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Constructlon started 1984
Operation since 1987

Still active as the only active tokamak in Canada
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PIIM laboratory at CNRS/Aix-Marseille Université

Dilute gases
Plasmas
lon beams

Spectrocopy of atoms and molecules
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Surface interactions
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Current research interests

» Low temperature plasma diagnostics (probes, LIF)
» Magnetron sputtering, nanoparticles formation
» Dusty and misty plasmas, plasma crystals

» Simulation of low temperature plasmas (PIC)
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Outline

Complex (dusty) plasmas
Monolayer (quasi-2D) complex plasma crystals
Wave modes in monolayer complex plasma crystals

Mode-coupling in 2D plasma crystals

Stability of monolayer complex plasmas : thresholds of MCI,
sheath and ion wakes

Summary and Conclusion
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COMPLEX (DUSTY) PLASMAS
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Complex (dusty) plasmas?

(Partially) ionised gases containing (negativelly) charged solid nano- or
micro-particles.
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Complex (dusty) plasmas?

(Partially) ionised gases containing (negativelly) charged solid nano- or
micro-particles.

Solar corona

Wildfires

[

W

Source : https://sites.baylor.edu/eva_kostadinova/2019/05/10/__
trashed-2__trashed/


https://sites.baylor.edu/eva_kostadinova/2019/05/10/__trashed-2__trashed/
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LCc>mp|e>< (dusty) plasmas

Microparticle electric charge

When a microparticle is immersed in a
plasma, it can collect of emit currents :

» electrons,

v

ions,

v

thermionic emmision,

v

UV-induced secondary electrons
emission. . .

In equilibrium :

de Z/kfo
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LCc>mp|e>< (dusty) plasmas

Microparticle electric charge

OML theory (Collision-less Maxwellian

When a microparticle is immersed in a
plasmas) :

plasma, it can collect of emit currents :

lon and electron currents :

» electrons,
; ed
> ions, k= wrinieviy, (1 ~ % ;) ,
L . B I
» thermionic emmision, q:l
_ 2 €®¥4q
» UV-induced secondary electrons le = —mrinevin, exp (kB Te> ’
emission. . .

In equilibrium : In equilibrium || = ||

For an isolated particles in an argon
de Z L =0 plasma :
|Z4| > 1675 - rq pm - Te(eV).
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MONOLAYER (QUASI-2D) COMPLEX PLASMA CRYSTALS
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How to make a (quasi-)2D plasma crystal ?

Levitation of monosized spherical dust particle in the sheath of
a RF discharge.

| B
| |
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\E 'g
1 1
\ ’

» Weak horizontal confinement

» Strong vertical confinement
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LMonolayer (quasi-2D) complex plasma crystals

Experimental Setup

laser sheet
—

Argon, 0.5 Pa< p < 2 Pa
RF power : 5 W < P <20 W
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Crystallisation of the monolayer
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Experimental pictures from a 2D complex plasma
crystal

Top view : Side view :
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WAVE MODES IN MONOLAYER COMPLEX PLASMA
CRYSTALS
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LWave modes in monolayer complex plasma crystals

Interparticle interactions in monolayer complex
plasma crystals

» Negatively charged particles in a plasma — Screened-coulomb
(Yukawa) interactions.

S. Vladimirov et al., Phys. Plasmas 10, 3867 (2003)
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Interparticle interactions in monolayer complex

plasma crystals
» Negatively charged particles in a plasma — Screened-coulomb
(Yukawa) interactions.

» In the plasma sheath, strong anisotropy due to ion wakes
— Non-reciprocal dust-dust interactions.

- lon density pertubation

{a} 13=2.0kn, ] normalized tongd

Negligible for strong vertical confinement.

S. Vladimirov et al., Phys. Plasmas 10, 3867 (2003)
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Dynamical matrix and wave modes (Phonons) in

2D crystals

Elementary hexagonal lattice cell :

To obtain the eigenfrequencies, we
solve :

det[D — w(w + w)l] =0

The dynamical matrix is : ie. :

an—B 2y (QZ - 9121“)(92 - 91211_)(92 - Q%) =0
=
D= 2y o, t+8

Qgcmf 720"\/
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LWave modes in monolayer complex plasma crystals
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LWave modes in monolayer complex plasma crystals
LMeasurement of fluctuation spectra in MCPC

