Low-Frequency δf PIC Models with Fully Kinetic Ions

Benjamin Sturdevant, Scott E. Parker, Yang Chen, and Matthew Miecnikowski

University of Colorado Boulder
Department of Physics

Plasma Theory Seminar
Princeton Plasma Physics Laboratory
February 22, 2017
Outline:

1 Motivation for Fully Kinetic Ions

2 A Fully Kinetic ITG Model

3 Implicit Orbit Averaging and Sub-Cycling

4 Simulation Results

5 Toroidal ITG Mode

6 Summary
Outline:

1 Motivation for Fully Kinetic Ions
2 A Fully Kinetic ITG Model
3 Implicit Orbit Averaging and Sub-Cycling
4 Simulation Results
5 Toroidal ITG Mode
6 Summary
Modern research on low-frequency, ion-Larmor-radius scale fluctuations in magnetized plasmas is based on GK ion models.

- Analytically eliminate timescale of gyromotion while retaining important effects due to finite gyro-orbit width.

Finite Larmor Radius (FLR) effects

- GK formalism is based on a number of ordering assumptions:
 \[
 \frac{\rho_i}{L_{eq}} \sim \frac{\omega}{\Omega_i} \sim \frac{e\phi}{T_e} \sim \frac{\delta B}{B_{ext}} \sim k_\parallel \rho_i \sim O(\epsilon), \quad k_\perp \rho_i \sim O(1)
 \]

- GK Vlasov equation + modifications to Maxwell’s equations

- Enormous success in treating idealized core turbulence.
Low-frequency fully kinetic (FK) ion models, based on resolving the gyromotion, are feasible and have important applications.

- Advanced numerical algorithms and computing architectures, e.g. GPUs, hold promise for handling the more expensive particle integration.

- GK simulation is treating tougher problems.
 H-mode edge pedestal: \(\Omega_i \Delta t = 1.0 \)
 Microtearing in NSTX edge (top of pedestal): \(\Omega_i \Delta t = 0.25 \)

- Verification of GK models where ordering parameters are not so small, e.g. how small does \(\rho_i/L_{eq} \) need to be?
1 Motivation for Fully Kinetic Ions

2 A Fully Kinetic ITG Model

3 Implicit Orbit Averaging and Sub-Cycling

4 Simulation Results

5 Toroidal ITG Mode

6 Summary
Basic Fully Kinetic Ion Model

Governing equations

- Vlasov equation for ions:

\[
\frac{\partial f_i}{\partial t} + \mathbf{v} \cdot \nabla_x f_i + \frac{q_i}{m_i} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \nabla_v f_i = 0
\]

- Testbed model

\[
\mathbf{E} = -\nabla_x \phi, \quad n_e = n_{e0} \left(1 + \frac{e\phi}{T_e}\right), \quad n_e = n_i = \int_{\mathbb{R}^3} f_i d^3v
\]

- Full model includes electromagnetic effects and drift kinetic electrons

Ion Temperature Gradient Instability Model

Equilibrium

• Vlasov Equilibrium Equation:

\[
\mathbf{v} \cdot \nabla_x f_{i0} + \frac{q_i}{m_i} (\mathbf{v} \times \mathbf{B}) \cdot \nabla \mathbf{v} f_{i0} = 0, \quad \epsilon = \frac{\rho_i}{L_{eq}} \ll 1
\]

\[O(1) \quad O(\epsilon^{-1})\]

• Equilibrium solution constructed from “constants” of motion: \(f_{i0}(K, R_x)\)

\[
K = \frac{m_i}{2} \mathbf{v} \cdot \mathbf{v}, \quad R_x = x + \frac{\mathbf{v} \times \mathbf{b}}{\Omega_i} \cdot \nabla x + O(\epsilon^2), \quad \nabla x \cdot \mathbf{B} = 0
\]

• Solve for perturbations from equilibrium \(\Rightarrow f_i = f_{i0} + \delta f:\)

\[
\frac{\partial}{\partial t} \delta f + \mathbf{v} \cdot \nabla \delta f + \frac{q_i}{m_i} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \nabla \mathbf{v} \delta f = -q_i \mathbf{v} \cdot \mathbf{E} \frac{\partial f_0}{\partial K} - \frac{\mathbf{E} \times \hat{\mathbf{b}}}{B} \cdot \nabla x \frac{\partial f_0}{\partial R_x}
\]

“Low Frequency Fully Kinetic Simulation of the Toroidal ITG Instability”,
B. Sturdevant et al., to appear in *Phys. Plasmas*
Ion Temperature Gradient Instability Model
Linear Studies for Shearless Slab

- Linear dispersion relations derived for the FK model and equivalent GK model:
 \[\varepsilon_{FK}(k, \omega) = 0; \quad \varepsilon_{GK}(k, \omega) = 0 \]

- Expansion of \(\varepsilon_{FK} \) in GK ordering parameters:
 \[\varepsilon_{FK}(k, \omega) = \varepsilon_{GK}(k, \omega) + O(\epsilon^2) \]

- FK model correctly captures low-frequency normal modes of GK.

