Gyrokinetic simulation of a fast L-H like bifurcation dynamics in a realistic diverted tokamak edge geometry

S. Ku, C.S. Chang, G.R. Tynan,
R. Hager, R.M. Churchill, I. Cziegler,
M. Greenwald, A. Hubbard, J. Hughes,

1Princeton Plasma Physics Laboratory
2UC San Diego. 3PSFC, MIT,
†Present Address: Univ. York, UK

SciDAC-3 Center for Edge Physics Simulation

*Funding provided by DOE FES/ASCR. Computer resources provided by OLCF
Different experimental observations in L-H transition

Two different types of experimental observations for the role of the sheared-ExB flow (V_{ExB}') in edge-turbulence bifurcation:

1. Turbulence generated zonal V_{ExB}': *Reynolds stress*
 - Yan et al., IAEA16 & PRL14; Schmitz, IAEA16; Tynan, NF13; Istvan PPCF 14, and others

2. Neoclassically generated V_{ExB}': *X-point orbit-loss* [Chang et al, PoP02]
 - Kobayashi et al., PRL13, and others (X-point orbit-loss)
 - Cavedon, NF17 (Neoclassical)
 - NSTX finds that P_{L-H} is strongly correlated with orbit-loss V_{ExB}' [Kaye, NF11; Battaglia, NF13]
1. Turbulent zonal V'_{ExB} & L-H bifurcation in experiment

- $F_{\theta,\text{Reynolds}} = -d<\delta V_r \delta V_\theta>/dr$
- Became basis for the predator-prey model [Kim-Diamond, PRL03, and others]
- When the turbulent Reynolds energy extraction ($\int dt F_{\theta,\text{Reynolds}}$) exceeds the turbulent kinetic energy, turbulence quenching can occur.

Unanswered questions if Reynolds stress is solely responsible for L-H
- Right after the turbulence quenching, what is supporting the strong V'_{ExB}?
 - Several experiments report that a strong ∇p (and its effect on V'_{ExB}) develops only well after a fast bifurcation event [Moyer et al., PoP1995; and others]
- What breaks the symmetry in the F_{Reynolds}, thus the V'_{ExB}, direction?
- Why some machines do not see much Reynolds work?

[Source: Moyer et al., PoP1995]
2. Neoclassically generated V'_{ExB} & L-H bifurcation in experiment, w/o seeing much Reynolds work

- V'_{ExB} is driven by ∇p? [Cavedon et al., NF2017, ASDEX-U]
- Orbit-loss-driven V'_{ExB} [Kobayashi et al., PRL2013, and others]
- NSTX found P_{L-H} is strongly correlated with orbit-loss V'_{ExB} [Kaye, NF2011; Battaglia, NF2013]

Co-coded flow not seen as bifurcation driver [Kobayashi, NF 2017]

- Could it be possible that the Reynolds stress and orbit loss mechanism work together, with one stronger than the other depending upon the plasma/geometry condition?
- Could the combined Reynolds and X-loss physics provide the missing puzzle pieces in L-H transition physics?
Experimental observations of L-H bifurcation time scale, GAM, and LCO

- When the heating power is close to P_{LH}, the bifurcation is observed to be slow with many limit cycle oscillations (I-phase) [Schmitz et al. PRL12 and others]
- When the heating power is $> P_{LH}$, the bifurcation is (forced to be) fast (< 0.1 ms) with an abbreviated I-phase [Yan PRL14, and others]

GAM and Limit cycle oscillation observed as L-mode approaches L-H bifurcation [Conway et al., PRL11]

LCO-type GAMs can be part of the bifurcation physics.
[Conway, PRL 2011]
Why has a gyrokinetic L-H study not been done previously?

Difficulty

- Multiscale in space and time
 - Turbulence
 - Neoclassical with ion orbit loss
 - Neutral particles with ionization and charge exchange
- Magnetic separatrix \((q=\infty)\), which interfaces two different magnetic topologies
- Nonlocal physics
 Radial turbulence correlation width ~ plasma gradient scale length ~ ExB shearing width ~ neutral penetration length
- Large amplitude nonlinear turbulence: \(\delta n/n > 10\%
- Non-Maxwellian plasma
 - Requires fully nonlinear and conserving Collisions

→ Total-f simulation with ~100X more number of marker particles than delta-f simulation in the complex edge geometry: XGC.
→ We thought it would require >100PF computer, non-existent in US yet.
Previously, compute resources discouraged us from studying the L-H transition physics

If we were to establish a global transport-equilibrium in an L-mode plasma, move toward the bifurcation by quasistatically increasing \(P_{\text{heat}} \), go through the bifurcation, and build up pedestal, we would not have enough compute resources to study the transition.