Classic Configuration for particle tracking

video camera

dust particles

i / ; laser sheet

electrode
—@w

i
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LWave modes in monolayer complex plasma crystals

LMeasurement of fluctuation spectra in MCPC

New Configuration for particle tracking (in plane
and out of plane motion)

dust particles

"

electrode
—@w
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LWave modes in monolayer complex plasma crystals

LMeasurement of fluctuation spectra in MCPC

Sensitivity of the configuration to out-of plane motion

In the vertical direction, the laser intensity scale has :

I(z) x exp ( - 7(2 — Zmax)z)

202

Standard deviation of laser profile o ~ 75um.
Magnitude of vertical displacement |6z| ~ / Ty/mgQ2 ~ 10um.

Classic configuration : , :
New configuration :

Zlew ~ Zmax — 100pum
51/1 ~ 15%
Positive and negative displacement
can be resolved.

Zlev ™~ Zmax
o/l ~ 1%
Negative and positive vertical
displacement result in same intensity
variations.
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LMeasurement of fluctuation spectra in MCPC

Scattered intensity variations

20

— Classic configuration

—New configuration

Intensity (a.u.)

0 02 04 0.6 0.3 1
Time (s)

frame rate : 250 fps
Particle diameter : 9.15 um, p=0.9 Pa, P=5W
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LMeasurement of fluctuation spectra in MCPC

@ UNIVERSITY OF
SASKATCHEWAN

Out of plane fluctuation spectrum

Classic configuration :

F
W
’I |
!
Eé"

Frequency (Hz)
“w _
S 3
S >

[\
S
|

~
S
[}

g

QQ

5
Normalized wave number (k-a)

Frequency (Hz)

New configuration :

60— — =
50%:3335#:%
40 - =
30 = ~ = :
207 . 5 = =

0 - e
00 10

5
Normalized wave number (k-a)

frame rate : 250 fps
Particle diameter : 9.15 ym, p=0.9 Pa, P=5 W
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LWave modes in monolayer complex plasma crystals

LMeasurement of fluctuation spectra in MCPC

Out-of-plane fluctuation spectrum over a wide range of k.

Frequency (Hz)

Frequency (Hz)

0 2 4 6 8 10 12
Normalized wave number (k-a)

Particle diameter : 8.77 um, p=0.8 Pa, P=15 W

L.Couédel et al., Phys. Rev. Lett. 103, 215001 (2009)
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LWave modes in monolayer complex plasma crystals

LMeasurement of fluctuation spectra in MCPC

Confirmation of the inverse dispersion relation at long
wavelength.
Good agreement with theoretical predictions

Frequency (Hz)

Normalized wave number (k-a)

Particle diameter : 8.77 yum, p=0.8 Pa, P=15 W

L.Couédel et al., Phys. Rev. Lett. 103, 215001 (2009)



Two-dimensional complex plasma crystals: waves and instabilities

4 UNIVERSITY OF
SASKATCHEWAN

LWave modes in monolayer complex plasma crystals

LMeasurement of fluctuation spectra in MCPC

Angular dependence of the fluctuation spectra

Frequeney (He)
Freguency (Flep
Frequency (He)
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MODE-COUPLING IN 2D PLASMA CRYSTALS
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LPlasma wakes and mode coupling

lon wakes in 2D plasma crystals

lon density pertubation

(a) D=2.0 ch,.' 1 (normalized to ng)

) .
I

FIG. 1. Skewch illuswating o hexogonal fatice of pamicles with wakes (oh-

'___ﬂ';_[} Qz:l 130e ligque view, see text for descniption).

e

S. Vladimirov et al., Phys. Plasmas 10, 5 K. Zhdanov et al., Phys. Plasmas 16,
3867 (2003) 083706 (2009)

?A—>B 7£ _?B—>A

Dust-dust interactions are non-reciprocal.
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LPlasma wakes and mode coupling

Dynamical matrix and wave modes in 2D crystals

Elementary hexagonal lattice cell :
To obtain the eigenfrequencies, we

solve :

det[D — w(w +w)l] =0

Without coupling :

The dynamical matrix is : (€% - Qﬁu)(Q? —R (-0 =0
ay—fB 2y iy With coupling :
D= 2y an+p ioy,
ioy  iox Qo — 20y Q- 0})(Q% - 07 )(Q7 - ) + O, (2 - 07, ) =0

