

Impurity transport in stellarator plasmas

Albert Mollén

Max Planck Institute for Plasma Physics, Greifswald, Germany

Acknowledgements: M. Landreman, H. M. Smith, S. Buller, J. M. García-Regaña, J. L. Velasco, S. L. Newton, J. A. Alcusón, P. Xanthopoulos, A. Zocco, K. Aleynikova, M. Nunami, M. Nakata, A. Langenberg, P. Helander, The LHD experiment group and The Wendelstein 7-X Team*

*For the Wendelstein 7-X Team see author list of R. C. Wolf et al., Nucl. Fusion 57 (2017) 102020

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

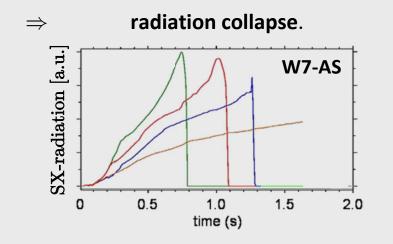
- Introduction to impurity transport in 3D plasmas
- Numerical tools and the SFINCS code
- Experimental observations of impurity transport
- Linear gyrokinetic modelling of impurity transport with equilibrium electrostatic potential variations
- Summary

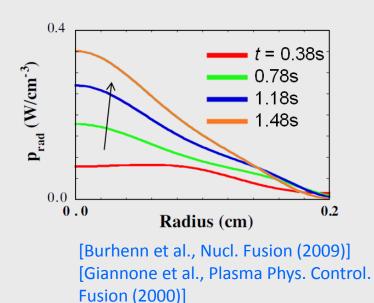
- Introduction to impurity transport in 3D plasmas
- Numerical tools and the SFINCS code
- Experimental observations of impurity transport
- Linear gyrokinetic modelling of impurity transport with equilibrium electrostatic potential variations
- Summary

e.g.

Neoclassical impurity accumulation is a concern for stellarators

► Impurity accumulation is a concern for stellarators,





Neoclassical impurity accumulation predicted to be worse in stellarators than tokamaks: Radial electric field E_r often points inwards \Rightarrow impurity accumulation.

▶ No Greenwald limit in stellarators, but density is limited by radiation from impurities.

Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 4/28

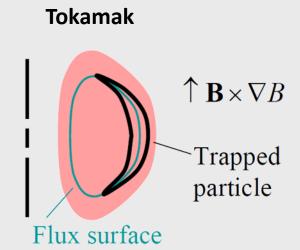
In a tokamak (toroidal symmetry)

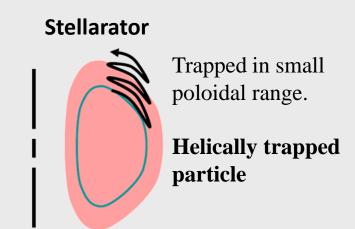
- The Lagrangian is independent of the toroidal angle.
 Additional constant of motion.
- The neoclassical particle fluxes are intrinsically ambipolar \Rightarrow cross-field transport not affected by $E_r = -d\Phi/dr$ (except centrifugal and Coriolis forces if strong rotation).

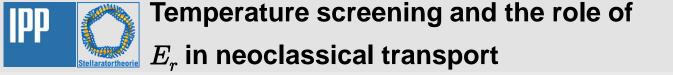
In a stellarator (broken toroidal symmetry)

- ► Helically trapped particles can drift out of the plasma ⇒ collisionless trajectories can leave the confined region.
- ▶ $1/\nu$, $\sqrt{\nu}$ regimes with enhanced neoclassical transport.
- Radial electric field E_r restores ambipolarity.
- $\blacktriangleright \quad E_r \text{ often points radially inwards} \qquad \Rightarrow \qquad$

Impurity accumulation.







► The radial impurity flux can be written

$$\langle \Gamma_z \cdot \nabla r \rangle = L_{11}{}^{zz} A_{1z} + L_{11}{}^{zi} A_{1i} + L_{12}{}^{zz} A_{2z} + L_{12}{}^{zi} A_{2i}$$

"Thermodynamic forces"
$$A_{1a}=d({\rm ln}p_a)/dr+(Z_ae/T_a)~d\Phi/dr$$

$$A_{2a}=d({\rm ln}T_a)/dr \qquad ({\rm note};T_z=T_i)$$

• In a tokamak E_r = - $d\Phi/dr$ has no effect on radial neoclassical transport.

$$\langle \Gamma_i \cdot \nabla r \rangle \simeq -Z \ \langle \Gamma_z \cdot \nabla r \rangle$$

Temperature screening of the impurities by the bulk ion temperature gradient can arise.

- In a stellarator E_r has a strong impact on the radial transport.
 - $E_{\boldsymbol{r}}$ determined from ambipolarity.

Conventional wisdom in stellarators

(from pitch-angle scattering models)

Intra-species terms ($L_{11}{}^{zz}$, $L_{12}{}^{zz}$) dominate over inter-species terms ($L_{11}{}^{zi}$, $L_{12}{}^{zi}$), i.e. $\langle \Gamma_z \cdot \nabla r \rangle \simeq L_{11}{}^{zz} d(\ln p_z)/dr + L_{11}{}^{zz}(Ze/T_z)d\Phi/dr + L_{12}{}^{zz}d(\ln T_z)/dr$.

In ion root E_r is determined by ambipolarity from bulk-ion transport: $(e/T_i) \ d\Phi/dr = - \ d(\ln p_i)/dr - (L_{12}{}^{ii}/L_{11}{}^{ii}) \ d(\ln T_i)/dr$.

Substitute into impurity transport equation

$$\begin{split} \langle \Gamma_z \cdot \nabla r \rangle &= L_{11}{}^{zz} [d(\ln p_z)/dr - Z \; \{ d(\ln p_i)/dr + (L_{12}{}^{ii}/L_{11}{}^{ii}) \; d(\ln T_i)/dr \}] \\ &+ L_{12}{}^{zz} \; d(\ln T_z)/dr \; . \end{split}$$

Coefficient in front of $d(\ln T_i)/dr$: $-Z L_{11}^{zz}(1 + L_{12}^{ii}/L_{11}^{ii})$ is always positive \Rightarrow No temperature screening.

Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 7/28

- Conventional picture (all plasma species at low collisionality + pitch-angle scattering) successful in explaining experimental observations, with some notable exceptions:
 - The carbon impurity hole in Large Helical Device. [Ida et al., Phys. Plasmas (2009)]
 - The high-density H-mode in Wendelstein 7-AS. [McCormick et al., Phys. Rev. Lett. (2002)]

- In recent years a revived interest in neoclassical impurity physics, advances in analytical and numerical modeling:
 - In high-collisionality regime $u_{*ii}=
 u_{ii}/\omega_{ti}\sim
 u_{ii}/v_{Ti}\gg 1$ (all ion species)

the impurity transport is independent of E_r . [Braun & Helander, PoP (2010)]

- Experimentally relevant mixed-collisionality transport regime, $\nu_{*zz} \gg 1$; $\nu_{*ii} \ll 1$, weak drive of impurity transport by E_r , ∇T_i -screening possible also in stellarators. [Helander et al., Phys. Rev. Lett. (2017)]
- Effect of flux-surface potential variations $\Phi_1(\theta, \zeta) = \Phi \langle \Phi \rangle$. [García-Regaña et al., PPCF (2013); Nucl.

Fusion (2017); PPCF (2018)], [Mollén et al., PPCF (2018)], [Buller et al., J. Plasma Phys. (2018)]

- Φ_1 + tangential magnetic drifts. [Velasco et al., PPCF (2018)], [Calvo et al., PPCF (2017); Nucl. Fusion (2018)]

- Introduction to impurity transport in 3D plasmas
- Numerical tools and the SFINCS code
- Experimental observations of impurity transport
- Linear gyrokinetic modelling of impurity transport with equilibrium electrostatic potential variations
- Summary

Numerical tools for calculating neoclassical transport in stellarators

- **DKES** [Hirshman et al., Phys. Fluids (1986)] (Drift Kinetic Equation Solver)
 - The main workhorse for neoclassical calculations in stellarators.
 - Radially local; mono-energetic, speed is a parameter \Rightarrow 3D.
 - Pitch-angle scattering (momentum correction can be applied afterwards).

New codes start to explore extended physics (these are a few of them):

• FORTEC-3D [Satake et al., Plasma Fusion Res. (2008)]

5D, radial coupling is retained.

• EUTERPE [García-Regaña et al., PPCF (2013); Nucl. Fusion (2017)]

Radially local particle in cell Monte Carlo code. Pitch-angle scattering + momentum correction. Flux surface variations of electrostatic potential $\Phi_1(\theta, \zeta) = \Phi - \langle \Phi \rangle$.

- **SFINCS** [Landreman et al., Phys. Plasmas (2014), Mollén et al., PPCF (2018)] Radially local 4D, continuum code. Eulerian uniform grid in θ , ζ . Linearized Fokker-Planck collisions + Φ_1 + additional effects.
- KNOSOS [Velasco et al., PPCF (2018)]

Orbit-averaged equation. Pitch-angle scattering. Φ_1 + tangential magnetic drifts.

Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 10/28

Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver

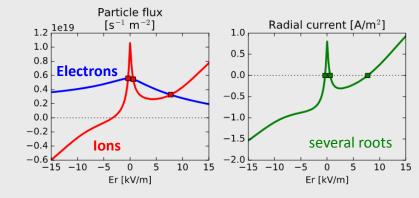
Solves the time-independent radially local δf 4D drift-kinetic equation and calculates flows and radial fluxes, e.g. $\langle \Gamma_s \cdot \nabla r \rangle = \langle \int d^3 v f_{1s} (\mathbf{v}_{ds} + \mathbf{v}_E) \cdot \nabla r \rangle.$

SFINCS can simultaneously take into account:

- Arbitrary number of kinetic species (non-trace impurities, non-adiabatic electrons).
- ► Full linearized Fokker-Planck collision operator.
- Self-consistent calculation of ambipolar E_r found by iterating until $\langle \mathbf{J} \cdot \nabla r \rangle = \sum_s Z_s e \langle \Gamma_s \cdot \nabla r \rangle = 0.$

 $\Phi_1(heta,\,\zeta)=\Phi$ - $\Phi_0(r);~~\Phi_0(r)=\langle\Phi
angle;~~\Phi_1\ll\Phi_0$

 $f_{1s}(heta,\,\zeta,\,\xi,\,x)$, $\Phi_1(heta,\,\zeta)$ unknowns \Rightarrow



nonlinear system of equations.

SFINCS available on: https://github.com/landreman/sfincs

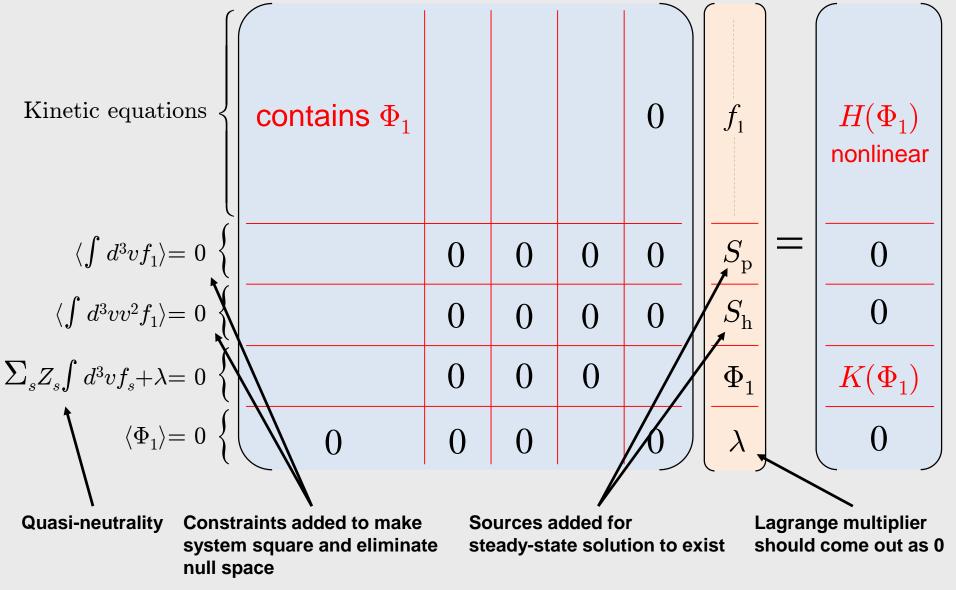
[Landreman, Smith, Mollén & Helander, Phys. Plasmas (2014)]

