theory (space and time), f = f0 + f1 + . . . .

• Assumption: dynamics is dominated by collisions and gyro-motion

C[f, f ],
q

m
v ×B · ∂vf � ∂tf, v · ∂xf,

q

m
E · ∂vf

• Kinetic equation transformed into a sequence of linear integral equations

f0 :
qs
ms

(v ×B) · ∂vfs0 =
∑
s′

C[fs0, fs′0]

f1 : Dsfs0 +
qs
ms

(v ×B) · ∂vfs1 =
∑
s′

(C[fs0, fs′1] + C[fs1, fs′0])

where Ds = ∂t + v · ∂x + qs
ms
E · ∂v

Consequences
• f0 is a Maxwellian and f1 depends on temperature and density gradients
• Stress and energy flux from f1 introduce viscosity and heat conductivity
into the momentum and energy equations

• Rarely carried beyond f1 in plasmas (Burnett equations in neutral fluids)
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Grad’s approach (1949) is a Galerkin projection

Basic idea
• Fluid quantities are polynomial moments of the distribution function
• Expand f in terms of orthogonal polynomials and study the weak solution
of the kinetic equation instead of multi-scale ordering

• Non-normal moments are treated on an equal footing to the fundamental
fluid variables (extended set of dynamical variables)

Consequences
• Truncation of expansion provides a closed set of extended fluid equations
• Equations for mass, momentum, and energy are included
• Concepts of heat conductivity and viscosity do not appear explicitly

H. Grad, “On the Kinetic Theory of Rarefied Gases” (1949)

The indicated independence of initial values of the stresses and heat flow is
only valid as an approximation for sufficiently slowly varying flows. This
condition is violated, for example, in any but the weakest shock waves.
Moreover, it is only in certain special cases of these quasi-equilibrium flows that
the stresses and heat flow can be given explicitly in terms of gradients. The
methods of Enskog and Chapman are aimed at obtaining these so-called
“normal” solutions which depend only on the thermodynamic variables and their
gradients. The validity of such results is limited to certain slowly varying flows.
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Our objective is to apply Grad’s method to plasmas

Compute Hermite polynomial moments of the Landau collision operator

• Apply Grad’s expansion to multi-species plasma using Hermite polynomials
• Compute exact Hermite-moments of the nonlinear Landau collision
operator

• Provide collisional fluid terms in a compact analytical form, ready for
numerical implementation

Foreseen applications
• Role of nonlinear resistivity in magnetic reconnection
• Role of anisotropic resistivity in dynamo effect
• Edge and scrape-off layer physics as alternative to Braginskii
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The Landau collision operator is viewed as a convolution

• Collision operator is the divergence of a velocity-space flux

Css′ [fs, fs′ ] ≡ −
css′

ms
∂v · Jss′ [fs, fs′ ], css′ =

e2se
2
s′ ln Λ

4πε20

• The collisional velocity-space flux Jss′ is defined in terms of the so-called
Rosenbluth-MacDonald-Judd-Trubnikov potential functions

Jss′ [fs, fs′ ](v) ≡ µss′(∂vφs′)fs −m−1
s ∂v · [(∂v∂vψs′)fs] , µss′ =

ms +ms′

msms′

• The RMJT potentials are convolutions of the distribution function with 3D
Laplacian Green’s functions

φs(v) ≡
∫
R3

dv′fs(v
′) |v − v′|−1,

ψs(v) ≡ 1

2

∫
R3

dv′fs(v
′) |v − v′|.

• Indeed ∂v · ∂vψs = φs and ∂v · ∂vφs = −4πfs.
These properties are useful to prove the energy and momentum
conservation of the collisional moments.
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Distribution functions are expanded in terms of Hermite-polynomials

• fs is a Maxwellian with flow velocity Vs and variance σ2
s = Ts/ms

multiplied by an orthogonal polynomial. The Gaussian envelope carries
mass, momentum and energy (fundamental moments)

fs(v)

ns
= Nσ2

s
(v − Vs)︸ ︷︷ ︸

Maxwellian

∞∑
i=0

1

i!
cs(i)Ḡ(i)(v − Vs;σ2

s)︸ ︷︷ ︸
multi-index polynomial, 1+v+v2+...