S.K. Zhdanov et al., Phys. Plasmas 16, 083706 (2009)
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LPlasma wakes and mode coupling
Hybrid modes in complex plasma crystal
¥ B =3 B =15 il:U 04

Re o
Tm @

S.K. Zhdanov et al., Phys. Plasmas 16, 083706 (2009)
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LMode-coupIing in 2D plasma crystals

LPlasma wakes and mode coupling

Angular dependence (shallow intersection)

Localised heating in the k-plane :

0.015
Increment (a.u.)
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LE><perimenta| evidence of the MCI

EXPERIMENTAL EVIDENCE OF THE MCI
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|—E><perimenta| evidence of the MCI

Experimental evidence of the MCI : Hybrid modes

Formation of the hybrid mode

Localised heating

Mixed polarization

vV v vy

Out-of plane spectrum shows stron-
1 ger dispersion at small k than the
ka fa theoretical mode calculated using
point-like wake model.

31
s
=
=
.

AzfAk jwmn )
5 5 3
2 : e |

L. Couédel et al., Phys. Rev. Lett. 104, 195001 (2010).
L. Couédel et al., Phys. Plasmas 18, 083707 (2011). m] [ =

it
S
p
?
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LCrystal melting induced by the mode-coupling instability

Mode-coupling induced melting
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LEalrly stage of the MCI : Synchronisation of particle motion

EARLY STAGE OF THE MCI : SYNCHRONISATION OF
PARTICLE MOTION
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- Early stage of the MCI : Synchronisation of particle motion

Mode-coupling induced melting

Top view : Side view :

RF power : 12 W

Argon pressure : 0.92 Pa
Particle diameter : 9.19 pm.
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LEarly stage of the MCI : Synchronisation of particle motion

Particle motion and current spectra
In-plane current fluctuation

spectra for different wave
Motion of 2 neighbour particles :  propagation angles :

op scale)

LIt

wos (pinels)

Q955

. Frame
a0 mumber

1]

s (pinels) 1
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L Early stage of the MCI : Synchronisation of particle motion

Crystal parameters :
C.=(341+£14) mm/s,
Cr=(79£0.3) mm/s.
a=480=+10 pm.

Q ~ —18600e.
Ap = 380 pm.
k= a/Ap = 1.26.
f, =23+ 1 Hz

Hybrid mode frequency fp = 16 1 Hz.

Wave energy distribution in the k-plane
around the hybrid mode resonance
frequency :

= Instability develops in “most
unstable” direction.

= Highly anisotropic oscillations.
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arly stage of the MCI : Synchronisation of particle motion

Evolution of the instantaneous phase.

Filtered displacements : _ _

R(t) = ri(t) — & :jg r(t')dt’ Evolution of instantaneous

phase :

Hilbert transform = instantaneous amplitudes,
phases and frequencies.

Synchronisation index :
gj = %Z}j’:l ajjr with ajjr = 1-— Ss,ij‘:x
Shannon entropy of phase distribution S/ :

M M
S ==z P pir 12 i =1
pjjir1 © fraction of the data in the /-th bin in the
phase difference distribution,
¢ (t) = ¢j(t) — ¢j(t) (mod2nm),
I=1...M, M=20

o 1 synchronised,

T7V 0 desynchronised.

L. Couédel et al., Phys. Rev. E 89, 053108 (2014).
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LEalrly stage of the MCI : Synchronisation of particle motion

Frequency and phase partial synchronlsatlon

—_—
Aumplilnde

=
-
= .
Anplicude (I upies ol a)

0l

2

LK} . : - . . : - (LARE
0.5 (K] 1.5 ] s 3 3 -

L. Couédel et al., Phys. Rev. E 89, 053108 (2014).
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MELTING AND TRANSITION TO FLUID MCI
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LMelting and transition to fluid MCI

MCI in fluid 2D complex plasmas

) :
20 TR
b T Ne——"""1 » MCl also exists in fluid 2D
~ o complex plasmas.
S /\ » In fluid, crossing of the mode
/ : ; v always occurs
% 1 > I 3 » For the same parameters,

growth rate can be higher in

K =1.035, f, =22 Hz, the fluid than in the crystal

Q4=-18200e, q=0.2| Qq
A = 490 um, § = 0.3Ap.