\[\rightarrow \text{Requires } >10X \text{ faster computer than Titan at ORNL.} \]

A new strategy to make the transition physics study possible on Titan:

- Bifurcation may not be a global transport-equilibrium phenomenon
 - But a localized phenomenon at edge
 - May not need to wait until the global non-transport-equilibrium GAMs die out

- Study only the edge bifurcation itself, as soon as the L-mode edge turbulence is established.
 - Force the bifurcation by having \(P_{\text{edge}} >> P_{\text{LH}} \)
 - Experimentally, a forced L-H bifurcation action could be completed in \(<0.1ms \) (Yan-McKee, PRL2014, and others).
 - Take advantage of the fast establishment of edge physics

- Low beta electrostatic simulation
In the core plasma, f evolves slowly

For this argument, let’s use the drift kinetic equation
\[
\frac{\partial f}{\partial t} + (v_{\parallel} + v_d) \cdot \nabla f + \frac{(e/m)E_{\parallel}}{v_{\parallel}} \partial f/\partial w = C(f,f) + \text{Sources/Sinks}
\]
where w is the particle kinetic energy.

In a near-thermal equilibrium, we take the “transport ordering” (= diffusive ordering):
\[
\frac{\partial f}{\partial t} = O(\delta^2), S = O(\delta^2), \text{ with } \delta << 1
\]

- Let $f = f_0 + \delta f$, with $\delta f / f_o = O(\delta), \delta << 1, v_d / v_{\parallel} = O(\delta), E_{\parallel} / m = O(\delta \text{ or } \delta^2)$

$O(\delta^0)$: $v_{\parallel} \cdot \nabla f_0 = C(f_0, f_0) \Rightarrow f_0 = f_M$: H-theorem

$O(\delta^1)$: $\partial \delta f / \partial t + v_{\parallel} \cdot \nabla \delta f + v_d \cdot \nabla f_0 + \frac{(e/m)E_{\parallel}}{v_{\parallel}} \partial f_0 / \partial w = C(\delta f)$

- Perturbative kinetic theories then yield transport coefficients = $O(\delta^2)$
- In this case, fluid transport equations ($f_o \rightarrow n, T$) can be used with the kinetically evaluated or ad hoc closures

\rightarrow GK simulation is cheaper per physics time, but δf equilibrates on a slow time scale $O(\delta^1 \omega_{bi}) \sim ms$. And, a meaningful time evolution of f_0 in V_T frame can only be obtained in a long “transport-time” scale $O(\delta^2 \omega_{bi})$. V_T evolves on an even slower time scale.
In edge plasma, \(f \) evolves fast

- Ion radial orbit excursion width \(\sim \) pedestal width & scrape-off layer width
- Orbit loss from \(\psi_N < 1 \) and parallel particle loss to divertor

All terms can be large: \(\sim \) either \(O(\omega_{bi}) \) or \(O(\nu_C) \)

- \(\mathbf{v}_\parallel \cdot \nabla f \sim \mathbf{v}_d \cdot \nabla f \sim C(f,f) \sim eE_\parallel \mathbf{v}_\parallel /m \partial f / \partial w \sim O(\omega_{bi}) \sim 0.05 \text{ ms in DIII-D} \)
- \(f \) equilibrates very fast: \(\partial f / \partial t + (\mathbf{v}_\parallel + \mathbf{v}_d) \cdot \nabla f (e/m) + E_\parallel \mathbf{v}_\parallel \partial f / \partial w = C(f,f) + S \)
- If \(S_{\text{neutral}} \) is small, it does not affect the fundamental structure of \(f \).

Fast-evolving nonthermal kinetic system: expensive per physics time \(\rightarrow \) extreme scale computing. However, a short time simulation (~0.1X) can yield meaningful physics.

The edge turbulence around the separatrix saturated before the central core turbulence even started to form
XGC gyrokinetic codes (V&V summary at epsi.pppl.gov)

XGC1: X-point Gyrokinetic Code 1
- Gyrokinetic ions and electrons
- Lagrangian PIC + Eulerian 5D grid
- Heat and momentum source in core
- Monte Carlo neutrals with wall recycling
- Fully nonlinear Fokker-Planck Coulomb collision operation
- Logical wall-sheath
- Unstructured triangular mesh
- EM with fully implicit drift-kinetic electrons (partially verified).

XGC1-hybrid: GK ions + fluid electrons
- Implicit fluid electrons (Hager PoP17)

XGCa: Axisymmetric gyrokinetic version of XGC1

XGC0: Axisymmetric and flux surface averaged drift-kinetic version

> Full-f + Neutral particles + Unstructured triangular grid
> **Expensive to simulate**
> **Requires extreme scale HPCs**
For the present L-H bifurcation study, we have performed a low-beta electrostatic edge simulation using XGC1.

