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The inference of velocity fields from 2D movies evolving conserved scalars (opti-
cal flow) is fundamentally ambiguous due to the well-known “aperture problem”:
velocities along isocontours of the scalar are not visible. This may even corrupt
the inference of velocity fields averaged at scales longer than the typical length
scale of features in the scalar field, as in the barber-pole e�ect. However, for
divergence-free flows, a stream-function formulation allows us to show that the
"invisible velocity" vanishes in the surface average over any closed scalar isocon-
tour. This error-free averaged velocity may be used as an “anchor” for a more
reliable inference of the larger-scale velocity field, or to test model-based optical-
flow schemes. We have also used the stream-function formulation to derive a new
method of optical flow for divergence-free flows. We discuss the new algorithm,
including details of discretization, boundary conditions, and image preprocessing
that can significantly a�ect its performance. A simple implementation of the
new method is shown to work well for a number of synthetic movies, and is also
applied to a GPI movie of edge turbulence in NSTX.
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Overview

I Background: velocimetry and the aperture problem
I Properties of the “invisible velocity” when Ò · v = 0
I Averaging procedures to eliminate the invisible velocity
I A forward-problem formulation for 2D velocimetry with Ò · v = 0
I Conclusions

This work is part of a collaboration with Ahmed Diallo, Stewart
Zweben, and Santanu Banerjee, doing experimental investigation of the
L-H transition on NSTX with gas pu� imaging (GPI).
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Objective: infer 2D velocities from time-dependent movies

I Given a 2D movie n(x , y , t) (e.g. GPI, right),
we wish to infer v(x , y , t).

I Assume the imaged scalar (n) obeys a 2D
continuity equation:

ˆtn + v · Òn = 0
I GPI does not exactly follow this, but we

neglect such errors for this talk.
I Many other applications: computer vision,

cardiac flow (via X-ray), satellite cloud
imaging, turbulent flow with tracer dyes,. . .

I Unfortunately this is underdetermined:
v · Òn

|Òn| = ˆtn
|Òn| but v · ẑ ◊ Òn

|Òn| =?,

called the “aperture problem”
I Goal: use Ò · v = 0 to disambiguate
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Unfortunately, even the Ò·v =0 problem is underdetermined.

Consider this stationary movie=∆
I Consistent with v = 0
I Also consistent with v = v(r)◊̂

But what if we break ◊-symmetry?

Consider this stationary movie∆
I Consistent with v = 0 (left)
I Also consistent with wavy v

(right)

Stoltzfus-Dueck Velocimetry for 2D incompressible flows (4)



The resulting error can survive even in the mean.

Consider a simple drift wave

n(x , y , t) = n0≠n
Õ
0x+ns sin(ky≠Êt)

It looks just like rigid advection
along ŷ

v = vrig
.= (Ê/k)ŷ

But the real velocity field is

v = vdw
.= ≠(nsÊ/n

Õ
0) cos(ky≠Êt)x̂

This is just the aperture e�ect, since (vrig ≠ vdw) ‹ Òn,
and it’s common in plasmas due to electron adiabatic response.
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Why can we see both components of v in everyday life?

Our everyday experience usually
satisfies an ordering, roughly:†

I If n varies on length ¸

I and v varies on length L

I then ¸ π L

If this is true, then we may see all of v :
Consider two points x1, x2 separated by a short
length |x2 ≠ x1| ≥ ¸, then:

L

v(x1) · (Òn)(x1) = (ˆtn)(x1)
v(x1) · (Òn)(x2) ¥ v(x2) · (Òn)(x2) = (ˆtn)(x2)

Since (Òn)(x2) ”¥ (Òn)(x1), we know both components of v(x1) to O(¸/L).
This ordering underlies most velocimetry.
However, this requires v really varies slowly relative to n, not just that we are
interested in the part of v that varies slowly relative to n (c.f. drift wave).
†Rigid-body motion is a bit more complicated than this, but is similarly constrained.
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The form of the “invisible velocity” is constrained by Ò·v =0,

even for strongly sheared flows.

I Incompressibility implies that we may use a potential formulation:
v = ẑ ◊ Ò„, thus

ˆtn = ≠ẑ ◊ Ò„ · Òn = ẑ ◊ Òn · Ò„ = {n, „}
I The aperture problem is due to null space (kernel) of (ẑ ◊ Òn · Ò), that

is, due to the space of functions � such that ẑ ◊ Òn · Ò� = 0.
I By inspection, this null space consists of all functions � that are

constant along isocontours of n.
That is, if we find any “inferred potential” „inf such that
ẑ ◊ Òn · Ò„inf = ˆtn, then it di�ers from the true „ by a � satisfying

ẑ ◊ Òn · Ò(„inf ≠ „) = ẑ ◊ Òn · Ò� = 0,

thus a � = „inf ≠ „ that is constant along isocontours of n.
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We may use the form of � to eliminate the “invisible

velocity” under well-chosen averaging.