A.V. lvlev et al., Phys. Rev. Lett 113, 135002 (2014)
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LMelting and transition to fluid MCI

MCI in fluid 2D complex plasmas

b
o

—
=

E‘ 2

=]

g 0.5
[1M]

£l

8

=~ 0.0

)
o
Intensity (log scale, arb. units)

S.0. Yurchenko, et al. Phys. Rev. E 96, 043201 (2017)
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LMelting and transition to fluid MCI

Energy growth during MCl melting

(K} (eV)

Change of slope when the crystal is melted.

T. B. Rocker et al., Europhysics Letters, 106, 45001 (2014)
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LMode—coupling in 2D plasma crystals
LMelting and transition to fluid MCI

Propagation of the melting front

S. O. Yurchenko et al., Phys. Rev. E 96, 043201 (2017).
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L Laser-induced explosive melting

LASER-INDUCED EXPLOSIVE MELTING
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L Laser-induced explosive melting

Implication of fluid MCI

» Conditions exist for which both the crystalline and the fluid
states are viable, meaning no crossing of the modes in the
crystal state and MCI growth rate high enough in the fluid
state to prevent crystallisation.
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L Laser-induced explosive melting

Implication of fluid MCI

» Conditions exist for which both the crystalline and the fluid
states are viable, meaning no crossing of the modes in the
crystal state and MCI growth rate high enough in the fluid
state to prevent crystallisation.

P Possibility to trigger sporadic melting of a stable crystal which
is not too far from the crystalline MCI threshold by applying a
sufficiently strong mechanical perturbation.
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- Laser-induced explosive melting

Implication of fluid MCI

» Conditions exist for which both the crystalline and the fluid
states are viable, meaning no crossing of the modes in the
crystal state and MCI growth rate high enough in the fluid
state to prevent crystallisation.

P Possibility to trigger sporadic melting of a stable crystal which
is not too far from the crystalline MCI threshold by applying a
sufficiently strong mechanical perturbation.

» Localised laser stimulation of the monolayer can trigger MCI-
induced melting of the stable crystal if the injected energy is
sufficient
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Laser-induced explosive melting
Experimental set-up
CCD Camera
Solickstate CW laser '
Microparticle crystal
~ Experimental conditions :

Grounded ring
/

Pama B Py, = 1.04 Pa
> Py =20W

> ¢y =9.19 um

> A =415+10 um
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Stable crystal before laser stimulation

Longitudinal

5]
W

Transverse

o3
(=}

—_
w

Frequency (Hz)



Two-dimensional complex plasma crystals: waves and instabilities

g al i%d UNIVERSITY OF
Mode-coupling in 2D plasma crystals % SAS:KATCHEWA-N

L Laser-induced explosive melting

Laser-induced fluid MCI : analogy with thermal

runaway in ordinary mater
Laser excitation below threshold : Laser excitation above threshold :
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LMode—coupling in 2D plasma crystals

L Laser-induced explosive melting

Evolution of the melting spot

Experiment 19: Recrystallisation
Eyin (¢V)

Experiment 20: Melting

10 100 1000
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L Laser-induced explosive melting

Threshold behaviour

Experiments with different laser pulse energy have been carried out

ol [ *4 : 411
E
ﬁ L] 20 40
Kiltan + t) (keV)
T A Y A R
He T*TT Jf r*,

0 20 40 60
Kilton + ta) (keV)

= Full melting occurs only after an injected energy threshold.
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LMode—cc}upling in 2D plasma crystals

LSimilarities with impulsive spot heating in ordinary reactive matter

Spatial temperature distribution T(r,t) in a
continuous reactive medium

The evolution of the kinetic temperature of the microparticles :
T QAT 2y x 8 ( 4T
ot - C'nm C rar ( )
with the initial condition

TG0y =Ty+ 1 r
r0) = —— expl——).
2 27rw§,[zn2DC R zszz

The heat source due to fluid MCI :
o) _ ywalw 17
Cl’lz]) C ’
which can be approximated by

o) |0, T <T,
bale, T30,

CHZD
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Spatial temperature distribution T(r,t) in a

continuous reactive medium

In dimension-less units the temperature evolution can be written

as .