- Additional high-frequency modes in FK
 - Ion Bernstein Modes: \(\omega_{IBW} \approx \pm n\Omega_i \)
 - Compressional Alfvén Wave (EM): high frequency for \(k_\perp \rho_i \sim 1 \)
Figure: \(k_\perp \rho_i = 0.3 \) (left); \(k_\parallel \rho_i = 6.28 \times 10^{-3} \); \(\frac{q_i T_e}{e T_i} = 5.0 \); \(\kappa_N = \kappa_T = 0.0 \)

- Ion Bernstein modes can have significant amplitudes for \(k_\perp \rho_i \sim 1 \).

- Theory from Laplace transform analysis is derived to give relative amplitudes of normal modes from initial condition:

\[
\delta f(x, v, t = 0) = A_0 e^{i \mathbf{k} \cdot \mathbf{x}} f_0(v)
\]
Reformulation of field equation:

\[
\frac{e\phi}{T_e} = \frac{\delta n_i}{n_0} \rightarrow \frac{\partial}{\partial t} \left(\frac{e\phi}{T_e} \right) = -\nabla \cdot \left(\frac{\delta (n_i u_i)}{n_0} \right), \quad \delta (n_i u_i) = \int_{\mathbb{R}^3} v \delta f_i d^3 v
\]

- Micro time step \(\Delta t \) resolves fast cyclotron motion. Macro time step \(\Delta T \) to resolves the low-frequency fields. \(\Delta T / \Delta t = M \)

- Time interpolated fields used in particle advance (sub-cycling):

\[
E_{\nu} = (1 - \frac{\nu}{M})E_N + \frac{\nu}{M}E_{N+1}.
\]

- Time averaged current density used in field solve (orbit averaging):

\[
\langle \delta (n_i u_i) \rangle_{N+1/2} = \frac{\Delta T}{M + 1} \sum_{\nu=0}^{M} \delta (n_i u_i)_{\nu}.
\]
Implicit Orbit Averaging and Sub-Cycling Algorithm

\[(x, v, w)\]
\[\delta(n_i u_i)\]
\[\langle \delta(n_i u_i) \rangle\]
\[\phi, E\]
\[t^{(0)}_{N-1} \quad t^{(1)}_{N-1} \quad \cdots \quad t^{(M-1)}_{N-1} \quad t^{(0)}_N \quad t^{(1)}_N \quad \cdots \quad t^{(M-1)}_N \quad t^{(0)}_{N+1}\]

Implicit Orbit Averaging and Sub-Cycling

Simulation Results

Figure: Original field equation (left). Reformulated field equation (right)

- Numerical analysis was performed explaining effect of velocity moments on implicit schemes:

 “Finite Time Step and Spatial Grid Effects in δf Simulation of Warm Plasmas”,
Implicit Orbit Averaging and Sub-Cycling

Simulation Results

Figure: Dispersion results showing FLR effects on the ion acoustic wave.

Parameters:

\[\frac{q_i T_e}{e T_i} = 5.0, \quad k_{||} \rho_i = 1.61 \times 10^{-3}, \quad \Omega_i \Delta T = 0.75, \quad M = 18 \]
ITG Instability in Slab Geometry

Simulation Results

\[\frac{q_i T_e}{e T_i} = 4.0 \]
\[k_{\parallel} \rho_i = 2.0 \times 10^{-3} \]
\[k_{\perp} \rho_i = 0.2 \]
\[\kappa_T \rho_i = 0.02 \]
\[\kappa_N \rho_i = 0.0 \]
M. Miecnikowski, Univ. of Colorado

- 2D slab \((x,y)\), \(\phi(1, 1)\) mode (no zonal flow)
- Full kinetic nonlinear saturation due to \(E \times B\) wave particle trapping
- Old GK results, e.g.

