Update on Beam-Plasma Interaction Research at Princeton Plasma Physics Laboratory*

Igor D. Kaganovich

presented by

Erik P. Gilson

Princeton Plasma Physics Laboratory

July 19th, 2016

21st International Symposium on Heavy Ion Fusion
Astana, Kazakhstan

*This work is supported by the U.S. Department of Energy.
Outline

- Study of effects of two-stream instability on ion beam propagation in background plasma.
- Electron beam generated by ion-electron two stream instability
- Dynamics of Space-Charge Neutralization of High-Perveance Ion Beams

Much of this work is by: Ed Startsev, Erinc Tokluoglu, Ken Hara, Anton Stepanov
NDCX-II for Neutralized Drift Compression

- Li\(^+\) ion injector
- ATA induction cells with pulsed 2.5 T solenoids
- Custom long-pulse voltage sources
- Water-filled ATA Blumlein voltage sources
- Oil-filled ATA transmission lines
- Final focus solenoid and target chamber
- Neutronized drift compression line with PPPL plasma sources
Theory of Neutralization by Dense Plasma

Practical consideration: what plasma sources are needed for 100,000 times simultaneous neutralized drift compression?

Developed analytical theory of degree of charge and current neutralization for dense and tenuous plasma, including effects of magnetic field.

\[ j \rightarrow V_b \frac{\partial}{\partial t} \int B ds = E_z \quad eE_r = \frac{1}{c} V_{ez} B_\theta = -mV_{ez} \frac{\partial V_{ez}}{\partial r} \]

Alternating magnetic flux generates inductive electric field, which accelerates electrons along the beam propagation direction.

\[ \phi = \frac{mV_{ez}^2}{2e} \quad V_{ez} \sim B_n n_b / n_p \quad \phi_v = \frac{mV_b^2}{2} \left( \frac{n_b}{n_p} \right)^2 \quad mV_{ez} = eA_z / c = e \int_{0}^{r} B dr / c \]
Two-stream instability may significantly affect beam propagation in background plasma

Plasma waves lead to bunching of the ion beam and accelerate plasma electrons to beam velocity

Longitudinal beam density profile at t = 12 ns (a) and t = 18 ns (b) and color plots of beam density at t = 18 ns (c) and t = 40 ns (d). E. Startsev et al, EPJ Web of Conferences 59, 09003 (2013)
Enhanced return current density reverses the azimuthal magnetic field

Self magnetic field of the ion beam propagating in plasma

Top: without two-stream instability $B \sim 10\text{G}$

Bottom with two-stream instability $B \sim -100\text{G}$

Two Mechanisms of Instability Saturation

Instability saturates by wave-particle trapping of beam ions or plasma electrons depending on parameter $\left( \frac{n_b}{n_p} \right)^{2/3} \left( \frac{m_b}{m_e} \right)^{1/3}$

E. Startsev et al, NIMA (2014)

Phase-Space of beam ions and plasma electrons $V_z$ vs z. Proton beam $n_b = 2 \times 10^{10} / cm^3$ and $v_b = c/2$. Left: $n_p = 2.4 \times 10^{12} / cm^3$ - ion trapping regime, Right: $n_p = 1.6 \times 10^{11} / cm^3$ - electron trapping regime. E. Tokluoglu and I. Kaganovich, Phys. Plasmas 22, 040701 (2015)
Two-Stream Instability Yields Beam Defocusing

- In the presence of two-stream instability, the ponderomotive pressure from the axial $E_z$ field of plasma waves creates an average transverse defocusing force:

$$ F_x = -eE_x = \frac{-e^2 \nabla_x |E_z|^2}{4m_e \omega_k} = -\frac{1}{4} m_e \nabla_x (v_m^e)^2 $$

- The averaged non-linear current $< \delta n_e \delta v_m^e >$ originates from the plasma waves and overcompensate the beam current. The total current becomes reversed:

$$ J_{tot} \sim J^b_z + J^e_z = \frac{J^b_z}{(1 + r_b^2 \omega_p^2/c^2)} \left( 1 - \frac{1}{2} \frac{n_p}{n_b} \left( \frac{v_m^e}{v_b} \right)^2 \right) $$