 \Rightarrow

Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 11/28

$$\begin{split} \dot{\mathbf{R}} &= v_{\parallel} \mathbf{b} - (\nabla \Phi_{0} \times \mathbf{b}) / B \\ \dot{v}_{\parallel} &= - Z_{s} e \mathbf{b} \cdot \nabla \Phi_{1} / m_{s} - \mu \mathbf{b} \cdot \nabla B - v_{\parallel} (\mathbf{b} \times \nabla B) \cdot \nabla \Phi_{0} / B^{2} \\ \dot{\mu} &= 0 \\ f_{0s} &= f_{Ms} \exp(-Z_{s} e \Phi_{1} / T_{s}) \end{split} \qquad \text{occurrence of } \Phi_{1} \text{ in red} \\ \dot{\mathbf{R}} \cdot \nabla f_{1s} &+ \dot{\mathbf{v}}_{\parallel} (\partial f_{1s} / \partial v_{\parallel}) - C_{\text{linear}} [f_{1s}] = \\ &= - f_{0s} [n_{s}^{-1} dn_{s} / dr + Z_{s} e T_{s}^{-1} d\Phi_{0} / dr + \\ &+ (m_{s} v^{2} / 2T_{s} - 3 / 2 + Z_{s} e T_{s}^{-1} \Phi_{1}) T_{s}^{-1} dT_{s} / dr] (\mathbf{v}_{ds} + \mathbf{v}_{E}) \cdot \nabla r \end{split}$$

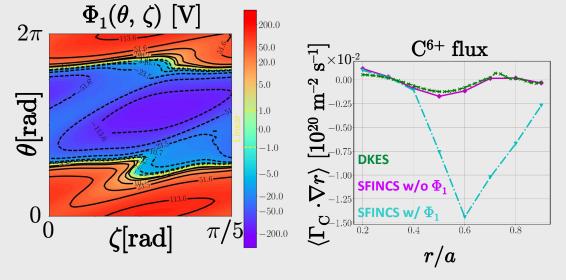
Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 12/28



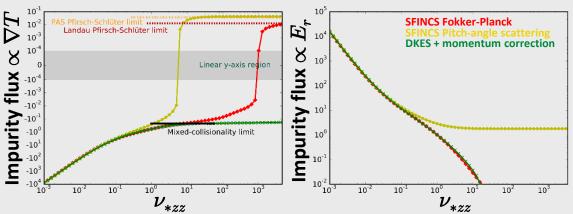
Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 13/28

PP SFINCS can provide?

 Calculation of C⁶⁺-fluxes for the LHD impurity hole plasmas.



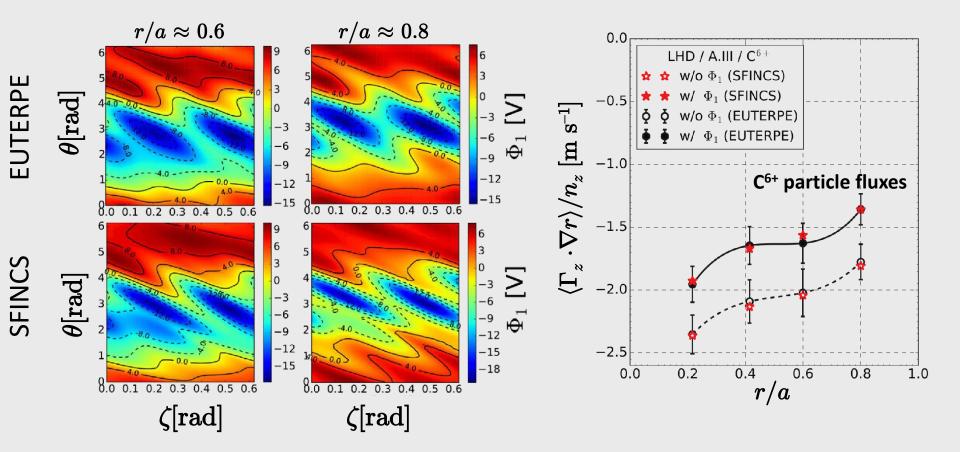
► Verify mixed-collisionality transport regime with advanced collision operator.



 SFINCS is more suitable than DKES in an optimization loop where equilibrium and transport calculations have to be reiterated.

Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 14/28

- ► Pitch-angle scattering collisions (no momentum correction).
- ► Large Helical Device equilibrium (10-fold symmetry in ζ) [García-Regaña et al., Nucl. Fusion (2017)].



- Introduction to impurity transport in 3D plasmas
- Numerical tools and the SFINCS code
- Experimental observations of impurity transport
- Linear gyrokinetic modelling of impurity transport with equilibrium electrostatic potential variations
- Summary

The carbon impurity hole in Large Helical Device

No accumulation of C⁶⁺ -impurities in LHD although all predictions of both neoclassical and turbulent transport point towards accumulation. (Inward pointing E_r).

[Ida et al., Phys. Plasmas (2009)], [Yoshinuma et al., Nucl. Fusion (2009)].

Assuming that external source/sink is zero (or negligible) steady

density profiles should be sustained by balanced fluxes;

 $\Gamma_{\rm c}^{\rm (turb)} + \Gamma_{\rm c}^{\rm (neo)} = 0$

► Still an open problem.

Is outward $\Gamma_{\rm c}{}^{\rm (neo)}$ or $\Gamma_{\rm c}{}^{\rm (turb)}$ compatible with a hollow impurity profile?

