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Neoclassical impurity accumulation is a 

concern for stellarators

Ʒ Impurity accumulation is a concern for stellarators,

e.g. )  radiation collapse.

Ʒ Neoclassical impurity accumulation predicted to be worse in stellarators than tokamaks:

Radial electric field E r often points inwards ) impurity accumulation.

Ʒ No Greenwald limit in stellarators, but density is limited by radiation from impurities.

[Burhenn et al., Nucl. Fusion (2009)]
[Giannone et al., Plasma Phys. Control. 
Fusion (2000)]
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Neoclassical impurity accumulation

In a tokamak (toroidal symmetry)

Ʒ The Lagrangian is independent of the toroidal angle.

Additional constant of motion.

Ʒ The neoclassical particle fluxes are intrinsically ambipolar   ) 

cross-field transport not affected by E r = -d©=dr 

(except centrifugal and Coriolis forces if strong rotation).

In a stellarator (broken toroidal symmetry)

Ʒ Helically trapped particles can drift out of the plasma)

collisionless trajectories can leave the confined region.

Ʒ 1=º - , 
p

º - regimes with enhanced neoclassicaltransport.

Ʒ Radial electric field E r restores ambipolarity.

Ʒ E r often points radially inwards )

Impurity accumulation.

Trapped in small 

poloidal range.

Helically trapped 

particle

Tokamak

Stellarator
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Temperature screening and the role of 

E r in neoclassical transport

Ʒ The radial impurity flux can be written

h¡ z¢r r i = L 11
zz A1z + L 11

zi A1i + L 12
zz A2z + L 12

zi A2i

άThermodynamic forcesέ A1a = d(lnpa)/ dr + ( Zae/ Ta) d©/ dr

A2a = d(lnTa)/ dr (note: Tz = Ti )

Ʒ In a tokamakE r = - d©/ dr has no effect on radial neoclassical transport. 

h¡ i¢r r i ' -Z h¡ z¢r r i
Temperature screening of the impurities by the bulk ion temperature gradient can arise.

Ʒ In a stellarator E r has a strong impact on the radial transport.

E r determined from ambipolarity. 



Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 7/28

Temperature screening and the role of 

E r in neoclassical transport 

Ʒ Conventional wisdom in stellarators (from pitch-angle scattering models) 

Intra-species terms (L 11
zz,L 12

zz) dominate over inter-species terms (L 11
zi,L 12

zi), i.e.

h¡ z¢r r i ' L 11
zz d(lnpz)/ dr + L 11

zz (Ze/ Tz)d©/ dr + L 12
zz d(lnTz)/ dr . 

In ion root E r is determined by ambipolarity from bulk-ion transport:

(e/ Ti) d©/ dr = - d(lnpi)/ dr - (L 12
ii / L 11

ii ) d(lnTi)/ dr . 

Substitute into impurity transport equation

h¡ z¢r r i = L 11
zz[d(lnpz)/ dr - Z f d(lnpi)/ dr + ( L 12

ii / L 11
ii ) d(lnTi)/ drg]

+ L 12
zz d(lnTz)/ dr .

Coefficient in front of d(lnTi)/ dr : -Z L 11
zz (1 + L 12

ii / L 11
ii ) is always positive ) 

No temperature screening.
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Impurity transport in stellarators

Ʒ Conventional picture (all plasma species at low collisionality + pitch-angle scattering) 

successful in explaining experimental observations, with some notable exceptions:

- The carbon impurity hole in Large Helical Device. [Ida et al., Phys. Plasmas (2009)]

- The high-density H-mode in Wendelstein 7-AS.[McCormick et al., Phys. Rev. Lett.(2002)]

Ʒ In recent years a revived interest in neoclassical impurity physics, 

advances in analytical and numerical modeling:

- In high-collisionalityregime º ¤ii = º ii / ! ti » º ii / vTi À 1 (all ion species) 

the impurity transport is independent of E r. [Braun & Helander, PoP (2010)]

- Experimentally relevant mixed-collisionality transport regime, º ¤zz À 1; º ¤ii ¿ 1, weak drive of impurity

transport by E r, r Ti -screening possible also in stellarators. [Helanderet al., Phys. Rev. Lett. (2017)]

- Effect of flux-surface potential variations ©1 (µ, ³ ) = © - h©i . [García-Regaña et al., PPCF (2013); Nucl.

Fusion(2017); PPCF (2018)], [Mollén et al., PPCF (2018)], [Buller et al., J. Plasma Phys. (2018)]

- ©1 + tangential magnetic drifts. [Velasco et al., PPCF (2018)], [Calvo et al., PPCF (2017); Nucl. Fusion (2018)]
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Numerical tools for calculating neoclassical 

transport in stellarators

Ʒ DKES[Hirshman et al., Phys. Fluids (1986)] (Drift Kinetic Equation Solver)

- The main workhorse for neoclassical calculations in stellarators.

- Radially local; mono-energetic, speed is a parameter ) 3D. 

- Pitch-angle scattering (momentum correction can be applied afterwards).

New codes start to explore extended physics (these are a few of them):

ω FORTEC-3D [Satake et al., Plasma Fusion Res. (2008)]

5D, radial coupling is retained.

ω EUTERPE[García-Regaña et al., PPCF (2013); Nucl. Fusion(2017)]

Radially local particle in cell Monte Carlo code. Pitch-angle scattering + momentum correction.

Flux surface variations of electrostatic potential ©1 (µ, ³ ) = © - h©i .

ω SFINCS[Landreman et al., Phys. Plasmas (2014), Mollén et al., PPCF (2018)]

Radially local 4D, continuum code. Eulerian uniform grid in µ, ³ .

Linearized Fokker-Planck collisions + ©1 + additional effects.