- Consequently the self- magnetic $B_y$ becomes reversed and magnetic force becomes defocusing:

$$ B_y = \frac{2\pi n_p r_b \beta_b}{(1 + r_b^2 \omega_p^2/c^2)} \left( 1 - \frac{1}{2} \frac{n_p}{n_b} \left( \frac{v_m^e}{v_b} \right)^2 \right) $$

E. A. Startsev, et al, NIMA 733, 80 (2014)
Transverse Defocusing of the Beam due to Two-Stream Instability

Fig. Beamlet Density Contour at $t = 100$ ns (1 m of propagation), Bottom: Beam Density Contour at $t = 300$ ns (3 m of propagation). NDCX-II beam parameters for apertured beam $r_b = 1$ mm.

Electron Beam Generation Simulations

- **Stationary ions (Vlasov):** Li$^+$, $n_i = 5.5 \times 10^{16}$ m$^{-3}$; 0.3 eV.
- **Stationary electrons (Vlasov):** 0.4 eV. Nonrelativistic.
  - Quasineutrality.
  - Current neutralization.
- **Ion beam (PIC):** Li$^+$ = 7 amu; $v_b = 10^7$ m/s ($= c/30$) where $c =$ speed of light; $n_{i,\text{beam}} = 2 \times 10^{15}$ m$^{-3}$; 0 eV.

- **Electrostatic.**
  - Potential = 0 V
  - Electric field = 0 V/m at far end in front of beam.
Numerical Tools

• 1D1V Vlasov simulation:
  – Semi-Lagrangian technique = Strang time splitting,
  – Finite volume method with RK4-WENO5 (v).

• Length of domain = 10 m & # of cells: 20000.

• Velocity domain
  – $v=[-4e7, 6e7]$ & # of velocity bins = 1000 for electrons,
  – $v=[-5e4, 5e4]$ & # of velocity bins = 600 for ions,
  – 200,000 particles for ion beam.
Ion Two-Stream Instability & Electron Acceleration

180 ns

190 ns

200 ns
Evolution

• During linear growth (t<200ns)
  – Plasma wave slightly slower (about \(-10^5 \text{ m/s}\)) than beam velocity
  – Predicted by theory

• Once electrons propagate (t>200ns), plasma wave propagates ahead of the ion beam.

• Can observe stationary plasma wave at beam center (t>240ns)
Periodic vs. Non-periodic BGK

(a) Potential

(b) Potential

(c) Velocity
Trapped
Passing
Separatrix

(d) Velocity
Untrapped (accelerated)
$s_0$, $s_1$
Barium Titanate Plasma Sources Create for NDCX-II

Plasma source is made from barium titanate ceramic and is driven with thyratron-switched 150 nF capacitors with voltage and current pulse: 10 µs, 9 kV, 500 A.

The source produces plasma ~ $10^{10}$ cm$^{-3}$ density, $T_e$ ~ 3 eV. The plasma density is greater than the local beam density, and the temperature is low, as needed for effective charge neutralization.

Modular design allows plasma length and axial density profile to be changed, and for repairs to be made quickly.
Fast photography of FEPS discharge

8 shot average
1 μs exposure

Surface plasma formation
Research Overview

- Built an ion accelerator at PPPL to study space charge neutralization.
  - Based on STS-100 components from LBNL
  - 38 kV, 0.7 mA Ar\(^+\) beam

- 2 methods of neutralization were studied:
  - Autoneutralization at different background pressures
  - Neutralization by FEPS plasma

- Neutralization by FEPS plasma
  - Degree of attainable charge neutralization
  - Duration of neutralization
  - Presence of neutrals in the beamline
Princeton Advanced Test Stand