[Nunami et al., International Stellarator-Heliotron Workshop (2017)]

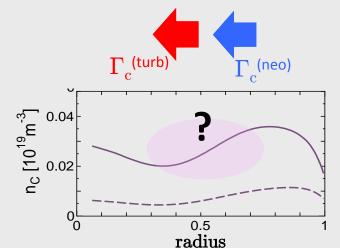
▶ LHD deuterium experiment started March 2017.

 C^{6+} -profile more peaked in deuterium plasmas than in hydrogen plasmas.

[Morisaki et al., International Stellarator-Heliotron Workshop (2017)]

Isotope effect on C⁶⁺ transport. Suggests that turbulent impurity transport dominates?

Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 17/28

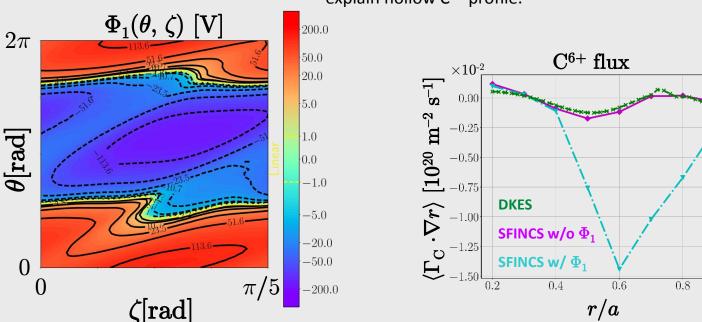


Φ_1 in neoclassical transport does not seem to explain the impurity hole in LHD

- Large Helical Device discharge 113208 at t = 4.64s studied in [Nunami et al., IAEA conference (2016)], [Mikkelsen et al., Phys. Plasmas (2014)], [Velasco et al., Nucl. Fusion (2017)].
- ▶ Neoclassical particle fluxes compared to turbulent particle fluxes at steady-state.
- ▶ Direction of e⁻-, H⁺- and He²⁺-fluxes match;
- Can Φ_1 in neoclassical calculation explain the discrepancy in the C⁶⁺-fluxes?
- SFINCS calculations:

[Mollén et al., PPCF (2018)]

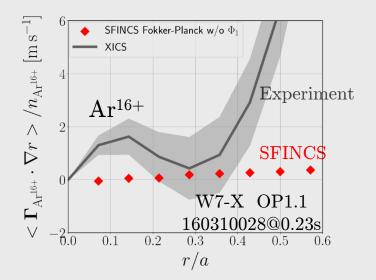
- Φ_1 can vary strongly on flux-surface: ± 200 V.
- Φ_1 has large impact on C⁶⁺-fluxes, but in wrong direction to explain hollow C⁶⁺-profile.



Is impurity transport neoclassical in

optimized stellarators?

- ▶ Wendelstein 7-X OP1.1 →
 Ongoing work to analyze OP1.2 plasmas.
- Wendelstein 7-X OP1.2a: Iron analyzed by VUV and x-ray spectrometers.
 STRAHL + DKES modelling.
 "Anomalous diffusion profile two orders of magn



"Anomalous diffusion profile two orders of magnitude larger than the neoclassical".

[Geiger et al., Nucl. Fusion (2019)]

- Nonlinear gyrokinetic flux-tube simulations in LHD with the GKV code find an order of magnitude larger C⁶⁺-fluxes than neoclassical calculations. [M. Nunami & M. Nakata]
- Only a few gyrokinetic studies of turbulent impurity transport in stellarators exist:
 [Mikkelsen et al., PoP (2014)], [Nunami et al., IAEA (2016)], [Helander & Zocco, PPCF (2018)]
- Perhaps Φ_1 can play a role also in turbulent impurity transport.

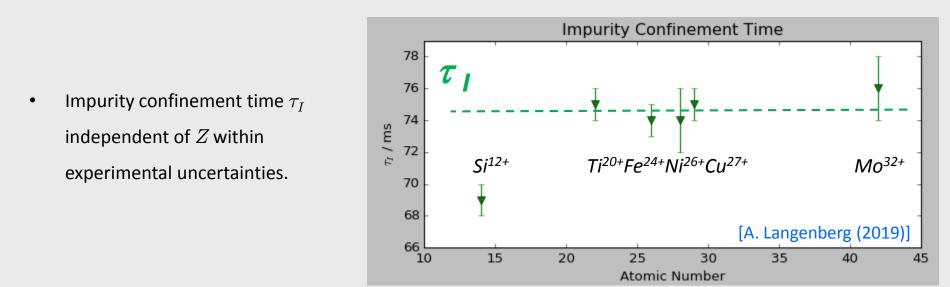
Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 19/28

Wendelstein 7-X OP1.2 preliminary results

Radial impurity flux

$$\langle \Gamma_z {\cdot} \nabla r \rangle =$$
 - $D_z \; dn_z/dr + V_z \; n_z$

Size of the convective velocity V_z is consistent with neoclassical calculations for W7-X, but neoclassical diffusion D_z is orders of magnitude too low to explain experimental observations.



- Hypothesis: The radial impurity transport is dominated by turbulent transport, which to lowest order is
 - independent of Z and m_z ,
 - independent of E_r ,
 - dominated by diffusion.

- [Helander & Zocco, PPCF (2018)]
- Neoclassical analysis with EUTERPE and SFINCS is ongoing.

Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 20/28

- Introduction to impurity transport in 3D plasmas
- Numerical tools and the SFINCS code
- Experimental observations of impurity transport
- Linear gyrokinetic modelling of impurity transport with equilibrium electrostatic potential variations
- Summary

$\begin{array}{c} \label{eq:product} \mbox{IPP} & \ensuremath{\overbrace{}}^{\mbox{Effect of }} \Phi_1 \mbox{ on quasilinear impurity fluxes} \\ \mbox{(ongoing work)} \end{array}$

- $\blacktriangleright \quad \text{Non-fluctuating potential} \qquad \Phi_1(\theta,\,\zeta) = \Phi \Phi_0(\psi); \quad \Phi_0(\psi) = \langle \Phi \rangle; \quad \Phi_1 \ll \Phi_0(\psi) = \langle \Phi \rangle;$
 - Energy is $arepsilon=m_sv^2/2~+Z_se~\Phi_1(heta,\,\zeta)+Z_se~\phi(t,\, heta,\,\zeta)$

 $\Phi_1(heta,\,\zeta)$ - equilibrium potential $\phi(t,\, heta,\,\zeta)$ - fluctuating potential

Note: Turbulent transport automatically ambipolar to lowest order, independent of $E_r = -d\Phi_0/dr$ $\Rightarrow \Phi_0$ can be transformed away.

