Adjoint method and runaway electron dynamics in momentum space

Chang Liu, Dylan Brennan, Eero Hirvijoki, Amitava Bhattacharjee
Princeton University, PPPL
Allen Boozer
Columbia University

Sherwood Theory Conference 2016
Madison, WI
Apr 6 2016
Outline

• Introduction to runaway electron dynamics in momentum space

• Adjoint Method
 • Runaway Probability function
 • Expected Loss time

• Large angle scattering in runaway electron energy loss.

• Summary
Outline

• Introduction to runaway electron dynamics in momentum space

• Adjoint Method
 • Runaway Probability function
 • Expected Loss time

• Large angle scattering in runaway electron energy loss.

• Summary
Motivation: develop a theoretical tool to help understand RE momentum space structure

- Due to the decrease of the Coulomb collision force with p, electrons with momentum larger than p_{crit} can be continuously accelerated by the toroidal electric field to very high energy.
- Runaway electron (RE) beam is considered to be causing severe damage in ITER disruption.
Motivation: develop a theoretical tool to help understand RE momentum space structure

• Due to the decrease of the Coulomb collision force with p, electrons with momentum larger than p_{crit} can be continuously accelerated by the toroidal electric field to very high energy.
 • Runaway electron (RE) beam is considered to be causing severe damage in ITER disruption.

• Runaway electron momentum space is nonhomogeneous.
 • Runaway-loss separatrix formed by E force and collisional drag
Motivation: develop a theoretical tool to help understand RE momentum space structure

- Due to the decrease of the Coulomb collision force with p, electrons with momentum larger than p_{crit} can be continuously accelerated by the toroidal electric field to very high energy.
 - Runaway electron (RE) beam is considered to be causing severe damage in ITER disruption.

- Runaway electron momentum space is nonhomogeneous.
 - Runaway-loss separatrix formed by E force and collisional drag
 - Attractor formed by E force and synchrotron/bremsstrahlung radiation
Motivation: develop a theoretical tool to help understand RE momentum space structure

- Due to the decrease of the Coulomb collision force with p, electrons with momentum larger than p_{crit} can be continuously accelerated by the toroidal electric field to very high energy.
 - Runaway electron (RE) beam is considered to be causing severe damage in ITER disruption.

- Runaway electron momentum space is nonhomogeneous.
 - Runaway-loss separatrix formed by E force and collisional drag
 - Attractor formed by E force and synchrotron/bremsstrahlung radiation

- In disruptions, RE generation can be enhanced by “runaway electron avalanche” (secondary generation).
Motivation: develop a theoretical tool to help understand RE momentum space structure

Due to the decrease of the Coulomb collision force with momentum larger than p_{crit}, electrons with momentum larger than p_{crit} can be continuously accelerated by the toroidal electric field to very high energy.

- Runaway electron (RE) beam is considered to be causing severe damage in ITER disruption.
- Runaway electron momentum space is nonhomogeneous.
- Runaway-loss separatrix formed by E force and collisional drag.
- Attractor formed by E force and synchrotron/bremsstrahlung radiation.

In disruptions, RE generation can be enhanced by "runaway electron avalanche" (secondary generation).
RE Kinetic Equation in Momentum Space

\[\frac{\partial f}{\partial t} + E\{f\} + C\{f\} + R_s\{f\} + R_B\{f\} = S\{f\} \]

E: Parallel electric field acceleration
C: Relativistic collision operator (slowing-down and pitch angle scattering)
R_s: Synchrotron radiation reaction force (SRRF)
R_B: Bremsstrahlung radiation reaction force (BRRF)
S: Source term for secondary RE generation (Avalanche)
RE Kinetic Equation in Momentum Space

\[
\frac{\partial f}{\partial t} + E\{f\} + C\{f\} + R_s\{f\} + R_B\{f\} = S\{f\}
\]

E: Parallel electric field acceleration
C: Relativistic collision operator (slowing-down and pitch angle scattering)
R_s: Synchrotron radiation reaction force (SRRF)
R_B: Bremsstrahlung radiation reaction force (BRRF)
S: Source term for secondary RE generation (Avalanche)
RE Kinetic Equation in Momentum Space

\[
\frac{\partial f}{\partial t} + E\{f\} + C\{f\} + R_S\{f\} + R_B\{f\} = S\{f\}
\]

