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Introduction



Introduction

* ITER plans to use 3D fields, Resonant Magnetic Perturbations
(RMP), for ELM suppression

 But RMP fields can lead to the so-called “density pump-out” that
may decrease fusion efficiency (while leaving the T, pedestal
intact)

- Goal of XGC study: What are the physics behind the density
pump-out, while still keeping the electron heat confined?
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The Gyrokinetic Codes XGC1 and XGCa are Used to Study the

RMP Induced Transport

e XGClis a global 5D (3D configuration +
2D velocity space) gyrokinetic, total-f
particle-in-cell code

* Advantages of using the total-f
gyrokinetic code XGC1
— Whole volume simulation including SOL

— Kinetic-consistent radial, poloidal, and
toroidal electric field

— Nonlinear Fokker-Planck-Landau
collision operator

— Neutral particle recycling

 XGCa uses an axisymmetric electric
field solver for faster and longer
simulation compared to XGC1

Parallel current density from trapped and

 Goals: passing particles in NSTX #132543 computed
— Accurate study of non-turbulent and with XGCa (R. Hager and C. S. Chang, PoP
turbulent transport due to resonant 2016, illustration by F. Sauer, T. Neuroth and
magnetic perturbations (RMPs) K.-L. Ma, UC Davis)
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Numerical Approach



XGC and M3D-C1 Are Coupled for Transport Study

in MHD-Screened RMP Field

M3D-C1: XGC:
e Axisymmetric equilibrium e Gyrokinetic plasma transport
magnetic field, and in 3D magnetic equilibrium

(planned)

M3D-C1 provides perturbed 3D magnetic equilibrium

XGC computes radial fluxes
— Whole volume simulation with consistent electric field, nonlinear Coulomb
collision operator, heat and torque sources, and neutral particle recycling
In the future, updated plasma profiles, effective transport coefficients,
kinetic response currents, etc. can be returned to M3D-C1 for longer
time-scale coupled simulation with profile evolution



Starting from (a model DIlI-D) H-Mode like Plasma Profiles > M3D-

C1 Yields 3D Field with Good KAM Surfaces at Pedestal Top
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Simulation of Non-Turbulent (Neoclassical)

RMP-Driven Transport in XGCa




Neoclassical Simulations with XGCa Exhibit Enhanced Particle Flux

and Electron Thermal Transport Barrier at ,<0.98

* Apply simple transport model to estimate effective transport coefficients

% — V.T=V-(DV(n)),
e B DRSNS Sl

* Radial fluxes are evaluated along the unperturbed flux-surfaces
* Need to test these results in XGC1 including the n=3 mode in ¢
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Including n=3 Nonaxisymmetric (And Nonturbulent) ¢

Reduces Transport Except in Stochastic Layer ,,=<0.98

* To test accuracy of XGCa results = run XGC1 with Fourier filter
retaining n=0 and
— No n=3 electric field
— n=3 electric field with ng-5sm< ng+5 to test the validity of XGCa results
* Transport is reduced at Y < 0.98 if n=3 electric field is included

* But transport in stochastic layer Y, = 0.98 does not change much
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Particle Diffusivity in the Stochastic Layer (,=0.98) is at

Experimental Level, Turbulence is Needed Inside Pedestal Center

* Simple estimate for diffusivity required for density pump-out

D o 2 (a - 1) f nodV
“t T (Ono/Or) (a+ 1) AtS(y)’

— 1-a = pumpout fraction ny(t+ At ) = a ny(t) 2 a=0.75

— S - flux-surface area

— At 2 pumpout time = 100 ms

Turbulent transport is

needed from Pedestal
center inward to produce

/ sufficient pump-out

Transport in stochastic
layer g = 0.98 sufficient
for >25% density pumpout
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The Electrostatic Field Adjusts to RMP Field to Maintain the

Ambipolarity of the Radial Particle Flux

Outer midplane E, Outer midplane E, shearing rate
50104 ......... — : ...... o[ T T : ...... ]
3) pedestal : I D) : :
: : : 1 20F XGCa, 0.303 ms |- ]
of - Shoulder N ' [ | — — - XGCa, 0480 ms |: ” ]
I e P 2o 1 1sb | XGCa, 0.623 ms | B
_ [ RMP field e ] = JF Lo Xeer ]
g i ) F R ] I i : : ]
S -5.0-10*| switched on _ ga 10F : : h
w F t=0.32ms 3y ] . 55 Shearing rate -
XGCa, 0.303ms | ' F is reduced
1.010°F _ _ _ xGCa 0480ms | : KAM— - : \
---------- iggi 0.623ms | : & stochastic 0 — :
sf——— :  boundary ] F
'1 .5'10 M M 1 M M M M 1 M M a M 1 M M M M '5 M M M M 1 M M M M al M X 1
0.90 0.95 1.00 0.90 0.95
l'lJN wN

After adjusting for the fast prompt electron
losses, E. is still negative throughout the
pedestal region = pushes electrons outward
—> Suggests that transport is still driven by
ion banana orbit motion

(Remember that the thermal banana orbit
width is comparable to the pedestal width!)

The change of the shearing
rate around the pedestal
shoulder can have implications
on turbulent transport 2 will
use XGC1 to study this



Simulation of Neoclassical + Turbulent RMP-

Driven Transport with XGC1
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XGC1 Simulations of Combined Neoclassical and Turbulent

Transport Show Increased n=3 Activity with RMP Field

Without RMP
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(These simulations are still short and need to be run

longer to reduce the uncertainty in the radial fluxes

and to saturate turbulence in the core.)
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XGC1 Simulations of Combined Neoclassical and Turbulent

Transport Show Increased n=3 Activity with RMP Field

Without RMP With RMP Earl ]
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RMP Field Increases Turbulence Intensity

. A significant
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Turb. spec. at y,=0.85 Turb. spec. at y,=0.85
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Turbulence Intensity is Greater with RMP

But what about Transport?

Stronger potential perturbation in SOL and

pedestal with RMP field. There are three main transport

Increased SOL perturbation is not all channels:
turbulence, but includes n=3 RMP response. * “3D neoclassical” flux
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Turbulent-neoclassical RMP Transport

» Effective particle diffusitity
without RMP is low (D<0.5

:\ m?/s) at {,.0.95-0.97
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RMP Transport

Without RMP With RMP
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The Difference in the Particle Diffusivity between XGC1 with and

without RMP is Sufficient for Density Pump-Out

* Assume 25% density pump-out as before

* From XGC1 use: DRMP'stm
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Divertor Heat Load

Both cases are

Without RMP not in power With RMP
balance yet.
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Divertor Heat Load Width is already saturating:

The RMP case is wider by ~30%
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Conclusions
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Conclusions

* When using M3D-C1 RMP field in XGC simulations, the combined
neoclassical and turbulent transport are needed to explain density
pumpout

* An electron thermal barrier exists in the pedestal slope ({.0.96-
0.98) in both

— pure neoclassical and
— neoclassical+turbulence cases

* Density pumpout is from turbulence

* Longer turbulence simulations will be run to reduce statistical
error

e Use kinetic response currents to compute RMP penetration in XGC

* Electromagnetic simulations are to be performed to study effect
on ELM stability
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RMP Transport

Without RMP With RMP
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