Control of Secondary Electron Emission Flux through Surface Geometry

Research Review Seminar
February 9, 2018

Charles Swanson
Introduction

- The phenomenon of Secondary Electron Emission (SEE)
- Modeling considerations
- Practical applications
- The phenomenon of SEE suppression by surface geometry
- Candidate geometries
- Tungsten fuzz in tokamak divertors
- Other industrial applications for these surfaces
- The tool: Monte-Carlo simulation
- Our work:
 - Velvet
 - Feathers
 - Fuzz/foam
- Conclusions
- References
The phenomenon of Secondary Electron Emission (SEE)

High-energy electrons collide with electrons in a surface. Some are able to escape.

Secondary Electron Yield (SEY) follows a universal curve, usually tabulated empirically. Shown is that of Scholtz, Philips J. Res. (1996) [1]. Figure from Sydorenko, PhD thesis (2006) [2]

Secondary electrons are emitted with flux weighted in the normal direction, \(P(\Omega) = \cos \theta \)
Bronstein, Vtorichnaya Elektronnaya Emissiya (1969) [3]

Secondary Electron flux is made of “true” secondaries (approximately Maxwellian), “rediffused” secondaries (approximately uniform in energy), and “reflected” secondaries (same energy as primary). Figure from Sydorenko, PhD thesis (2006) [2]
Modeling considerations

SEE is ubiquitous. It occurs whenever plasma touches a surface. Sheath-heated secondary electrons may alter ionization profiles, or secondaries may eliminate sheaths entirely.

Many integrated circuit operations are performed in Capacitively Coupled plasma reactors. Secondary electrons often provide the majority of ionization in such systems, and can account for the majority of power coupled to the plasma [5].

Practical applications
Materials processing, RF cavities, Hall Thrusters, particle accelerators

RF cavities and amplifiers can have their total throughput limited by the Multipactor effect, a condition of secondary electron amplification [6]

In a Hall Thruster, ion current produces thrust while electron current is useless. Electron current is impeded magnetically.

SEE can cause electron current in a Hall Thruster by allowing secondary electrons to migrate down the walls [7]
SEE space charge is known to de-focus particle beams like the Large Hadron Collider. [8] Accelerator communities like the LHC are responsible for some of the research on SEE mitigation [9].
The phenomenon of SEE suppression by surface geometry

Primary electrons are of high energy. They emit many secondaries when they hit a surface.

Secondary electrons are of low energy. They emit few secondaries if they hit a surface.

Figure from Sydorenko, PhD thesis (2006) [2]
Candidate geometries

Schematic representation of triangular and rectangular grooves. Figure from Pivi *et. al.*, J. Appl. Phys. (2008) [9]

Electron micrograph of “dendritic” copper. Figure from Baglin *et. al.*, Proceedings of EPAC 2000, (2000) [10]

Hot tungsten forms fuzz under Helium bombardment. This is expected to occur in ITER’s tungsten divertor.

Recent experiments by Patino, Raitses, and Wirz, Appl. Phys. Lett. (2016) measured the SEY from tungsten fuzz and found >60% reduction compared to flat tungsten [19].

SEY in tokamaks may commonly be near unity, Gunn, Plasma Phys. Control. Fusion (2012) [20]. This will make ITER’s scrape-off layer atypical.

Electron micrographs of tungsten fuzz formed under divertor-like conditions. Wang et. al., Scientific Reports (2017) [18]
Other Industrial Applications for these surfaces

Fibrous and fractal-like surfaces are being developed anyway in industry for a variety of applications

http://www.ultramet.com/

Aerospace companies produce micro-architected materials for improved thermal resistivity or increased emittance. At right is a radiatively-cooled rocket firing.

Many chemical catalysts have fractal shapes. Figure from Ramos et al. Scientific Reports (2017) [21]
The tool: Monte-Carlo simulation

Surfaces implemented as iso-surfaces

Empirical Model at surface:

\[
\gamma(E_p, \theta) = \gamma_{\text{max}}(\theta) \times \exp \left\{ - \frac{\ln \left(\frac{E_p}{E_{\text{max}}(\theta)} \right)}{\sqrt{2} \sigma} \right\}
\]

\[
\gamma_{\text{max}}(\theta) = \gamma_0 \left(1 + \frac{k_s \theta^2}{2\pi} \right)
\]

\[
E_{\text{max}}(\theta) = E_0 \left(1 + \frac{k_s \theta^2}{\pi} \right)
\]

Graphite: \(\gamma_0 = 1.2, E_0 = 325eV, \sigma = 1.6, k_s = 1 \)

\(f_{el}(E_p) = \exp \left\{ 1.59 + 3.75 \ln(E_p) - 1.37[\ln(E_p)]^2 + 0.12[\ln(E_p)]^3 \right\} \)

Adapted from references [1],[12],[13]

Number of particles: \(10^5 \)

Swanson, J. Appl. Phys. (2016) [14]
Our work: Velvet

Velvet: regular or irregular lattice of normally-oriented fibers

Lines: Analytic model.
Points: Monte-Carlo simulations.