- **E**: Parallel electric field acceleration
- **C**: Relativistic collision operator (slowing-down and pitch angle scattering)
- **R_S**: Synchrotron radiation reaction force (SRRF)
- **R_B**: Bremsstrahlung radiation reaction force (BRRF)
- **S**: Source term for secondary RE generation (Avalanche)

Notes:
- The kinetic equation is a 2-D Fokker-Planck equation (ignoring the source term).
- Diffusion term mainly comes from pitch angle scattering term.

\[
\frac{\partial f}{\partial t} = \hat{L}[f] = -\nabla \cdot [af] + \nabla \nabla \cdot [Df]
\]
RE Kinetic Equation in Momentum Space

\[\frac{\partial f}{\partial t} + E \{ f \} + C \{ f \} + R_S \{ f \} + R_B \{ f \} = S \{ f \} \]

- \(E \): Parallel electric field acceleration
- \(C \): Relativistic collision operator (slowing-down and pitch angle scattering)
- \(R_S \): Synchrotron radiation reaction force (SRRF)
- \(R_B \): Bremsstrahlung radiation reaction force (BRRF)
- \(S \): Source term for secondary RE generation (Avalanche)

- The kinetic equation is a 2-D Fokker-Planck equation (ignoring the source term).
 - Diffusion term mainly comes from pitch angle scattering term.
 \[\frac{\partial f}{\partial t} = \hat{L}[f] = -\nabla \cdot [a \ f] + \nabla \nabla \cdot [D \ f] \]

- Kinetic equation can be written as a conservation form
 \[\frac{\partial f}{\partial t} + \nabla \cdot J = 0 \quad J = a(p) f - \nabla \cdot [D(p) f] \]
RE Kinetic Equation in Momentum Space

\[
\frac{\partial f}{\partial t} + E \{ f \} + C \{ f \} + R_S \{ f \} + R_B \{ f \} = S \{ f \}
\]

- **E**: Parallel electric field acceleration
- **C**: Relativistic collision operator (slowing-down and pitch angle scattering)
- **R_S**: Synchrotron radiation reaction force (SRRF)
- **R_B**: Bremsstrahlung radiation reaction force (BRRF)
- **S**: Source term for secondary RE generation (Avalanche)

- The kinetic equation is a 2-D Fokker-Planck equation (ignoring the source term).
 - Diffusion term mainly comes from pitch angle scattering term.
 \[
 \frac{\partial f}{\partial t} = \hat{L}[f] = -\nabla \cdot [a f] + \nabla \nabla \cdot [D f]
 \]
 - Kinetic equation can be written as a conservation form
 \[
 \frac{\partial f}{\partial t} + \frac{\partial J}{\partial p} = 0 \quad U = a(p) f - \frac{\partial}{\partial p} [D(p)f]
 \]
Outline

• Introduction to runaway electron dynamics in momentum space

• Adjoint Method
 • Runaway Probability function
 • Expected Loss time

• Large angle scattering in runaway electron energy loss.

• Summary
Adjoint method I: Runaway Probability Function

P is solution of adjoint Fokker-Planck equation.

\[\hat{L}^\dagger [P] = a(p) \frac{\partial P}{\partial p} + D(p) \frac{\partial^2 P}{\partial p^2} = 0 \]

$P(p_1) = 0, P(p_2) = 1$

Adjoint method I: Runaway Probability Function

\(F \) is the Green’s function of the Fokker-Planck operator \(L \).

\[
\frac{dF}{dt} = \frac{\partial F}{\partial t} - \hat{L}[F] = \delta(p - p_0)
\]

\(F(p_1) = 0, F(p_2) = 0. \)

Adjoint method I: Runaway Probability Function

\(F \) is the Green’s function of the Fokker-Planck operator \(L \).

\[
\frac{dF}{dt} = \frac{\partial F}{\partial t} - \hat{L}[F] = \delta(p - p_0)
\]
\(F(p_1) = 0, F(p_2) = 0. \)

\(P \) is solution of adjoint Fokker-Planck equation.

\[
\hat{L}^*[P] = a(p) \frac{\partial P}{\partial p} + D(p) \frac{\partial^2 P}{\partial p^2} = 0
\]
\(P(p_1) = 0, P(p_2) = 1 \)

\[
\int_{p_1}^{p_2} \hat{L}[F]P\,dp = \left[PU + D \frac{\partial P}{\partial p} F \right]_{p_1}^{p_2} + \int_{p_1}^{p_2} F \hat{L}^*[P]\,dp
\]

\(P(p = p_0) = J \bigg|_{p = p_2} \)

\(P \) characterize the probability for electron to eventually reach boundary \(p=p_2 \).