BlC)] 10 G1C)
— = —TO+ -—(F=).
ot For\ or

where @ = T/T,,7 = r/r* withr*> = E|/n;pCT,, T = 1/t*
with r* = #*?/x. The initial condition becomes

1 7
exp| —— ),
ity P\ 22,

with the dimension-less parameters :

O, 0) =

_ yalx ki r— 2vaEr _ 2va Ta
C2xnypT}? ClxnapT,  yuct Too

A.
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LSimilarities with impulsive spot heating in ordinary reactive matter

Spatial temperature distribution T(r,t) in a

continuous reactive medium
98 5e-i1% 1 + li(;»ao)
ar Far\ orF
» Equation similar to the one describing impulsive spot heating
and thermal explosion in ordinary matter with the addition of
a dimensionless damping coefficient I
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LSimilarities with impulsive spot heating in ordinary reactive matter

Spatial temperature distribution T(r,t) in a

continuous reactive medium
98 5e-i1% 1 + li(;»ao)
ot Far\ orF
» Equation similar to the one describing impulsive spot heating
and thermal explosion in ordinary matter with the addition of
a dimensionless damping coefficient I

» For a given I, thermal evolution is characterised only by A.,.
Bifurcation between two distinct regimes : cooling (A < A¢)
and rapid temperature growth ("thermal runaway”, A > A.)
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LSimilarities with impulsive spot heating in ordinary reactive matter

Spatial temperature distribution T(r,t) in a

continuous reactive medium
98 5e-i1% 1 + li(;»ao)
ot Far\ orF
» Equation similar to the one describing impulsive spot heating
and thermal explosion in ordinary matter with the addition of
a dimensionless damping coefficient I

» For a given I, thermal evolution is characterised only by A.,.
Bifurcation between two distinct regimes : cooling (A < A¢)
and rapid temperature growth ("thermal runaway”, A > A.)

» for a 2D system, Ao (I = 0) ~ 10, A ([ = 1.5) ~ 17 and
Aer(T = 2.5) ~ 21.



Two-dimensional complex plasma crystals: waves and instabilities
LMode-coupling in 2D plasma crystals

LSimilarities with impulsive spot heating in ordinary reactive matter

Spatial temperature distribution T(r,t) in a

continuous reactive medium
98 5e-i1% 1 + li(;»ao)
ot Far\ orF
» Equation similar to the one describing impulsive spot heating
and thermal explosion in ordinary matter with the addition of
a dimensionless damping coefficient I

» For a given I, thermal evolution is characterised only by A.,.
Bifurcation between two distinct regimes : cooling (A < A¢)
and rapid temperature growth ("thermal runaway”, A > A.)

» for a 2D system, Ao (I = 0) ~ 10, A ([ = 1.5) ~ 17 and
Aer(T = 2.5) ~ 21.

P> Experimental parameters=- [ ~ 2—4 and, at threshold energy, A\, ~
10 — 30. Good agreement with theory
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LSimilarities with impulsive spot heating in ordinary reactive matter

Calculation vs experiments
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State of the monolayer vs power and pressure

e Monolayer is studied under different conditions of pressure and power

e Crystalisation pressure and MCI threshold pressure are recorded

Experiment 1 Experiment 2
2 2 T T T
3 Crystal 3 . Crystal
¥
¥
15 s T 3
< <
& Fluid or Crystal & 3 Fluid or Crystal
= S :
$ . 3 :
Fluid Fluid 3
0.5 = il sl
15 20 25 6 8 10 12 14 16

Py (W) Py (W)
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Phys. Rev. Lett. 89, 035001 (2002).

Using method described in S. Nunomura et al.,
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LSheath in capacitivelly coupled rf discharges

SHEATH IN CAPACITIVELLY COUPLED RF DISCHARGES
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LSheath in capacitivelly coupled rf discharges

Model

Particle charge depends on local plasma parameters (T, n;,)
Vertical confinement strength depends on sheath structure.
= Need for proper modelling of the RF sheath :

» Collisional cold ions (T; = 0 and constant ion mean free
path \;)

» Inertia-less electrons

» No secondary electron emitted from cathode

» No ionisation in the sheath

Y. P. Raizer, et al. “Radio-Frequency Capacitive discharges” (CRC Press LLC, Florida, 1995).
M. A. Lieberman, IEEE Trans. Plasma Sci. 17,338 (1989).