Plasma input condition
- C-Mod #1140613017 in L-mode, single-null
- $\beta_e \approx 0.01\% < m_e/m_i$ in the bifurcation layer
- ∇B-drift direction has been flipped to be into the divertor

Include the most important multiscale physics
- Neoclassical kinetic physics
- Nonlinear electrostatic turbulence
 - ITG, TEM, Resistive ballooning, Kelvin-Helmholtz, other drift waves
- Neutral particle recycling with CX and ionization
- Realistic diverted geometry

Electromagnetic correction to the present result is left for a future work.
Use a L-mode plasma from C-Mod (beta~0.01%)

Edge temperature increases from heat accumulation

In a developed H-mode pedestal, $dV_E/dr > 0$ at $\Psi_N \sim 0.97$. Any bifurcation mechanism needs to lead to this sign.
Overview of the turbulence behavior at bifurcation

1. $t \approx 0.175-0.21\text{ms}$, suppression of lower frequency, higher amplitude turbulence occurs, and higher frequency, lower amplitude turbulence is generated (shades of green, eddy tearing by $E\times B$ shearing, to be shown).

2. $t > 0.21\text{ms}$, suppression of the lower amplitude turbulence follows.

![Frequency-time spectrum with color scale indicating turbulence amplitude](image-url)
Time-radius behavior of the sheared ExB flow V_E^\prime

1. $t=0.12\text{ms}$, V_E^\prime settles down in $\Psi_N \sim 0.97-98$
2. $t<0.17\text{ms}$, positive part of V_E^\prime does not penetrate into the edge layer ($\rho>0$)

Gyrokinetic Poisson Eq. $(\rho_e^2/\lambda_D^2)\epsilon_0 B \ V_E^\prime \simeq e(n_e - n_{i,gc})$

1. $t\sim0.175\text{ms}$, something pushes the V_E^\prime to be >0 in the edge layer ($\rho<0$)
2. $t > 0.2\text{ms}$, something then locks the sheared ExB flow into the mean ExB shearing in the bifurcation layer.

Transition layer is at $0.96<\Psi_N<0.98$, agreeing with C-Mod
[Cziegler PPCF2014] and other devices.

[Titan, ALCC 2016]
Detailed local analysis at $\Psi_N=0.975$:

Important physics quantity is the ExB shearing rate, V_E', not V_E. The bifurcation criterion is identified to be $V_E' > 300$ kHz (Maximum growth rate of dissipative TEMs [Romanelli PoP 2007]).

$(0.96<\Psi_N<0.98$, per Cziegler PPCF 2014)
Transport fluxes and Reynolds force

• Edge transport fluxes are non-local and follow the GAM behavior, with suppression at the “critical” time.

• The Reynolds force from turbulence $F_{\theta,\text{Reynolds}} = -d<\delta V_r \delta V_\theta>/dr$ fluctuates in both directions, and exhibits shearing

• However, the Reynolds force is a non-player after the bifurcation.

• Questions:
 - What is keeping the turbulence suppressed after the bifurcation?
 - Why is the negative Reynolds force not effective
 - What is pushing V'_{ExB} further to positive after 0.175 ms?

• It is reasonable to conjecture that there is another force in the positive V_E' direction
The orbit loss physics provides answers to all three questions. [Chang, PoP 2002]
Why does the turbulence get cut-off around 0.18ms? What triggers the bifurcation action?

The normalized, turbulence Reynolds consumption rate
\[P = \frac{<\tilde{v}_r \tilde{v}_\theta> V_E}{(\gamma_{\text{eff}} \tilde{v}_\perp^2/2)} \] becomes >1 in the beginning of the bifurcation action (I-phase), but becomes <1 after that \[\rightarrow \] Zonal flows cannot be responsible for keeping the turbulence suppressed.

[Yan PRL 2014] reported a very similar behavior in the Reynolds consumption rate.

Relevance of the turbulence consumption rate? Eddie-tearing by ExB shearing could also be responsible for this cut-off.
Summary and Discussions

• The total-f XGC family codes have been making important scientific discoveries on leadership class computers, which could not have been possible otherwise.

• A forced, fast L-H like bifurcation dynamics has been revealed, with transport suppression in both the heat and particle channels.

• The turbulent Reynolds stress and the neoclassical X-loss physics work together in achieving the L-H bifurcation.
 - When combined together, the puzzle pieces appear to come together.
 - How will the geometry and plasma condition change their combination? → Neoclassical NSTX could be a good test bed.
 - How will this affect P_{L-H} in ITER where the $E_{r,NEO}$ could be relatively weak?

• Isotope effects may be studied in the near future.

• EM correction to the present electrostatic result will be studied in the future.

• We will study the I-mode bifurcation in the near future.