Plasmoid instability as a tearing instability in time-evolving current sheets

Luca Comisso
Collaborators: M. Lingam, Y.-M. Huang, A. Bhattacharjee

Department of Astrophysical Sciences, Princeton University
and
Princeton Plasma Physics Laboratory

Research & Review Seminar - June 23, 2017
Outline

- **Background**
 - Motivations to work on this topic
 - Some models of magnetic reconnection
 - Effects of plasmoid formation

- **Plasmoid Instability in Sweet-Parker Current Sheets**
 - Scalings assuming Sweet-Parker
 - Problems with this approach

- **A More Complete Theory of the Plasmoid Instability**
 - Principle of least time for plasmoids
 - Scaling laws

- **Concluding Remarks**

- **Supplement: effects of plasma viscosity**
Why are we interested in magnetic reconnection?

Magnetic reconnection is thought to play a key role in many phenomena in laboratory, space and astrophysical plasmas.

- Solar flares and CMEs
- Magnetospheric substorms

Multiwavelength image of the Sun taken by Solar Dynamics Observatory

Aurora Australis recorded from the International Space Station
Why are we interested in magnetic reconnection?

Sawtooth crashes

Interior of a tokamak device with a hot plasma

Gamma-ray flares

X-ray image of the Crab Nebula taken by Chandra X-ray Observatory

Many other systems where magnetic reconnection is important!
The Sweet-Parker model assumes a resistive current sheet, 2-D, $\partial/\partial t \approx 0$ and $\nabla \cdot \mathbf{v} \approx 0$.

It gives some important quantities as a function of the Lundquist number $S := L v_A / \eta$:

$$a \approx L / \sqrt{S}, \quad v_{out} \approx v_A, \quad v_{in} \approx v_A / \sqrt{S}. \quad (1)$$

For solar corona parameters $S \sim 10^{14}$, $\tau_A = L / v_A \sim 1$ s

$\Rightarrow \tau_{SP} = L / v_{in} \sim 10^7$ s (solar flares last $10^2 - 10^3$ s)
Other models have been proposed to explain “fast” reconnection.

Petschek model

\[\mathbf{v}_{in} \mathbf{B} \]

\[2aT \]

\[2L^* \]

Collisionless models (many contributions...)

Turbulent models (e.g. LV99)

Drake & Shay, 2007
Sweet-Parker at large S is too slow to be true...

- Sweet-Parker scalings do not hold for $S = L v_A / \eta > S_{critical}$ because of the plasmoid instability!

Bhattacharjee et al., PoP 2009
Huang & Bhattacharjee, PoP 2010
Breakdown of the Sweet-Parker model at large S

- Speed-up of the reconnection process due to plasmoid formation has been shown by many other research groups:
 - Daughton et al., PRL 2009
 - Loureiro et al., PoP 2012
 - Comisso et al., PoP 2015
 - Ebrahimi & Raman, PRL 2015
Other important effects of the plasmoid formation

- Other crucial implications:
 - Particle acceleration
 - Turbulent reconnection
 - Fast flux closure
 -

Ebrahimi & Raman, PRL 2015
An important issue to address

- We have seen that the formation of plasmoids plays a crucial role in magnetic reconnection

BUT

- What is the dynamical picture behind the onset and development of the plasmoid instability?

\[2a \quad B \quad v_{\text{out}} \quad v_{\text{in}} \]

\[2L \]

- We will see why the previous knowledge of the plasmoid instability was unsatisfactory

AND

- We will see what are the properties of this instability.
Assuming a Sweet-Parker aspect ratio...

Problem 3–6: Consider the tearing instability in the Sweet–Parker current sheet. Prove that the growth rate of the tearing instability scales

\[\omega_{SP-tearing,\text{max}} \approx \tau_A^{-1} R_m^{1/4}. \]

229

Here \(\tau_A = L/V_A \) and \(R_m = LV_A/\eta \). \(L \) is the length of the diffusion region (current sheet). (Hint: Note the relation \(R_{m, *} = (a/L)R_m \) and \(a/L = R_m^{-1/2} \) from Sweet–Parker theory.) Note that the growth rate increases with increasing the magnetic Reynolds number. Prove also that

\[\frac{\lambda}{L} = 2\pi R_m^{-3/8}. \]

Thus when \(R_m \approx 10^{14} \), we find \(\omega_{SP-tearing,\text{max}} \tau_A \approx 10^{-3.5} \). If we apply this result to the solar corona \(L \approx 10^4 \text{ km} \) and \(V_A \approx 10000 \text{ km/s} \), then we find \(\tau_{SP-tearing,\text{max}} \approx 3 \times 10^{-4} \text{ sec} \), and \(\lambda \approx 0.5 \text{ km} \). That is, we have many small magnetic islands in the long current sheet.