ω KNOSOS[Velasco et al., PPCF (2018)]

Orbit-averaged equation. Pitch-angle scattering. ©1 + tangential magnetic drifts. 
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Stellarator Fokker-Planck Iterative 

Neoclassical Conservative Solver

Solves the time-independent radially local ±f 4D drift-kinetic equation and calculates flows and radial fluxes, 

e.g. h¡ s¢r r i = hs d3vf 1s (vds+ vE)¢r r i .

SFINCS can simultaneously take into account:

Ʒ Arbitrary number of kinetic species (non-trace impurities, non-adiabatic electrons).

Ʒ Full linearized Fokker-Planck collision operator.

Ʒ Self-consistent calculation of ambipolar E r 

found by iterating until hJ¢r r i = § s Zseh¡ s¢r r i = 0 .

Ʒ Flux-surface potential variations 

©1(µ, ³ ) = © - ©0(r ); ©0(r ) = h©i ; ©1 ¿ ©0 )

f 1s(µ, ³ , », x), ©1(µ, ³ ) unknowns ) nonlinear system of equations.

SFINCS available on:

[Landreman, Smith, Mollén & Helander, Phys. Plasmas (2014)]

Ions

Electrons

several roots

https://github.com/landreman/sfincs
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Drift-kinetic equation that SFINCS solves

R = vkb - (r ©0£ b)/ B

vk = - Zseb¢r ©1/ ms - ¹ b¢r B - vk(b£r B)¢r ©0/ B2

¹ = 0

f 0s = f Ms exp(-Zse©1/ Ts)

R¢r f 1s + vk(@f1s/ @vk) - Clinear[f 1s] =

= - f 0s[ns
-1 dns/ dr + ZseTs

-1 d©0/ dr +

+ ( msv
2/ 2 Ts - 3/2 + ZseTs

-1 ©1) Ts
-1 dTs/ dr](vds+ vE)¢r r

occurrence of ©1 in red 
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System of equations in SFINCS
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Do we need the additional physics that 

SFINCS can provide?

Ʒ Calculation of C6+-fluxesfor

the LHD impurity hole plasmas.

Ʒ Verify mixed-collisionality transport regime with advanced collision operator.

Ʒ SFINCS is more suitable than DKES in an optimization loop where equilibrium and transport 

calculations have to be reiterated.
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Benchmark EUTERPE, SFINCS, KNOSOS

Ʒ Pitch-angle scattering collisions (no momentum correction).

Ʒ Large Helical Device equilibrium (10-fold symmetry in ³ ) [García-Regaña et al., Nucl. Fusion(2017)].
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The carbon impurity hole in

Large Helical Device

Ʒ No accumulation of C6+ -impurities in LHD although all predictions of both neoclassical and turbulent transport 

point towards accumulation. (Inward pointing E r).

[Ida et al., Phys. Plasmas (2009)], [Yoshinuma et al., Nucl. Fusion (2009)].

Assuming that external source/sink is zero (or negligible) steady

density profiles should be sustained by balanced fluxes; 

¡ c
(turb) + ¡ c

(neo) = 0

Ʒ Still an open problem.

Is outward ¡ c
(neo)or ¡ c

(turb) compatible 

with a hollow impurity profile?

Ʒ LHD deuterium experiment started March 2017.

C6+ -profile more peaked in deuterium plasmas than in hydrogen plasmas.

[Morisaki et al., International Stellarator-Heliotron Workshop (2017)]

Isotope effect on C6+ transport. Suggests that turbulent impurity transport dominates?
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©1 in neoclassical transport does not seem 

to explain the impurity hole in LHD

Ʒ Large Helical Device discharge 113208 at t = 4.64s studied in [Nunami et al., IAEA conference (2016)], 

[Mikkelsen et al., Phys. Plasmas (2014)], [Velasco et al., Nucl. Fusion(2017)].

Ʒ Neoclassical particle fluxes compared to turbulent particle fluxes at steady-state.

Ʒ Direction of e--, H+- and He2+-fluxes match; C6+-fluxes do not match!

Ʒ Can ©1 in neoclassical calculation explain the discrepancy in the C6+-fluxes?

Ʒ SFINCS calculations: - ©1 can vary strongly on flux-surface: Ñ200 V.

- ©1has large impact on C6+-fluxes, but in wrong direction to 

explain hollow C6+-profile.
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Is impurity transport neoclassical in

optimized stellarators?

Ʒ Wendelstein 7-X  OP1.1 Ҧ

Ongoing work to analyze OP1.2 plasmas.

Ʒ Wendelstein 7-X  OP1.2a:

Iron analyzed by VUV and x-ray spectrometers.

STRAHL + DKES modelling.

ά!ƴƻƳŀƭƻǳǎ ŘƛŦŦǳǎƛƻƴ ǇǊƻŦƛƭŜ ǘǿƻ ƻǊŘŜǊǎ ƻŦ ƳŀƎƴƛǘǳŘŜ ƭŀǊƎŜǊ ǘƘŀƴ ǘƘŜ ƴŜƻŎƭŀǎǎƛŎŀƭέΦ

[Geiger et al., Nucl. Fusion (2019)]

Ʒ Nonlinear gyrokinetic flux-tube simulations in LHD with the GKV code find an order of magnitude 

larger C6+-fluxesthan neoclassical calculations. [M. Nunami& M. Nakata]

Ʒ Only a few gyrokinetic studies of turbulent impurity transport in stellarators exist:

[Mikkelsen et al., PoP (2014)], [Nunami et al., IAEA (2016)], [Helander& Zocco, PPCF (2018)] 

Ʒ Perhaps ©1 can play a role also in turbulent impurity transport.

SFINCS

Ar 16+
Experiment

W7-X  OP1.1 
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