- $\label{eq:lowest} \begin{array}{l} \blacktriangleright \quad \mbox{Lowest order distribution } f_{0s} = f_{Ms} \exp(-Z_s e \Phi_1/T_s) \\ f_{Ms} = n_{0s}(\psi) \; (m_s v^2/2\pi T_s)^{3/2} \exp(-m_s v^2/2T_s) \qquad \mbox{Maxwellian.} \end{array}$
- Φ₁(θ, ζ) is obtained from a neoclassical calculation with a code like SFINCS.
 In our gyrokinetic model Φ₁(θ, ζ) is an input.

• Linear gyrokinetic equation for the non-adiabatic distribution g_s

 $f_s = f_{0s} \; (1$ - $Z_s e \; \phi/T_s) + g_s$

$$v_{\parallel} \nabla_{\parallel} g_s \text{ - } i \, \left(\omega \text{ - } \omega_E \text{ - } \omega_{ds} \right) \, g_s = C \left[g_s \right] \text{ - } i \, \left(Z_s e \, \phi/T_s \right) \, J_0(k_{\perp} v_{\perp}/\Omega_s) \, f_{0s} \left(\omega \text{ - } \omega_{\star s}^T \right) \, d_{0$$

$$\begin{split} &\omega = \omega_r + i\gamma & \text{mode frequency} \\ &\alpha = q(\psi) \,\, \theta \, \text{-} \, \zeta \\ &\mathbf{k}_\perp = k_\alpha \nabla \alpha \, + \, k_\psi \nabla \psi \approx k_\alpha \nabla \alpha \end{split}$$

$$\begin{split} &\omega_E = \mathbf{v}_{\Phi_1} \cdot \, \mathbf{k}_{\perp} = (k_{\alpha}/B) \, \left(\mathbf{b} \times \nabla \Phi_1 \right) \cdot \nabla \alpha & \text{(usually ignored because small for } i, e \text{)} \\ &\omega_{ds} = \mathbf{v}_{ds} \cdot \, \mathbf{k}_{\perp} = k_{\alpha} \, \left[\mathbf{b} \times (v_{\perp}^2 \, \nabla \, \ln B/2 \, + \, v_{\parallel}^2 \, \boldsymbol{\kappa}) / \, \Omega_s \right] \cdot \nabla \alpha \\ &\omega_{\star s}^T = - \, (T_s/Z_s e B) f_{0s}^{-1} \, \left(\mathbf{b} \, \times \, \mathbf{k}_{\perp} \right) \cdot \nabla (f_{0s})_{\varepsilon} = \omega_{\star s} \, q \, \left[1 + \eta_s (m_s v^2 / \, 2T_s - \, 3/2 \, + \, Z_s e T_s^{-1} \, \Phi_1) \right] \end{split}$$

$$\begin{split} \omega_{\star s} &= (k_{\alpha}T_s/Z_s e) \ d \ \ln n_{0s}/d\psi; \qquad \eta_s = (d \ \ln T_s/d\psi) \ / \ (d \ \ln n_{0s}/d\psi) \end{split}$$
We neglect parallel streaming $v_{\parallel} \nabla_{\parallel} g_s$ and collisions $C \ [g_s]. \end{split}$

Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 23/28

- $\blacktriangleright \quad \text{The $E \times B$ drift frequency ω_E usually neglected because it is small, unless $Z_s e \Phi_1/T_s \sim \mathcal{O}(1)$.}$
- \blacktriangleright Note that $\,\omega_E\,$ independent of $Z_{\rm s}$, whereas

$$\omega_{ds} \sim 1/Z_s$$

 $\omega^{T}_{\ \star s} \sim 1/Z_{s}.$

- \Rightarrow for high-Z impurities ω_E could play a role.
- ► The flux-surface-averaged quasilinear impurity flux is given by

$$\Gamma_z = -k_{lpha} \ {
m Im} \left[\left\langle \int g_z J_0 \phi^* \ {
m d}^3 v
ight
angle
ight]$$

and we find that

$$\Gamma_z = - \left(Ze/T_z \right) \, k_\alpha \, \gamma \, \left\langle |\phi|^2 \int \! \left(\omega^T_{\,\star z} - \omega_E - \omega_{dz} \right) \, |\omega - \omega_E - \omega_{Dz}|^{-2} \, J_0^{\,2} \, f_{0z} \, \mathrm{d}^3 v \right\rangle$$

which implies that Φ_1 can only change the sign of Γ_z if it can change the sign of $(\omega_{\star z}^T - \omega_E - \omega_{dz}).$

Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 24/28

- ► To perform the velocity integral we assume:
 - Low-eta plasma \Rightarrow simplify ω_{dz} using $\kappa pprox
 abla_{ot} B/B$:

 $\omega_{dz} = \omega_B \; (v_\perp{}^2 \; / \; 2 \; + \; v_\parallel{}^2) \; / \; v_z{}^2$

- Ion-scale turbulence $\Rightarrow k_{\perp}^{2} \rho_{z}^{2}/2 \ll 1$.
- High-Z trace impurities so ω obtained from bulk species gyrokinetic equations.
- Order $\omega_E/\omega, \, \omega_{dz}/\omega, \, \omega^T_{\star z}/\omega$ and $J_0(k_\perp v_\perp/\Omega_z)$ 1 as 1/Z small quantities.
- Use Boozer coordinates $\mathbf{B} = \mathrm{H}(\psi, \theta, \zeta) \nabla \psi + \mathrm{I}(\psi) \nabla \theta + \mathrm{G}(\psi) \nabla \zeta$.