Runaway Probability Function for $Z=1$

\[
a(p) \frac{dP(p)}{dx} + D(p) \frac{d^2P(p)}{dp^2} = 0 \quad P|_{p_1} = 0 \quad P|_{p_2} = 1
\]

- P gives probability for electron to reach high momentum boundary
- Result of P shows smooth transition near separatrix
 - The test-particle method (relying on truncation of pitch angle scattering) only gives a line of separatrix, equivalent to a Heaviside P function.

\[
\frac{1}{2} \frac{\partial}{\partial \xi} (1 - \xi^2) \frac{\partial f}{\partial \xi} = \frac{\partial}{\partial \xi} (\xi f) + \frac{\partial^2}{\partial \xi^2} \left(\frac{1 - \xi^2}{2} f \right)
\]

Runaway probability function

P at $\theta=0$ near separatrix

$E/E_{CH}=6$
$Z=1$
$\tau_r/\tau=100$
($B=3T$, $n_e=10^{21}m^{-3}$)
Runaway Probability Function for $Z=1$

\[a(p) \frac{dP(p)}{dx} + D(p) \frac{d^2P(p)}{dp^2} = 0 \quad P|_{p_1} = 0 \quad P|_{p_2} = 1 \]

- P gives probability for electron to reach high momentum boundary
- Result of P shows smooth transition near separatrix
 - The test-particle method (relying on truncation of pitch angle scattering) only gives a line of separatrix, equivalent to a Heaviside P function.
- Results agree well with Monte-Carlo Simulation
Runaway Probability Function for $Z=7$

\[
a(p) \frac{dP(p)}{dx} + D(p) \frac{d^2P(p)}{dp^2} = 0 \quad P|_{p_1} = 0 \quad P|_{p_2} = 1
\]

- Separatrix location and width of transition region both increase with pitch angle scattering (Z).
- Transition region is asymmetric at two sides of separatrix.
Use Runaway Probability to Calculate the Avalanche Growth Rate

\[\frac{df}{dt} + E\{f\} + C\{f\} + R_S\{f\} + R_B\{f\} = S\{f\} \]

\[\gamma_A = \int dp \frac{S\{f\} \cdot P}{n_{RE}} \]

- Calculated \(\gamma_A \) agrees well with CODE simulation result.
Use Runaway Probability to Calculate the Avalanche Growth Rate

\[
\frac{df}{dt} + E\{f\} + C\{f\} + R_s\{f\} + R_B\{f\} = S\{f\}
\]

\[
\gamma_A = \frac{\int dp S\{f\} \cdot P}{n_{RE}}
\]

- Calculated \(\gamma_A \) agrees well with CODE simulation result.
- For tokamak disruption, \(P \) can be used to estimate the number of seed RE in thermal quench.
Outline

• Introduction to runaway electron dynamics in momentum space

• Adjoint Method
 • Runaway Probability function
 • Expected Loss time

• Large angle scattering in runaway electron energy loss.

• Summary
Adjjoint Method II: Expected Loss Time (ELT)

T is solution of nonhomogeneous adjoint Fokker-Planck equation.

\[\hat{L}^*[T] = a(p) \frac{\partial T}{\partial p} + D(p) \frac{\partial^2 T}{\partial p^2} = -1 \]

$T(p_1) = 0, T(p_2) = 0$

Adjoint Method II: Expected Loss Time (ELT)

F is the Green’s function of the Fokker-Planck operator L.

$$\frac{dF}{dt} = \frac{\partial F}{\partial t} - \hat{L}[F] = \delta(p - p_0)$$

$F(p1) = 0, F(p2) = 0.$

Adjoint Method II: Expected Loss Time (ELT)

F is the Green’s function of the Fokker-Planck operator L.

$$\frac{dF}{dt} = \frac{\partial F}{\partial t} - \hat{L}[F] = \delta(p - p_0)$$

$F(p1) = 0, F(p2) = 0.$

$S = \delta(p - p_0)$

Adjoint Method II: Expected Loss Time (ELT)

F is the Green’s function of the Fokker-Planck operator L.

$$
\frac{dF}{dt} = \frac{\partial F}{\partial t} - \hat{L}[F] = \delta(p - p_0)
$$

$F(p_1) = 0, F(p_2) = 0$.