M. A. Lieberman, IEEE Trans. Plasma Sci. 16, 638(1988).

Y. P. Song, et al. , J. Phys. D : Appl. Phys. 23, 673 (1990).

V. A. Godyak and N. Sternberg, Phys. Rev. A 42, 2299 (1990).

L. Couédel and V. Nosenko, Phys. Rev. E 105, 015210 (2022).
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LSheath in capacitivelly coupled rf discharges
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Experimental input

10
4 p=0.66 Pa ®
p = 1.00 Pa
81 § p=300Pa }
. $ p=06.00Pa
oo }
E b
Zaf g d
21“ Pt
i %
0—

0 5 10 15 20
RF power, Py (W)

Good agreement with estimation
of constant density model

100
80

60

‘Vd0| (V)

40

204
/

@p=086Pa
H @p=1.00Pa

0 5 15 20

10
Py (W)

Relationship between Vi, and V;,:

L

- A + Ay
In our experiment: A,s ~ 0.254,

V. Land, et al., New J. Physics 11, 063024 (2009)
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Sheath parameters as a function of pressure and
power

= Pressure increases = n; . increases and sheath length decreases,

= Power increases = n;  increase and sheath length slightly increases.
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LCalculated phonon spectra and MCI threshold

CALCULATED PHONON SPECTRA AND MCI THRESHOLD
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LCalculated phonon spectra and MCI threshold

Z4, levitation height and fj,
Particle charge (Zobnin model):
I, =(—e) - V81r2nevr, exp(—@), (1)
I =(e) - VBrrinevr, (14 3) x

1+

¢
0.07+2(5) +25 (5) + [0.27(%)1‘

(2)
Zy = —4negraTop/e. 3
Levitation height and vertical resonance frequency:

QaE(21ev) = —mag, (1)

_ J1edl 9B()
e = ®

A. V. Zobnin, et al. “lon current on a small spherical attractive probe in a weakly ionized plasma with ion-neutral
collisions (kinetic approach)”, Phys. Plasmas 15, 043705 (2008).
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LCalculated phonon spectra and MCI threshold

Zy, levitation height and fj,

(a

(b) (c)

|Za| (x10% €)

0.5

0.5

20

1.5 1 25
Aew® 2 e

20

15

7 15
%) 0.5 10 .
Y 5 Pw (W)

20 1
1.5 2
S Y

Pressure and rf power have significant influence on Zg, ze,
and fy, :
» Power increase at constant pressure leads to increase of Zy,
Zev and fbv.

» Pressure increase at constant rf power leads to decrease of
Z4, Ziey and increase of fy, .
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LCalculated phonon spectra and MCI threshold

Mode-crossing and MCI threshold

Calculated phonon spectra.
(Zhadnov point-wake model, constant interparticle distance A) :

By=6 W, p=1.35 Pa
C1=33.97 mm/s, Cr=6.86 mm/s

S.K. Zhdanov et al., Phys. Plasmas 16, 083706 (2009)
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LCalculated phonon spectra and MCI threshold

Mode-crossing and MCI threshold

A B 501 2 " " Ao s
: 3 W Exp., Set 2 t 3 : 1Ew& iu;ivo
s ; $ Calc., A = 0.420 mm e, & = 0AZ0mm
Cale., A = 0.450 mm
— 15 1 t % Cale., A = 0.500 mm | —_
) ¢ <
& vy oty &
~ i LERR ~
11t - 1 [ I
ty ; Tiay ; AE iy
Yiim Aiifyy
05 IRRERE! os , , , ;
’ 10 15 20 25 ' 10 15 20 25
Py (W) Py (W)

Trends for MCI threshold can be reproduced, however :
» Threshold very sensitive to interparticle distance,
» Threshold very sensitive to wake parameters.

= Need proper modelling of ion wakes and confinement.

L. Couédel and V. Nosenko, Phys. Rev. E 105, 015210 (2022).
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L Investigating ion wakes

Sensitivity of ion wakes to plasma parameters

Collision-less Field-driven
Maxwellian plasma flow collissional plasma flow
r/AD, r/Ap,

E=15V/em E =20 V/em
Vip = 8.8 x 10° 571

z/Ap,
O T W= O
'
=
=
I
_
n
'
=
=
Il
=
-
oUW O L
z/Ap,

N = 8 x 108 ecm ™3

T, =2.15 eV 1.0 1.5 2.0
Ti=300 K n; (><109cm’3)

D. Kolotinskii and A. Timofeev, OpenDust : A fast GPU-accelerated code for the calculation of forces acting on
microparticles in a plasma flow. Computer Physics Communications 288, 108746 (2023)
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L Investigating ion wakes

PR

0 ai 5

25 W, 1.58 Pa

Taz005 £5008 260G

lon wake modelled using molecular dynamics simulation (DRIAD code) :
self-consistent calculation of the ion and dust dynamics and dust

charging.