$$\Gamma_{z} \simeq - (Ze/T_{z}) k_{\alpha} \left[\gamma/(\omega_{r}^{2} + \gamma^{2}) \right] n_{0z}(\psi) q \omega_{\star z} \left\langle |\phi|^{2} \exp(-Z_{s} e \Phi_{1}/T_{s}) \left\{ 1 + \eta_{z} ZeT_{z}^{-1} \Phi_{1} - \omega_{E}/(q \omega_{\star z}) - \omega_{B} /(q \omega_{\star z}) \right\} \right\rangle =$$

 $- k_{\alpha}^{-2} \left[\gamma / (\omega_r^{-2} + \gamma^2) \right] \left(dn_{0z} / d\psi \right) \, q \, \left\langle |\phi|^2 \exp(-Z_s e \Phi_1 / T_s) \, \left\{ 1 + \eta_z \, \underline{ZeT_z^{-1} \, \Phi_1} \right. \right.$

 $+ (Ze/T_z) (d\ln n_{0z}/d\psi)^{-1} (q G + I)^{-1} [H (q d\Phi_1/d\zeta + d\Phi_1/d\theta) + \theta dq/d\psi (Gd\Phi_1/d\theta - Id\Phi_1/d\zeta)]$ $+ (2/B) (d\ln n_{0z}/d\psi)^{-1} (q G + I)^{-1} [H (q dB/d\zeta + dB/d\theta) + \theta dq/d\psi (GdB/d\theta - IdB/d\zeta)]$ $- (2/B) (d\ln n_{0z}/d\psi)^{-1} dB/d\psi \}$ Dominant terms

Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 25/28

• Using $\mathbf{B} = \mathbf{H}(\psi, \, \theta, \, \zeta) \, \nabla \psi + \mathbf{I}(\psi) \, \nabla \theta + \mathbf{G}(\psi) \, \nabla \zeta$ with

 ${
m G} \gg {
m I}$ (poloidal current outside flux-surface \gg toroidal current inside flux-surface). $|{
m H} | | \nabla \psi | / ({
m G} | \nabla \psi |) \sim (\beta \Delta B / B) / (r / R_0) \ll 1 \Rightarrow {
m neglect H/G terms}.$

$$\begin{split} & \Gamma_z \simeq -k_{\alpha}^{-2} \left[\gamma/(\omega_r^{-2} + \gamma^2) \right] (dn_{0z}/d\psi) \; q \; \Big\langle |\phi|^2 \exp(-Z_s e \Phi_1/T_s) \; \Big\{ 1 + \eta_z \; Ze T_z^{-1} \Phi_1 + (d\ln n_{0z}/d\psi)^{-1} \; \theta q^1 dq/d\psi \; (Ze/T_z) d\Phi_1/d\theta + (2/B) (d\ln n_{0z}/d\psi)^{-1} \; \theta q^1 dq/d\psi \; dB/d\theta - (2/B) (d\ln n_{0z}/d\psi)^{-1} dB/d\psi \Big\} \Big\rangle. \end{split}$$

- ► What is the physics behind the $\eta_z ZeT_z^{-1} \Phi_1$ term? Real lowest-order density $N_{0z}(\psi, \theta, \zeta) = n_{0z}(\psi) \exp(-Z_z e \Phi_1/T_z) \Rightarrow$ $d \ln N_{0z}/d\psi = (d \ln n_{0z}(\psi)/d\psi) (1 + \eta_z ZeT_z^{-1} \Phi_1)$ varies over the flux-surface with Φ_1 .
- The most important is $d \ln N_{0z}/d\psi$ where the turbulence is located!

- Different line of sight N_{0z} Hollow r/aic simulations. r/a
- Next step: Attempt to include $\Phi_1(\theta, \zeta)$ in linear gyrokinetic simulations.

Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 26/28

- Introduction to impurity transport in 3D plasmas
- Numerical tools and the SFINCS code
- Experimental observations of impurity transport
- Linear gyrokinetic modelling of impurity transport with equilibrium electrostatic potential variations
- Summary

- Collisional (neoclassical) transport predictions for stellarators have long been based on simplified models, but numerical tools start appear that can advance our understanding.
- ► The SFINCS code can simultaneously investigate several new effects:
 - Multi-species calculations with non-adiabatic electrons and non-trace impurities.
 - Full linearized Fokker-Planck-Landau operator.
 - Self-consistent calculation of the ambipolar radial electric field.
 - Calculations including electrostatic potential variations $\Phi_1(heta, \zeta)$.
- ► These effects can be important in calculations of impurity transport.
- Initial analysis of Wendelstein 7-X plasmas indicate that the impurity transport is dominated by anomalous diffusion.
- Gyrokinetic modelling/calculations of turbulent impurity transport in stellarators is at an early stage, but will hopefully make progress in the coming years.

Extra slides

Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 29/28



• Eulerian uniform grid in θ , ζ .

MPI parallelization with PETSc library + MUMPS.

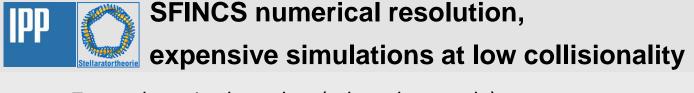
- Spectral discretization in $\xi = v_{\parallel}/v$: Legendre polynomials $P_{\rm n}(\xi)$.
- ► Spectral collocation discretization for $x = v/v_{Ts}$, non-standard orthogonal polynomials [Landreman & Ernst, J Comput. Phys. (2013)].

EURO*fusion*

Collocation: function is known on a set of grid points rather than explicitly expanded in a set of modes \Rightarrow integration/differentiation weight matrices.

- Non-linear system solved with Newton method:
 - $$\begin{split} \mathbf{x} &= (f_1, \, \Phi_1) & \text{Residual } R(\mathbf{x}) = 0 & \text{Jacobian } R' = \left. \delta R(\mathbf{x}) \right/ \delta \mathbf{x} \\ \text{State-vector updated as} & \mathbf{x}_{n+1} = \mathbf{x}_n R(\mathbf{x}_n) / R'(\mathbf{x}_n). \end{split}$$
- ► System solved using preconditioned GMRES.
- Code written in Fortran (also MATLAB version).