(Note that the same result has been re-obtained 10 years later by Loureiro *et al.*, PoP 2007)
Let’s do the exercise!

- Tearing mode dispersion relation (Coppi et al., 1976):

\[
\gamma^{5/4} \tau_H^{1/2} \tau_\eta^{3/4} \frac{\Gamma \left[\left(\Lambda^{3/2} - 1 \right) / 4 \right]}{\Gamma \left[\left(\Lambda^{3/2} + 5 \right) / 4 \right]} = -\frac{8}{\pi} \Delta'
\]

\[\Lambda := \gamma \tau_H^{2/3} \tau_\eta^{1/3}, \quad \tau_H = \frac{1}{kv_A}, \quad \tau_\eta = \frac{a^2}{\eta}\]

- For \(\Delta' a \sim 2/ka \) (FKR 1963), the fastest growing mode has

\[k_{\max} a \sim S_a^{-1/4}, \quad \gamma_{\max} \frac{a}{v_A} \sim S_a^{-1/2} \quad (2)\]

- Using \(a \sim LS^{-1/2} \) and \(S_a \sim (a/L)S \), one easily obtain

\[k_{\max} L \sim S^{3/8}, \quad \gamma_{\max} \frac{L}{v_A} \sim S^{1/4} \quad (3)\]
But there is a problem with this result...

The instability growth rate is too fast for large S-values! Sweet-Parker sheets *cannot form* in large S plasmas!
What if we take into account plasma viscosity?

- Introducing the (perpendicular) Prandtl number $P_m = \nu/\eta$:

 \[a \approx \frac{L(1 + P_m)^{1/4}}{\sqrt{S}}, \quad v_{out} \approx \frac{v_A}{\sqrt{1 + P_m}}, \quad v_{in} \approx \frac{v_A}{\sqrt{S}(1 + P_m)^{1/4}}. \]

- Plasma viscosity modifies the previous scalings as (Comisso & Grasso, PoP 2016)

 \[
 \text{growth rate } \Rightarrow \quad \gamma \tau_A \sim S^{1/4}(1 + P_m)^{-5/8} \quad (4)
 \]

 \[
 \text{wavenumber } \Rightarrow \quad kL \sim S^{3/8}(1 + P_m)^{-3/16} \quad (5)
 \]

- γ decreases for increasing P_m, but... for realistic values of $P_m (10^{-4} \div 10^4)$ and $S \gg 1$, γ is still super-Alfvénic!

- The chosen equilibrium current sheet (Sweet-Parker sheet) can not be attained as current layers disrupt earlier!
Since in reality current sheets form over time...

We need to consider a *time-evolving* current sheet

t_1

t_2

t_3

t_4

t_5

\[1\] Different recent theories: Pucci, Velli (2014); Uzdensky, Loureiro (2016)
The plasmoid instability remains quiescent for a certain time, and the fluctuation amplitude starts to grow only when $\gamma_{\text{max}} \tau_A > O(1)$.

Fast reconnection occurs at $t > t_d$.

Huang et al., to be submitted (2017)
Tearing modes become unstable at different times and exhibit different instantaneous growth rates $\gamma(k,t)$.

- Their amplitude changes in time according to
 \[\psi(k,t) = \psi_0(k) \exp \left(\int_{t_0}^{t} \gamma(k, t') dt' \right). \]
 \[(6) \]

- Their evolution becomes nonlinear when
 \[w(k,t) = 2\sqrt{\frac{\psi_B}{B}} > \delta_{in}(k,t) = \left[\eta \gamma a^2 / (kv_A)^2 \right]^{1/4}. \]
 \[(7) \]
Principle of Least Time for the Plasmoid Instability, i.e., the mode of the plasmoid instability that emerges from the linear phase is the one that traverses it in the least time.