(1)

• Expansion coefficients are the so-called Hermite-moments of the
distribution function and their evolution carries the information for stress
anisotropy and energy-density flux

cs(j) ≡
∫
R3

dv
fs(v)

ns
H̄(j)(v − Vs;σ2

s) (2)

• The coefficients up to second rank are

cs(0) = 1, cs(1) = 0, cs(2) = (Ps − psI)/nsms (3)
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Hermite polynomials and Maxwellians come in pairs

• The Gaussian distribution function

Nσ2(x− µ) =
1

(2πσ2)3/2
exp

[
− (x− µ)2

2σ2

]
(4)

• generates covariant Hermite polynomials via gradients wrt mean flow

∂(k)
µ Nσ2(x− µ) = Nσ2(x− µ)Ḡ(k)(x− µ;σ2), (5)

• and contravariant Hermite polynomials

H̄(k)(x− µ;σ2) = σ2kḠ(k)(x− µ;σ2), (6)

• These polynomials are orthogonal under Gaussian measure∫
R3

dyH̄(i)(y;σ2)Ḡ(j)(y;σ2)Nσ2(y) = ∂(j)
x x(i)

∣∣∣
x=0

= δ
(i)

[(j)], (7)

About notation: ∂(k) ≡ ∂ ⊗ · · · ⊗ ∂︸ ︷︷ ︸
k terms

, x(k) ≡ x⊗ · · · ⊗ x︸ ︷︷ ︸
k terms

, Ḡ(k)(x) = Ḡ
k1...kk
(k)

(x)
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Hermite-moments of the Landau operator are convenient

• Collisional moments are split into drag- and diffusion-related contributions

Css′(k+1) ≡ ms

∫
R3

dvH̄(k+1)(v − Vs;σ2
s)Css′ [fs, fs′ ](v)

≡ nsns′css′(k + 1)Sym
[
µss′Rss′(k+1) +

k

ms
Dss′(k+1)

]
,

• The drag and diffusion terms are defined

Rss′(k+1) =

∫
R3

dv

(
∂v
φs′

ns′

)
fs
ns
H̄(k)(v − Vs;σ2

s)

Dss′(k+1) =

∫
R3

dv

(
∂v∂v

ψs′

ns′

)
fs
ns
H̄(k−1)(v − Vs;σ2

s)
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Steps to evaluate Rss′(k+1) and Dss′(k+1) analytically

• The products of Hermite polynomials are linearized

fs
ns
H̄(k)(v − Vs;σ2

s) =

∞∑
i=0

i+k∑
l=0

cs(i)
i!

σk+l−is ā
(l)

(i)(k)∂
(l)
Vs
Nσ2

s
(v − Vs)

where the coefficient ā(l)
(i)(j)

= 1
l!
∂
(i)
x ∂

(j)
y ∂

(l)
z

[
ex·y+y·z+x·z

]
x=0,y=0,z=0

• Gradients of the potential functions are replaced by mean gradients

∂v
φs′(v)

ns′
= −∂Vs′

∞∑
j=0

cs′(j)
j!

∂
(j)
Vs′

∫
R3

dv′
Nσ2

s′
(v′ − Vs′)
|v − v′| ,

∂v∂v
ψs′(v)

ns′
=

1

2
∂Vs′ ∂Vs′

∞∑
j=0

cs′(j)
j!

∂
(j)
Vs′

∫
R3

dv′Nσ2
s′

(v′ − Vs′)|v − v′|.

• Remaining double integral is a convolution of two Gaussians followed by a
convolution with Green’s functions∫∫

R3

dvdv′
Nσ2

s′
(v′ − Vs′)Nσ2

s
(v − Vs)

|v − v′| =

∫
R3

dx

|x|Nσ2
s+σ

2
s′

[x− (Vs − Vs′)]
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Exact expressions for Rss′(k+1) and Dss′(k+1) are found

• Introduce the variables

Σss′ =
√
σ2
s + σ2

s′ , ∆ss′ = (Vs − Vs′)/
√

2Σss′

• The drag- and diffusion-related coefficients are given by

Rss′(k+1) = ∂∆ss′

∞∑
i,j=0

i+k∑
l=0

(−1)jσk+l−is

(
√

2Σss′)l+j+2

cs(i)
i!

cs′(j)
j!

ā
(l)

(i)(k)∂
(l)
∆ss′

∂
(j)
∆ss′

Φ(|∆ss′ |), (8)

Dss′(k+1) = ∂∆ss′ ∂∆ss′

∞∑
i,j=0

i+k−1∑
l=0

(−1)jσk−1+l−i
s

(
√

2Σss′)l+j+1

cs(i)
i!

cs′(j)
j!