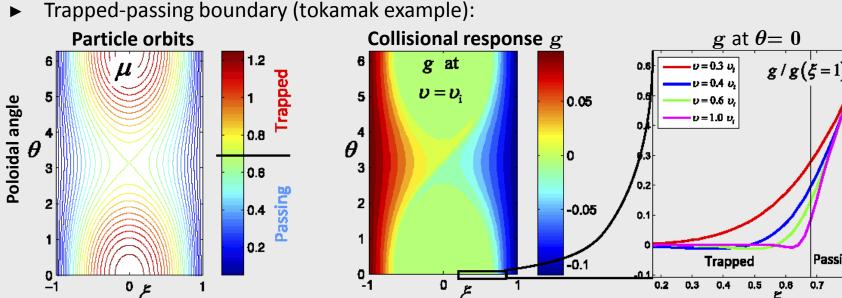
Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 30/28



Passing

0.7

0.8

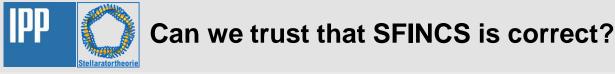


Pitch angle parameter

- Simulations typically become more demanding at low collisionality (small ν_{ss}/v_{Ts}). Thinner trapped-passing boundary layer harder to resolve.
- Resolution in SFINCS runs for W7-X OP1.1: $(N_{
 m species} imes N_{ heta} imes N_{\zeta} imes N_x imes N_{\xi}) imes (N_{
 m species} imes N_{ heta} imes N_{\zeta} imes N_x imes N_{\xi}) \sim 10^7 imes 10^7$ Runs on IPP Draco cluster \leq 32 nodes (128GB) in \leq 20 min (often < 5 min).
- Most time consuming activities:

- find numerical convergence, - find ambipolar E_r .

Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 31/28



SFINCS can perform calculations that no other code can (to my knowledge).

Benchmark of linear calculations

- Comparison to analytic limits at high-collisionality $\nu_{*ii} \sim \nu_{ii}/v_{Ti} \gg 1$. Comparison to analytic theory at mixed-collisionality $\nu_{*zz} \gg 1$; $\nu_{*ii} \ll 1$.
- Comparison to DKES and EUTERPE for transport calculations.
 Note: A wider benchmark activity would be desirable.

Benchmark of nonlinear calculations including Φ_1

- Comparison between Fortran version of SFINCS with Φ_1 (equations included by me) and Matlab version (written by Matt).
- Some sanity checks in the output of SFINCS, e.g. $\langle \Gamma_s \cdot \nabla r \rangle = \langle \int d^3 v f_{0s}(\mathbf{v}_{ds} + \mathbf{v}_E) \cdot \nabla r \rangle = 0.$
- ▶ Benchmark with EUTERPE, KNOSOS for several plasmas.

• Φ_1 in collision operator.

$$\begin{split} C_{ab}^{\text{ linear}}[f_s] &= C_{ab}[f_{\text{M}a}, \, f_{\text{M}b}] \, \exp(-Z_a e \Phi_1/T_a \, -Z_b e \Phi_1/T_b) \, + \\ &+ \, C_{ab}[f_{1a}, \, f_{\text{M}b}] \, \exp(-Z_b e \Phi_1/T_b) \, + \, C_{ab}[f_{\text{M}a}, \, f_{1b}] \, \exp(-Z_a e \Phi_1/T_a) \end{split}$$

• Linear version with Φ_1 .

Version of the code where Φ_1 is an input instead of an output.

Could be useful e.g. for studying effect of plasma heating or using Φ_1 from another code.

 Φ_1 + tangential magnetic drifts.

Found to be important for some plasmas.

[Velasco et al., PPCF (2018)], [Calvo et al., PPCF (2017); Nucl. Fusion (2018)]

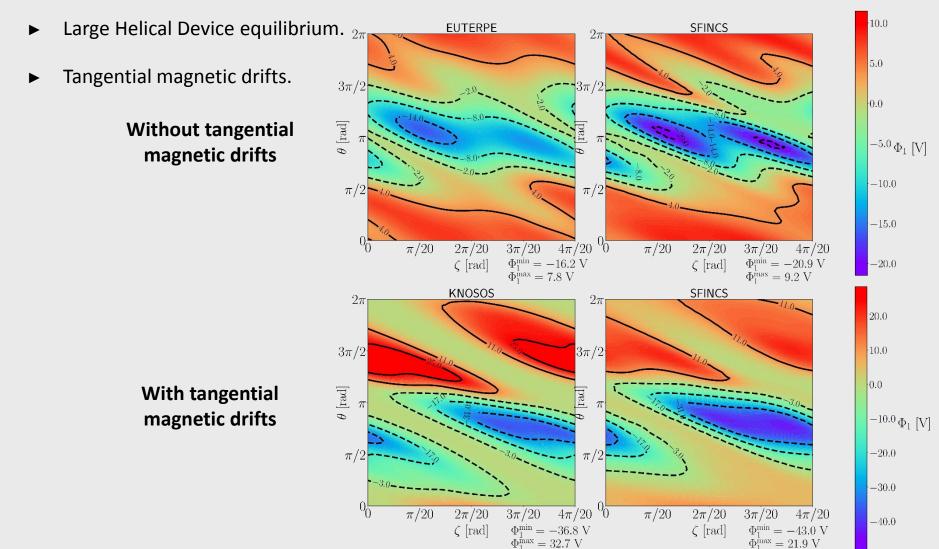
С

$$\begin{cases} \dot{\mathbf{R}} = v_{\parallel} \mathbf{b} - (\nabla \Phi_{0} \times \mathbf{b})/B + \mathbf{v}_{ds} \cdot \nabla f_{1s} \end{cases} \text{ extra term containing tangential magnetic drifts drop terms with radial coupling to keep locality $\dot{\mathbf{v}}_{\parallel} = -Z_{s} e \mathbf{b} \cdot \nabla \Phi_{1}/m_{s} - \mu \mathbf{b} \cdot \nabla B - v_{\parallel} (\mathbf{b} \times \nabla B) \cdot \nabla \Phi_{0}/B^{2}$
$$\dot{\mathbf{R}} \cdot \nabla f_{1s} + \dot{\mathbf{v}}_{\parallel} (\partial f_{1s}/\partial v_{\parallel}) - C_{\text{linear}}[f_{1s}] = = -f_{0s}[n_{s}^{-1} dn_{s}/dr + Z_{s}eT_{s}^{-1} d\Phi_{0}/dr + (m_{s}v^{2}/2T_{s} - 3/2 + Z_{s}eT_{s}^{-1} \Phi_{1}) T_{s}^{-1} dT_{s}/dr](\mathbf{v}_{ds} + \mathbf{v}_{E}) \cdot \nabla r$$$$