To implement this formulation, we introduce the function

\[F(k, t) := \delta_{in}(k, t) - w(k, t). \]

Then, the least time principle is formulated as

\[F(k, t)|_{k^*, t^*} = 0, \quad dt^*/dk^* = 0. \]
From Eqs. (6)-(9) we obtain the least time plasmoid Eqs:

\[\left\{ \left(\gamma \partial_t - \frac{1}{2} \right) \frac{\partial \gamma}{\partial k} + \frac{\gamma}{k} + 2\frac{\gamma}{w_0} \frac{\partial w_0}{\partial k} \right\} \bigg|_{k^*,t^*} = 0 \]

\[\left\{ \ln \left(\frac{\delta_{in}}{w_0} \frac{g^{1/2}}{f^{1/2}} \right) - \frac{1}{2} \int_{t_0}^t \gamma(t') dt' \right\} \bigg|_{k^*,t^*} = 0 \]

with:

\[w_0 = 2\sqrt{\frac{\psi_0 a_0}{B_0}}, \quad \bar{t} = \frac{\partial}{\partial \gamma} \int_{t_0}^t \gamma(t') dt', \quad f = \frac{a(t)}{a_0}, \quad g = \frac{B(t)}{B_0}. \]

From these Eqs. it is possible to arrive at:

- \(\gamma^* \) (final growth rate)
- \(k^* \) (final wavenumber)
- \(\delta_{in}^* \) (final inner layer)
- \(L^*/a^* \) (final aspect ratio)
- \(t^* \) (elapsed time from \(t_0 \))
- \(\tau_p \) (time from \(\hat{\gamma}(k^*, \hat{t}_{on}) > 1/\tau \))
Until now the equations are very general.

Let’s try to be more specific...

- We are interested in the case where:
 \[L \approx \text{const.}, \quad B_0 \approx \text{const.}, \quad a(t) = a_0 f(t). \]

- For the moment, we consider an exponentially thinning current sheet (this will be generalized later) of the form
 \[\hat{a}(\hat{t})^2 = (\hat{a}_0^2 - \hat{a}_\infty^2) e^{-2\hat{t}/\tau} + \hat{a}_\infty^2, \quad \text{with } \hat{a}_\infty = S^{-1/2} \]

- Here and in the following:
 - lengths normalized by the current sheet half-length \(L \)
 - time normalized by the Alfvén time \(\tau_A = L/v_A \)
 - magnetic field normalized by the upstream field \(B_0 \)
With some algebra we can see that there is a \textit{Transitional} \(S_T \)

\[
S_T = \frac{1}{\tau^4} \left[\ln \left(\frac{\tau^{9(2-\alpha)/2}}{2^6 \varepsilon^3 \tilde{\alpha} \tilde{\alpha}} \right) \right]^4
\]

above which the plasmoid instability change behavior!

The slope of \(\hat{k}_* \) substantially \textit{decreases} at large \(S \) !!!!!!!!!!!
The behavior of $\hat{\gamma}_*$ is *non-monotonic* in S !!!!!!!!!!

For $S < S_T$:

$$\hat{\gamma}_* \sim S^{1/4}$$

For $S > S_T$:

$$\hat{\gamma}_* \simeq \frac{c_\gamma}{\tau} \ln \left(\frac{\tau \hat{a}_0^3}{S^2 \hat{w}_0^6} \right)$$

The earlier scaling (black dashed line) is *not applicable* for large-S plasmas.

$\hat{\gamma}_*$ can decrease with S because $\hat{\delta}_{in}$ decreases with S

\Rightarrow less “space” to accelerate the perturbation growth
Need for a New Theory... [Comisso et al. (2016)]

- What about the disruption of the current sheet?

\[
\hat{a}_* \simeq \frac{\tau^{2/3}}{S^{1/3}} \left[\ln \left(\frac{\tau \, \hat{a}_0^3}{S^2 \, \hat{w}_0^6} \right) \right]^{-2/3}, \quad \hat{t}_* \simeq \tau \ln \left\{ \hat{a}_0 \frac{S^{1/3}}{\tau^{2/3}} \left[\ln \left(\frac{\tau \, \hat{a}_0^3}{S^2 \, \hat{w}_0^6} \right) \right]^{2/3} \right\}
\]

- Current sheets disrupt before the Sweet-Parker state can be achieved (as expected!)
The emergent mode effectively starts growing when

\[\hat{\gamma}(\hat{k}_*, \hat{t}_{on}) > \frac{1}{\tau} \]

(Occurs when \(\hat{a} < \hat{k}_* S^{-1/2} \tau^{3/2} \))