ā
(l)

(i)(k−1)∂
(l)
∆ss′

∂
(j)
∆ss′

Ψ(|∆ss′ |).
(9)

• The functions Φ(z) and Ψ(z) are RMJT potentials for unitary Gaussians

Φ(z) =
erf(z)
z

, Ψ(z) =

(
z +

1

2z

)
erf(z) +

e−z
2

√
π
.
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The ten-moment equations is an illustrative toy model

Series truncated after second non-vanishing expansion coefficients cs(2)
• Distribution functions are written as

fs(v)

ns
=

(
ms

2πTs

)3/2

e
− ms

2Ts
(v−Vs)

2
[
1 +

ms

2Ts
(v − Vs)(2) :

(
Ps
ps
− I
)]

.

• Fluid quantities are ρs = msns, Ks = msnsVs, Πs = Ps +msnsVsVs.
• A closed set of conservative equations is obtained, 10 per species
• The closing relation is

Qijk = ms

∫
dvvivjvkfs = 3 Sym(msnsV

i
s V

j
s V

k
s + P ijs V

k
s )

Note: viscosity is implicitly embedded, but not thermal conductivity (requires
at least 13 moments)
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Ten moments hyperbolic equations are given explicitly

• Continuity equation
∂ρs
∂t

+ ∂x ·Ks = 0

• Momentum equation

∂Ks

∂t
+ ∂x ·Πs −

es
ms

(ρsE +Ks ×B) =
∑
s′

css′µss′Rss′(1)

• Evolution equation for the stress tensor

∂Πij
s

∂t
+

∂

∂xk

(
Πij
s K

k
s + Πjk

s K
i
s + Πki

s K
j
s

ρs
− 2

Ki
sK

j
sK

k
s

ρ2s

)
− es
ms

(EiKj
s +Bmεi`mΠj`

s + transpose)

=
∑
s′

css′ [m
−1
s Dij

ss′(2) + µss′(R
ij
ss′(2) + V isR

j
ss′(1)) + transpose].
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The collisional moments are analytic and satisfy conservation laws

Rss′(1) =
1

2Σ2
ss′
∂∆ss′Oss′ [Φ](∆ss′),

Dss′(2) =
1√

2Σss′
∂∆ss′ ∂∆ss′Oss′ [Ψ](∆ss′),

Rss′(2) =
1√

2Σss′

[
σ2
s

2Σ2
ss′
∂∆ss′ ∂∆ss′Oss′ [Φ](∆ss′)

+

(
cs(2)
2Σ2

ss′
· ∂∆ss′

)
∂∆ss′

(
1 +

cs′(2)
4Σ2

ss′
: ∂2

∆ss′

)
Φ(∆ss′)

]
.

• The scalar differential operator Oss′ is given by

Oss′ ≡ 1 +

(
cs(2) + cs′(2)

4Σ2
ss′

)
: ∂∆ss′ ∂∆ss′

+

(
cs(2)
4Σ2

ss′
: ∂∆ss′ ∂∆ss′

)(
cs′(2)
4Σ2

ss′
: ∂∆ss′ ∂∆ss′

)
.

• These collisional terms satisfy the momentum and energy conservation
laws exactly (follows immediately from symmetry of Oss′ and properties of
special functions Φ and Ψ)
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(Now) a small parameter expansion can be safely performed

For example, the extended Ohm’s law for quasi-neutral ion-electron plasma is

E+V ×B =
Fei
ne

+
J ×B −∇ · Pe

ne
+
me

ne2

[
∂J

∂t
+∇ ·

(
V J + JV − JJ

ne

)]
,

• Collisional momentum exchange rate provides electrical resistivity

Fei
ne

= η0 R · J

• Nonlinear resistivity tensor at first order in ∆2 = me
ne2

J2

2pe
� 1

R ≈ I− 3

5

(
Pe
pe
− I
)

+
3∆2

7

(
Pe
pe
− I
)
− 3∆2

5
I
[
1− 5

7

(
Pe
pe
− I
)

:
JJ

J2

]
• Spitzer value correctly appears at lowest order

η0 =
4

3

√
2πmee

2 ln Λ

(4πε0)2T
3/2
e
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Conclusions

• Exact analytic expression for moments of the Landau collision operator (no
linearisation nor reduced form)

• Compact and programmable ⇒ systematic higher-rank moment equations
• Transport equations remain strictly advective: simpler to address
numerically than advective-diffusive kind from CE, especially in the
context of shocks.

FYI, the detailed mathematical derivation can be found on arXiv1:
Exact collisional plasma fluid theories, https://arxiv.org/abs/1701.08037

Thank you for your attention

1Comments and feedback will be very much appreciated
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