T is solution of nonhomogeneous adjoint Fokker-Planck equation.

$$
\hat{L}^\dagger[T] = a(p) \frac{\partial T}{\partial p} + D(p) \frac{\partial^2 T}{\partial p^2} = -1
$$

$T(p_1) = 0, T(p_2) = 0$

$$
\int_{p_1}^{p_2} \hat{L}[F]T \, dp = \left[TU + D \frac{\partial T}{\partial p} F \right]_{p_1}^{p_2} + \int_{p_1}^{p_2} F\hat{L}^\dagger[T] \, dp
$$

T characterize the expected loss time, which is the expected time for an electron to reach the boundary.

Expected Loss Time for Runaway Electron Decay

\[a(p) \frac{dT(p)}{dp} + D(p) \frac{d^2T(p)}{dp^2} = -1 \quad T\bigg|_{p_1,p_2} = 0 \]

- \(1/T = 1/T_S + 1/T_R \), \(T_S \) (slowing-down time) and \(T_R \) (runaway time) are expected time to reach low/high energy boundary.
- For \(E<E_0 \), all electrons will end up in low energy boundary. \(T_S \) represents the timescale for runaway electron energy decay.
Expected Loss Time for Runaway Electron Decay

\[a(p) \frac{dT(p)}{dp} + D(p) \frac{d^2T(p)}{dp^2} = -1 \quad T \bigg|_{p_1,p_2} = 0 \]

- \(1/T = 1/T_S + 1/T_R\), \(T_S\) (slowing-down time) and \(T_R\) (runaway time) are expected time to reach low/high energy boundary.
- For \(E < E_0\), all electrons will end up in low energy boundary. \(T_S\) represents the timescale for runaway electron energy decay.
- In the marginal case (\(E\) is close to \(E_0\)), \(T\) has a big jump near the separatrix.
 - \(E\) field force can form a potential barrier near the separatrix that hinder particle losing energy.

\[E = 1.5E_{CH} \quad Z=1 \]
Expected Loss Time for Runaway Electron Decay

- \(1/T = 1/T_S + 1/T_R\), \(T_S\) and \(T_R\) (the subscript represents the timescale for runaway electron energy decay).

- For \(E < E_0\), all electrons will end up in low energy boundary. \(T_S\) represents the timescale for runaway electron energy decay.

- In the marginal case (\(E\) is close to \(E_0\)), \(T\) has a big jump near the separatrix.
 - \(E\) field force can form a potential barrier near the separatrix that hinder particle losing energy.

\[
\int \left(\frac{1}{T} \right) \, dp = -1, \quad p_1 = 0, \quad p_2 = 1.5E_{CH}Z = 1
\]
Expected Loss Time including Secondary RE Generation

\[\frac{dF}{dt} = \frac{\partial F}{\partial t} - \hat{L}[f] = \delta(p - p_0) + S\{F\} \]

\[S\{F\} = \int dq \sigma(p,q)F(q) \]

\[\hat{L}^*[T] = -1 + \int dq \sigma(q,p)T(q) \]
Expected Loss Time including Secondary RE Generation

\[\frac{dF}{dt} = \frac{\partial F}{\partial t} - \hat{L}[f] = \delta(p - p_0) + S\{F\} \]

\[S\{F\} = \int dq \sigma(p, q) F(q) \]

\[\hat{L}^*[T] = -1 + \int dq \sigma(q, p) T(q) \]

- \(T \to \infty \) when RE growth rate (with avalanche) is positive.

Expected loss time for \(\tau / \tau = 2 \) \text{ and } \text{Z} = 1
Expected Loss Time including Secondary RE Generation

\[
\frac{dF}{dt} = \frac{\partial F}{\partial t} - \hat{\mathcal{L}}[f] = \delta(p - p_0) + S\{F\}
\]

\[
S\{F\} = \int dq \sigma(p, q) F(q)
\]

\[
\hat{\mathcal{L}}^+[T] = -1 + \int dq \sigma(q, p) T(q)
\]

- \(T \to \infty \) when RE growth rate (with avalanche) is positive.