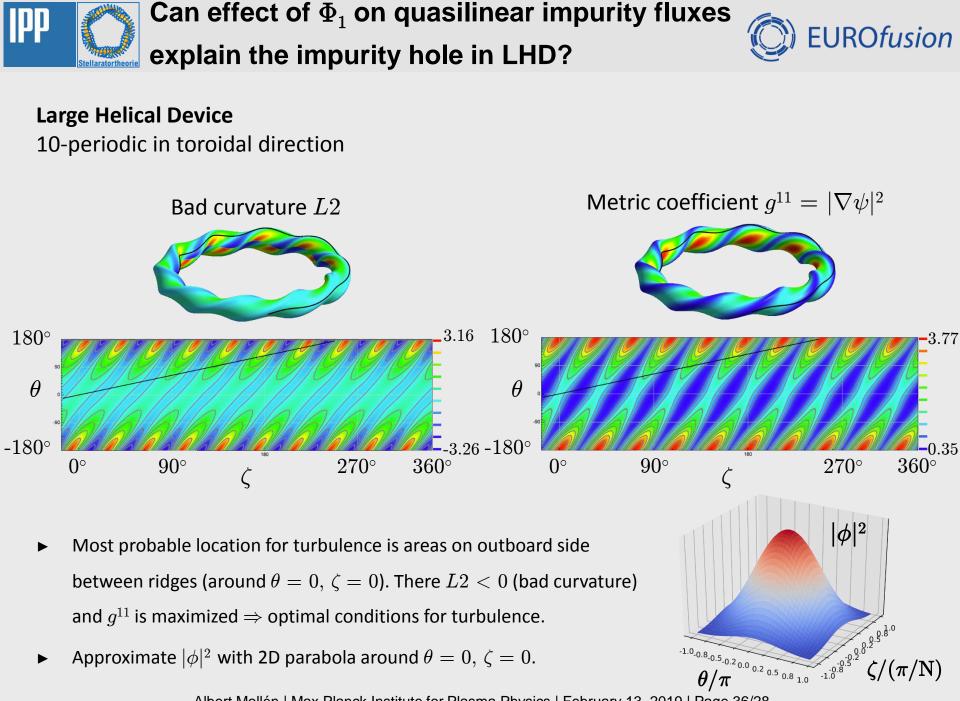
- ► Magnetic drifts implemented in SFINCS [Paul et al., Nucl. Fusion (2017)].
- To include tangential magnetic drifts in a numerical solver is somewhat ambiguous. Example: Approximation $df_{1s}/dr = 0$ in $\mathbf{v}_{ds} \cdot \nabla f_{1s}$ different in different coordinate systems.
- ▶ 9 different versions implemented in SFINCS.
- SFINCS calculations with Φ_1 + tangential magnetic drifts very numerically challenging.
- ► KNOSOS significantly faster. [Velasco et al., PPCF (2018)]

Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 34/28

▶ Pitch-angle scattering collisions (no momentum correction).



Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 35/28

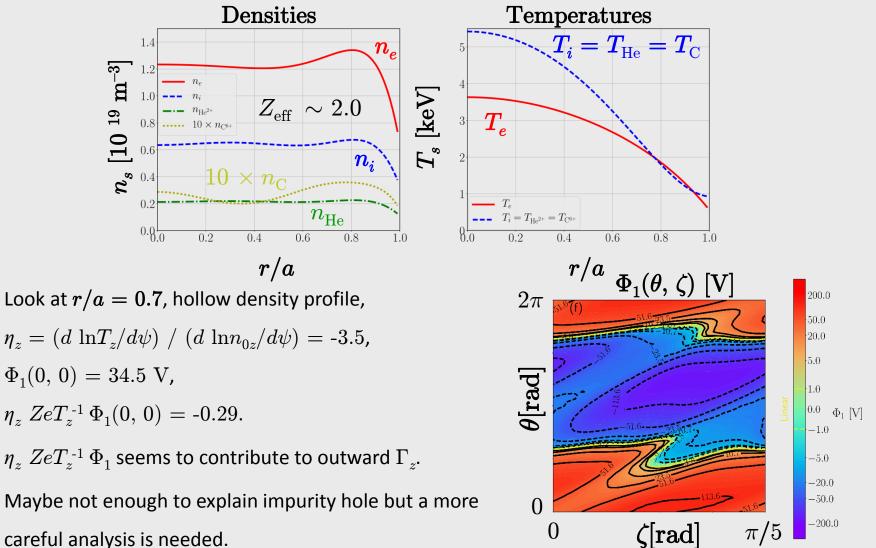


Approximate $|\phi|^2$ with 2D parabola around $\theta = 0, \zeta = 0$.

Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 36/28

 $\zeta/(\pi/{
m N})$

► Large Helical Device discharge 113208 at t = 4.64s



Albert Mollén | Max Planck Institute for Plasma Physics | February 13, 2019 | Page 37/28

Effect of Φ_1 could possibly change by:

- Tangential magnetic drifts included in the SFINCS calculations (or Φ_1 from KNOSOS).
- ► Including effects of plasma heating.
- ► Include parallel streaming term.

Axisymmetry: Trapped Electron Modes \Rightarrow outwards transport,

Ion Temperature Gradient modes \Rightarrow inwards transport.

• Including radial variation $\Phi_1(\psi, \theta, \zeta)$, requires radially global neoclassical code but including $d\Phi_1/d\psi$ in the quasilinear model should be straightforward.