Outline:

1. Motivation for Fully Kinetic Ions
2. A Fully Kinetic ITG Model
3. Implicit Orbit Averaging and Sub-Cycling
4. Simulation Results
5. Toroidal ITG Mode
6. Summary
Toroidal ITG Mode
Field Line Following Coordinates and Domain

Field Line Following Coordinates: \((x, y, z)\)

\[
x = r - r_0
\]

\[
y = \frac{r_0}{q_0} \left(\int_0^\theta \frac{\mathbf{B} \cdot \nabla \zeta}{\mathbf{B} \cdot \nabla \theta} \, d\theta' - \zeta \right)
\]

\[
z = q_0 R_0 \theta
\]

Reference Minor Radius: \(r_0\)
Safety Factor: \(q_0 = q(r_0)\)

\[
\frac{\partial x}{\partial z} \propto \mathbf{B} \quad \rightarrow \quad \mathbf{B} \cdot \nabla x = \mathbf{B} \cdot \nabla y = 0
\]

\[
D = \left\{ (x, y, z) \bigg| -\frac{l_x}{2} \leq x \leq \frac{l_x}{2}, -\frac{l_y}{2} \leq y \leq \frac{l_y}{2}, -q_0 R_0 \pi \leq z \leq q_0 R_0 \pi \right\}
\]
Toroidal ITG Mode
Particle Integration Scheme

- Particle push is performed in cylindrical \((R, Z, \zeta)\) coordinates: yields simpler equations of motion than in \((x, y, z)\).

- Need to capture particle motion accurately on long time scales.

 An integrator is derived based on variational principles.

- Such integrators exhibit excellent conservation properties: energy, Lagrangian symmetries, symplectic, ...

- Starting point: formulate equations of motion as the vanishing variation of a functional.

\[
S[q] = \int_0^{t_{\text{end}}} \mathcal{L}(q(t), \dot{q}(t)) \, dt, \quad \frac{\delta S}{\delta q(t)} = 0
\]
Discrete Lagrangian:

\[\mathcal{L}_d(q^\nu, q^{\nu+1}) \approx \int_{t^\nu}^{t^{\nu+1}} \mathcal{L}(q(t), \dot{q}(t)) \, dt \]

E.g. trapezoidal rule:

\[\mathcal{L}_d(q^\nu, q^{\nu+1}) = \frac{\Delta t}{2} \mathcal{L} \left(q^\nu, \frac{q^{\nu+1} - q^\nu}{\Delta t} \right) + \frac{\Delta t}{2} \mathcal{L} \left(q^{\nu+1}, \frac{q^{\nu+1} - q^\nu}{\Delta t} \right) \]

Discrete action:

\[S_d[q] = \sum_{\nu=0}^{N-1} \mathcal{L}_d(q^\nu, q^{\nu+1}) \]

Variational principle:

\[\frac{\delta S_d}{\delta \{q^\nu\}_{\nu=0}^N} = 0 \]
Charged particle Lagrangian:

\[\mathcal{L} = \frac{m}{2} v^2 + qv \cdot A - q\phi \]
Conservation of kinetic energy K and toroidal angular momentum p_ζ
Table: Cyclone DIII-D base case parameter set

<table>
<thead>
<tr>
<th>R_0/ρ_i</th>
<th>r_0/R_0</th>
<th>q_0</th>
<th>\hat{s}</th>
<th>R_0/L_T</th>
<th>R_0/L_N</th>
<th>q_iT_e/eT_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>445.0</td>
<td>0.18</td>
<td>1.4</td>
<td>0.78</td>
<td>6.9</td>
<td>2.2</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Summary

• A fully kinetic implicit multiscale model would be useful
 • Verification of GK when ordering parameters are not so small
 • Study strengths and limitations of GK

• Timesteps are not so small for many topical GK problems

\[\Omega_i \Delta t = 0.2 - 1 \]

• Fully kinetic multiscale 3D toroidal code is operational

• Successful linear cyclone base case benchmark

• Beginning nonlinear GK comparisons
Questions?
Please ask!
Push Particles in \((R, Z, \zeta)\)

\[T(R, Z, \zeta) = (x, y, z) \]

Deposit \(\delta n\) to grid in \((x, y, z)\)

Interpolate \(E\) to particle locations in \((x, y, z)\)

Compute partial derivatives of \(\phi\) in \((x, y, z)\)

\[S(\phi_x, \phi_y, \phi_z) = (E_R, E_Z, E_\zeta) \]
Particle-In-Cell Method

Iteration Cycle for Implicit PIC

Initial Guess
\(\mathbf{E}^{(i=0)}_{\nu+1} \)

Next Iteration
\(i \rightarrow i + 1 \)

Update Particles
\(\mathbf{E}^{(i)}_{\nu+1}, \mathbf{v}^{(i)}_{\nu+1} \)

Update Fields
\(\mathbf{E}^{(i)}_{\nu+1} \)

Deposit Particles
\(n^{(i)}_{\nu+1} \)