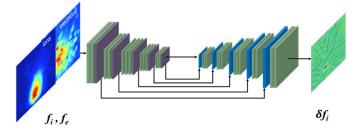
Physics-Constrained Neural Network to replace Expensive Fokker-Planck Solver A Collaborative Success between SciDAC FASTMath and HBPS

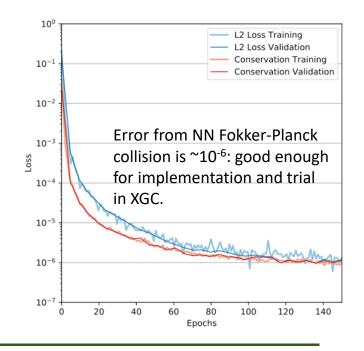
Scientific Achievement

Developed an augmented Lagrangian method for training an encoderdecoder neural network for approximating the collision operator for XGC and other fusion gyrokinetic codes, while conserving mass, momentum & energy

Significance and Impact

- XGC is a massively parallel particle-in-cell code studying edge turbulence in magnetic fusion energy devices
- ITER plasma will be affected by many tungsten species: Solution time for collision operator does not scale well with number of species and could dominate the exascale computing time
- Showed that a physics-constrained neural network can approximate well the collision operator and conserve required properties, without considering each species separately
- The training time with the augmented Lagrangian method requires only a small number of passes through the data


Research Details


The augmented Lagrangian formulation extends conventional neural network training to incorporate nonlinear constraints with minimal intrusion:

- Subproblems are solved using stochastic gradient descent method
- Applied a heuristic updates for the multipliers and penalty factor using out-of-sample validation information
- Network and training are implemented in PyTorch

Argonn