*formerly known as STS-

Multicusp RF plasma source

RF power supply

vacuum chamber

Capacitor bank / pulser

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accel. potential</td>
<td>38 kV</td>
</tr>
<tr>
<td>Beam current</td>
<td>0.7 mA</td>
</tr>
<tr>
<td>Perveance</td>
<td>3.9x10^{-4}</td>
</tr>
<tr>
<td>Transverse ES potential</td>
<td>15 V</td>
</tr>
<tr>
<td>Beam velocity</td>
<td>40 cm/μs</td>
</tr>
</tbody>
</table>
Overview of the Experiment

- Ion beam propagates from the source to a diagnostic
- Beam strikes a collimated Faraday cup 40 cm downstream from the source
- Time-evolution of transverse profiles can be measured
Varying beam velocity at constant beam current.

Flat-top current density profiles are consistent with space-charge expansion of an axisymmetric, uniform beam. Emittance is negligible.
Experimental results: autoneutralization

- Expected to observe electron accumulation on the timescale of 10s of \( \mu s \)
  \[\rightarrow\] Initially, no neutralization was observed at all, even at higher gas pressures

- The problem was not insufficient electron production, but poor electron confinement
  - Electron loss occurred due to fringe electric fields from the plasma electrode penetrating in the beam propagation region.

Electron removal also happened when the FEPS was installed in the path of the beam.
Electron loss

Autoneutralization with shielding mesh

Beam radius vs. time

Rate of electron accumulation increases with pressure

Transverse profiles before/after neutralization

1. unneutralized beam has a uniform current density profile: \( j(r) = \text{const}, \ R_B = 17.5 \text{ mm} \)

\[
I(x) = \int j(x,y)dy = \frac{2I_B}{\pi R_B} \sqrt{1 - x^2/R_B^2}
\]

neutralization (6.5 kV)

1. Beam is narrower with FEPS than with gas neutralization

The degree of charge neutralization is 98%

- Envelope equation can be used to estimate $Q_{\text{eff}}$
  \[
  \frac{d^2 R}{dz^2} = \frac{f_e Q}{R} + \frac{e^2_\perp}{R^3}
  \]

- requires $R_0$, $R_0''$, and the radius of the beam at the diagnostic ($R_B$)

- Initial divergence angle can be found from the unneutralized profile.

- $Q_{\text{eff}}$ with FEPS neutralization can now be estimated

- Transverse ES potential is reduced from 15 V to 0.3 V → **electrons trapped in the beam have** $T_e < 0.3$ eV

\[
\begin{align*}
Q &= 4 \times 10^{-4} \\
R_0 &= 1.5 \text{ mm} \\
R_B &= 17.5 \text{ mm}
\end{align*}
\]

\[
\begin{align*}
R_0'' &= 1.2^0 \\
R_0 &= 1.5 \text{ mm} \\
R_B &= 10 \text{ mm}
\end{align*}
\]

\[
\begin{align*}
Q_{\text{eff}} &= 0.02 Q_0
\end{align*}
\]

i.e. 98% charge neutralization
Beam radius vs time

FEPS driving voltage: 5.5 kV and 6.5 kV

<table>
<thead>
<tr>
<th>Time to optimal neutralization</th>
<th>5 μs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of neutralization</td>
<td>7 μs (5.5 kV)</td>
</tr>
</tbody>
</table>

Cold electron accumulation mechanism

- Measured residual beam divergence is sufficiently low to conclude that the beam is neutralized by “cold” electrons with $E_{\text{kin}} < 0.3$ eV.

- FEPS plasma $T_e$ is likely much higher (>1 eV). How can electrons in the beam be much colder than the source plasma? → selective trapping of the coldest electrons from the plasma in the beam.
Conclusions

• The two-stream instability may cause a significant enhancement of the plasma return current and defocusing of the ion beam during propagation in plasma.

• The two-stream instability of an intense ion beam propagating in plasma may result in generation of a secondary electron beam accelerated ahead of ion beam pulse.

• Near-complete (98%) charge neutralization of a high-pervenance, low energy ion beam by FEPS plasma has been demonstrated.

• Near-complete neutralization can last for >35 μs