Expected loss time for \(\tau_r/\tau = 2 \) \(Z=1 \)

Critical electric field for avalanche

Outline

• Introduction to runaway electron dynamics in momentum space

• Adjoint Method
 • Runaway Probability function
 • Expected Loss time

• Large angle scattering in runaway electron energy loss.

• Summary
Large Angle Scattering in Nonhomogeneous Momentum Space

- Like runaway electron avalanche where electrons gain a large amount of energy through large angle scattering (LAS), electrons can also lose a large fraction of energy through LAS.
Large Angle Scattering in Nonhomogeneous Momentum Space

- Like runaway electron avalanche where electrons gain a large amount of energy through large angle scattering (LAS), electrons can also lose a large fraction of energy through LAS.
- For collisional energy loss, the contribution of LAS is $1/\ln \Lambda$ of the accumulation of small angle scattering.

\[
\frac{\partial f}{\partial t} = -\frac{\partial}{\partial p}\left[\frac{\langle \Delta p \rangle}{\Delta t}\right]_c f + \frac{\partial^2}{\partial p^2}\left[\frac{\langle \Delta p \Delta p \rangle}{\Delta t}\right]_c f + C_L[f]
\]

No electric field

\[
\begin{align*}
1 & \quad 1/\ln \Lambda + v_{th}^2 / v_{test}^2 & \quad 1/\ln \Lambda
\end{align*}
\]

Large angle scattering
Large Angle Scattering in Nonhomogeneous Momentum Space

- Like runaway electron avalanche where electrons gain a large amount of energy through large angle scattering (LAS), electrons can also lose a large fraction of energy through LAS.
- For collisional energy loss, the contribution of LAS is $1/\ln \Lambda$ of the accumulation of small angle scattering.
- In nonhomogeneous momentum space, E field balances collisional drag near the separatrix, thus LAS can be more important.

$$\frac{\partial f}{\partial t} = -\frac{\partial}{\partial p} \left[\left\langle \frac{\Delta p}{\Delta t} \right\rangle_c f \right] + \frac{\partial^2}{\partial p^2} \left[\left\langle \frac{\Delta p \Delta p}{\Delta t} \right\rangle_c f \right] + C_L[f]$$

E field balance collisional drag

$$\frac{\partial f}{\partial t} = -\frac{\partial}{\partial p} \left[eE + \left\langle \frac{\Delta p}{\Delta t} \right\rangle_c f \right] + \frac{\partial^2}{\partial p^2} \left[\left\langle \frac{\Delta p \Delta p}{\Delta t} \right\rangle_c f \right] + C_L[f]$$

No electric field

1 $1/\ln \Lambda + v_{th}^2/v_{test}^2$ $1/\ln \Lambda$ Large angle scattering
Expected Loss Time in Nonhomogeneous Momentum Space

- Large angle collision is important for electron energy loss when E is close to E_0 (marginal case).

![Graph showing Expected Loss Time in Nonhomogeneous Momentum Space](image)
Expected Loss Time in Nonhomogeneous Momentum Space

- Large angle collision is important for electron energy loss when E is close to E_0 (marginal case).

- Results of expected loss time shows that large angle collisions help electrons overpass the potential barrier, therefore significantly reduce the jump of T at marginal case.
Large angle collision is important for electron energy loss when E is close to E_0 (marginal case).

Results of expected loss time shows that large angle collisions help electrons overpass the potential barrier, therefore significantly reduce the jump of T at marginal case.
Outline

- Introduction to runaway electron dynamics in momentum space
- Adjoint Method
 - Runaway Probability function
 - Expected Loss time
- Large angle scattering in runaway electron energy loss.
- Summary
Summary

• Adjoint method gives a new angle to study the nonhomogeneous momentum space of runaway electrons.

• Both runaway probability (P) and expected loss time (T) are derived from the adjoint method.

• For marginal case (E close to E_0), large angle scattering (LAS) plays an important role in energy decaying of existing RE population.

• The adjoint method can also be applied to other dynamical systems.
Thanks!