This leads to the *intrinsinc* time scale of the instability

\[
\tau_p \simeq \tau \ln \left\{ c_k \left[\ln \left(\frac{\tau \hat{a}_0^3}{S^2 \hat{w}_0^6} \right) \right]^{3/2} \right\}.
\] \hspace{1cm} (13)
To generalize the previous scaling laws, we consider the generalized current thinning function
\[
\hat{a}(t)^2 = (\hat{a}_0^2 - \hat{a}_\infty^2) \left(\frac{\tau}{\tau + 2\hat{t}/\chi} \right)^\chi + \hat{a}_\infty^2, \quad \text{with } \hat{a}_\infty = S^{-1/2}
\]

The final aspect-ratio ($\frac{1}{\hat{a}_*}$) depends on the thinning process!

\[
\hat{a}_* \sim \hat{a}_0^\chi \frac{2\zeta}{\chi} \frac{\tau^\zeta}{S^\zeta} \left[\ln \left(\frac{\tau^{3\zeta}}{S^{6+3\zeta}} \frac{\hat{a}_0^\chi}{2^6 \varepsilon^3} \right) \right]^{-\zeta}
\]

where \(\zeta := \frac{2\chi}{4+3\chi} \)
And finally... also the scaling laws of the plasmoid instability at large S depend on the thinning process!

$$\hat{\gamma}_* \sim S^{(3\zeta-2)/4} \left(\frac{\ln(\theta_R)}{\hat{a}_0^2/\chi \tau} \right)^{3\zeta/2},$$

(14)

$$\hat{k}_* \sim S^{(5\zeta-2)/8} \left(\frac{\ln(\theta_R)}{\hat{a}_0^2/\chi \tau} \right)^{5\zeta/4},$$

(15)

$$\hat{\delta}_{in*} \sim S^{-(3\zeta+2)/8} \left(\frac{\hat{a}_0^2/\chi \tau}{\ln(\theta_R)} \right)^{3\zeta/4},$$

(16)

where

$$\theta_R := \frac{\tau^{3\zeta/2}}{S^{3(2+\zeta)/4}} \frac{\hat{a}_0^{3\zeta/\chi}}{2^6 \varepsilon^3}. $$

(17)
Now we have a theory that can potentially predict the onset of fast magnetic reconnection.

Opportunities to check the theory in the real world...

The “easiest” quantities to check should be \hat{a}_* and \hat{t}_*.

Ebrahimi & Raman, PRL (2015)
Lin et al., SSRv (2015)
The scaling laws of the plasmoid instability are not simple power laws, and depend on:

- The Lundquist number (S)
- The noise of the system (ψ_0)
- The characteristic rate of current sheet evolution ($1/\tau$)
- The thinning process (χ)
- Viscosity (P_m) and kinetic (to be included) effects.

In astrophysical systems, reconnecting current sheets break up before they can reach the Sweet-Parker aspect ratio.

- The scaling laws of the plasmoid instability obtained assuming a Sweet-Parker current sheet are inapplicable to the vast majority of the astrophysical systems.

The plasmoid instability comprises of a relatively long period of quiescence ($\hat{t}_* - \tau_p$) followed by rapid growth over a shorter timescale (τ_p).
Also plasma viscosity could be important in several systems.

- Plasma viscosity allows to extend the validity of the Sweet-Parker based scalings to larger S-values ($S_T \uparrow$).

\[
\hat{\gamma}_* \simeq \frac{\lambda_{\gamma}}{\tau} \ln \left(\frac{\tau P_m^{1/2}}{S^2} \frac{\hat{a}_0^3}{\hat{w}_0^6} \right), \quad \hat{k}_* \simeq \lambda_k \frac{S^{1/6} P_m^{1/3}}{\tau^{5/6}} \left[\ln \left(\frac{\tau P_m^{1/2}}{S^2} \frac{\hat{a}_0^3}{\hat{w}_0^6} \right) \right]^{5/6}
\]
At large S, plasma viscosity allows to reach larger aspect ratios of the reconnecting current sheets.

\[
\hat{a}_* \simeq \frac{\tau^{2/3}}{S^{1/3} P_m^{1/6}} \left[\ln \left(\frac{\tau P_m^{1/2}}{S^2 \hat{a}_0} \hat{w}_0^6 \right) \right]^{-2/3}, \quad \hat{t}_* \simeq \tau \ln \left\{ \frac{S^{1/3} P_m^{1/6}}{\tau^{2/3} \hat{a}_0} \left[\ln \left(\frac{\tau P_m^{1/2}}{S^2 \hat{a}_0} \hat{w}_0^6 \right) \right]^{2/3} \right\}
\]