Discrepancy is due to tertiary and higher-order electrons.

Velvet is well-suited to suppressing normally incident primary electrons
Our work: Velvet

Analytic model approximation:
Probability of whisker intersection is constant per length traveled perpendicular to whisker axis:

\[P(\Delta z) = e^{-u\Delta z \tan \theta_1 / h} \]

\[u = \frac{\pi}{2} DA = 2rnh \]

\(u \) dimensionless parameter, \(D \) area packing fraction, \(A \) aspect ratio of fibers, \(r \) radius of fibers, \(n \) area density of fibers, \(h \) height of fiber layer

\[P(e) \text{: Probability of escape into the bulk} \]

\[\gamma_{eff} = \gamma \times \left[P(e|\text{top})P(z_{hit} = h) + P(e|\text{bottom})P(z_{hit} = 0) + \int dz P(e|z)P(z) \right] \]

\[(1 - D)e^{-u \tan \theta_1} \times 2\int dt \frac{te^{-ut}}{(1 + t^2)^2} \]

\[\frac{2}{\pi} (1 - D) \tan \theta_1 \times \int dt \frac{t^2}{(1 + t^2)^2} \frac{1 - e^{-u(t + \tan \theta_1)}}{t + \tan \theta_1} \]

(a z integration has already been carried out)
This term dominates in a long, thin velvet

\(t = \tan \theta_2 \)

Graph (a): Probability density functions for different values of \(u \).
Jin, Ottaviano, and Raitses performed measurements of surfaces with velvet fibers.

Experimental SEY values for a real carbon velvet. The pink velvet had nominal values: $D = 0.035$, $A = 430$, $u = 24$. This measured SEY is a ~65% reduction.

“81%” corresponds to the amount of area as seen from perfectly normal whose view of the substrate is obstructed, a slightly different definition from ours.

Disagreement with experiment could be due to a distribution of axial alignments, rather than the perfectly normal assumed by Swanson & Kaganovich (2016) [14].

Furthermore, our model assumed $\gamma \propto \left(1 + \frac{k_\theta \theta^2}{2\pi}\right)$, while this paper claims that a $\gamma \propto 1/\cos(\theta)$ relationship is more accurate. Further work is needed to resolve this discrepancy.
Rather than observing, we *designed* a shape that could out-perform other shapes at suppressing SEE. Our shape is two scales of velvet.

Feather: lattice of normally-oriented fibers *with* smaller, secondary fibers on the sides of *that* fiber.

Solid lines: Simulation. Dashed lines: Numerical Velvet ("primary whisker") result.

"Side SEY half": The SEY from the sides of the whisker is reduced by a factor of 2.

u=4: This SEY trace is that of primary whiskers which are thicker than the primary whisker simulated.

Note that secondary whisker suppress beyond what infinitely long primary whiskers are able to.
Our work: Fuzz/foam

Fuzz/foam: irregular lattice of isotropically-oriented fibers

Lines: Analytic model.
Points: Monte-Carlo simulations.
Discrepancy is due to tertiary and higher-order electrons.
Our work: Fuzz/foam

Analytic model approximation:
Probability of whisker intersection is constant per length traveled perpendicular to whisker axis; field of whiskers is infinite sum of infinitesimal fields of uniformly aligned whiskers:

\[P(\Delta z) = e^{\frac{\bar{u} \Delta z}{\cos \theta}} \]

\[\bar{u} = DA/2 \]

The analytic formulae are generalizations of those of velvet to multiple axes of alignment.

In the case of optimal foam (thin fibers, thick fiber layer), SEY can not be reduced to less than 0.3 of its flat value.

\[\gamma_{eff} = \gamma \times [D + (1 - D) \int_0^1 d\mu_2 2\mu_2 e^{-\frac{(1 + \frac{1}{\mu^2})}{\mu}} + (1 - D) \int_0^1 d\mu_2 \frac{1 - e^{-\frac{(1 + \frac{1}{\mu^2})}{\mu}}}{1 + \frac{\mu}{\mu^2}} P(\mu_2 | \mu)] \]

\[P(\mu_2 | \mu) = \frac{4}{\pi} \int_{-1}^1 dm (A_1 \sin \phi_1 + B_1 \phi_1) (A_2 \sin \phi_2 + B_2 \phi_2) \]

\[A_{1,2} = \sqrt{(1 - m^2)(1 - \mu_{1,2}^2)}, B_{1,2} = m\mu_{1,2} \]

\[\mu = \cos \theta \]

If no tertiary electrons are considered, the model is accurate.
Conclusions

• Control over secondary electron emission has theoretical and practical implications

• In recent years, an avenue for such control has been complex surface geometry

• Such surface geometries can be evaluated by Monte-Carlo simulations before being experimentally measured

• Fibrous surfaces, which are developed for other purposes, are well-suited to secondary electron suppression
Bibliography