R. Banka et al. “Dependence of ion wake characteristics on experimental conditions”, Plasma Phys. Controll. Fus.
65(4), 044006 (2023).
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L Investigating ion wakes

lon wakes as a function of discharge conditions

a
\02-() © o090, .
o | 4
ol = I"
n

0.6 0.8 1 1.2 14 16 18
Pressure, p/Pa
Wake charge proportional to the neutral gas pressure : ranging from

0.05 x Qg of the at p < 1 Pato 0.20 x Qq at p = 1.8 Pa.

= Use the obtained interaction potentials to study wave modes and MClI
thresholds.

R. Banka et al. “Dependence of ion wake characteristics on experimental conditions”, Plasma Phys. Controll. Fus.
65(4), 044006 (2023).
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L Investigating ion wakes

Self-consistent wake model (Kompaneets' model)

r/Ap.

Electric potential structure :

Q e/°°dt explit(z/n]

Vv = ——
(r2) = 5 1+ (/A )2Y (8)
w. [ t2 + (lin/Xsc)? X (1)

: O\ 1V 1+ (n/A)2Y (1) )

El—:'l with X(t) =1— 1+ it and
ectric potential

4 2\/1 1
p=1Pa, Y(t)= = f [1+:t(1 a2 T i(+it)
n=10%cm3,
T. =3¢V, Complex potential structure with attraction at long distance.
® = —15000e.

Kompaneets et al, Phys. PLasmas 14, 052108 (2007).
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L Investigating ion wakes

Self-consistent wake model (Kompaneets' model)

Comparison with Yukawa potential

— Kompaneets potential
15 20 - - - Yukawa fit

* Yukawa g
10 z
5 z
— =)
=
Eo
= 5
r (mm)
-5
Z4 = 15000
10 frn=0.10 Hz
Noo = 1.0 x 10% em ™3
-15 T.=3eV, T =0.027 eV
s 0 -5 0 5 10 15 p=10Pa
T (mm) lin, = 6.4 mm
E=22V/cm

M =188
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L Investigating ion wakes
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Self-consistent wake model (Kompaneets' model)

Comparison with Yukawa potential

30 1.5
° Kompaneets
25 = Yukawa 14
5 .
20 s
1.3
15 E L]
S 12 -
. 4
10 ‘l'.
5 L}
5 1.1 &
0 3 2 -1 1
10 10 10 0.01 0.02 0.03 0.04 0.05
T T

No major difference for equilibrium properties.

=-Need to investigate MCI threshold with self-consistent interaction
potentials.
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Conclusion |

Dusty plasmas are a very nice tool to study strongly coupled systems

Imaging monolayer (quasi-2D) complex plasma crystal allows one to
study wave propagation at the kinetic level

» Anisotropy due to ion wakes can lead to wave-mode coupling in mo-
nolayer complex plasma crystals

» Wave-mode coupling due to ion wakes has clear fingerprints :

» Hybrid mode

» Angular dependence

» Confinement and damping thresholds

» Mixed polarisation

> Fingerprints are clearly visible on fluctuation spectra (simula-
tions and experiments)
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Conclusion I

» Experimentally demonstration of wake-mediated resonant mode cou-
pling in a 2D plasma crystal induced by localised pulsed laser heating.

» Heating can trigger a rapid full melting of the crystalline monolayer.
Energy threshold was observed.

Remarkable similarities with impulsive spot heating in ordinary reac-
tive matter.
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Conclusion Il

> Stability of 2D complex plasma crystal with respect to MCl increases
with pressure and rf power,

» Simple rf sheath model is able to explain the evolution of vertical
confinement,

» MCI threshold follow the trends given by crossing of the vertical and
compressional in-plane modes,

» MCI threshold very sensitive to interparticle distance and wake para-
meters,
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Further investigations :

» Study of MCI threshold using self-consistent wake model and inter-
actions potential obtained from simulations,

» Implementation of horizontal confinement : dependance of the inter-
particle distance to discharge conditions,

» Improvement of sheath model/simulations for accuracy of the MCI
threshold calculation,

» Improved experimental studies of the different thresholds for various
monolayer parameters and laser spot sizes (for induced melting), in-
fluence of the temperature of the fluid state on the MCl growth rate
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