Consider the line-averaged velocity across some curve C connecting xs to xe.
Using the potential formulation, we have

d¸ v‹ = (ẑ ◊ d¸) · v = (ẑ ◊ d¸) · (ẑ ◊ Ò„) = d¸ · Ò„, thus⁄

C
d¸ v‹ =

⁄

C
d¸ · Ò„ = „(xe) ≠ „(xs).

This means that for xs and xe on the same density isocontour, for any
divergence-free inferred velocity vinf we have⁄

C
d¸ v‹,inf =

⁄

C
d¸ · Ò„inf =

⁄

C
d¸ · Ò(„ + �)

=
⁄

C
d¸ · Ò„ + �(xe) ≠ �(xs) =

⁄

C
d¸ · Ò„ =

⁄

C
d¸ v‹,

since �(xe) = �(xs).
This means that our line-averaged v‹,inf is accurate, given:
I xs and xe lay on the same density isocontour (not just same value of n)
I v and vinf (or more precisely vinf ≠ v) are divergence-free
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We may eliminate both components of the invisible velocity

by averaging over the area inside a density isocontour.

Our previous result has the special cases
⁄ xe

xs
dx

Õ
vy ,inf(x Õ, y) =

⁄ xe

xs
dx

Õ
vy

⁄ ye

ys
dy

Õ
vx ,inf(x , y

Õ) =
⁄ ye

ys
dy

Õ
vx

S
Cn

xs
1 xe

1 xs
2 xe

2 xs
3 xe

3

xe
1

Let S be a simply-connected area bounded by a density isocontour Cn, e.g.«

⁄

S
dA vy ,inf =

⁄ ye

ys
dy

Õ
N(y Õ)ÿ

j=1

⁄ xe
j (y Õ)

xs
j (y Õ)

dx
Õ ˆx („ + �) =

⁄

S
dA vy ,

because �(x
e
j (y Õ), y

Õ) = �(x
s
j (y Õ), y

Õ) for all j and y
Õ. Similarly

⁄

S
dA vx ,inf =

⁄

S
dA vx , thus

⁄

S
dA vinf =

⁄

S
dA v .
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The averaging result has some easy generalizations.

Suppose the averaging result holds for both an outer region Sout and an
inner region Sin µ Sout, then

⁄

Sout≠Sin
dA vinf =

⁄

Sout≠Sin
dA v .

Let Sin be bounded by an isocontour Cin with n = nin and Sout bounded by
a Cout with n = nout, then di�erentiate this relation with respect to nout to
get ⁄

Cin

d¸

|Òn|vinf =
⁄

Cin

d¸

|Òn| v .

Since n = nin is a constant on Cin, we may also conclude
⁄

Cin

d¸

|Òn|nvinf =
⁄

Cin

d¸

|Òn| nv ∆
⁄

S
dA nvinf =

⁄

S
dA nv ,

so the appropriate area integral of density flux is also accurate. The same
result holds with n æ N, where N is any function that is constant on
isocontours of n.
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Digression: Irrotational flows tend to be well-defined.

For this slide only, assume irrotational flow
Ò ◊ v = 0 ∆ v = ≠ÒÂ, thus

(Òn) · ÒÂ = ˆtn.
In this case, the invisible velocity corresponds to
all � s.t. (Òn) · Ò� = 0,
thus � constant along the “gradient curves”
traced out by Òn, e.g. red lines in this sketch∆
One then has many analogous averaging results
for example the averaged inferred velocity is accurate,⁄

S
dA vinf =

⁄

S
dA v ,

for an area S bounded by a closed contour made of gradient curves, BUT:
I the gradient lines often connect all points in an image, meaning that

the inferred irrotational flow is pointwise accurate (without averaging),
I for irrotational flows, the term nÒ · v should be retained

I but the additional term nÒ2Â is easy to manage
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To infer a consistent divergence-free velocity, we recast the

problem as advection-di�usion of „.

Multiply the continuity equation by a constant c and add a dissipation term:
vn · Ò„ = S„ ≠ D„, with vn

.= cẑ ◊ Òn, S„
.= cˆtn,

and D a positive linear operator.
I A steady-state advection/di�usion (of „), with a source term.
I ẑ ◊ Òn · Ò„ = {n, „} can (should) be discretized with Arakawa bracket.
I Symmetrizing over c = ±1 often reduces artifacts.

For comparison, Amini (Computer Vision 1994) used a variational approach
to get the higher-order equation

{n, {n, „}} = {n, ˆtn} + D„,

roughly ẑ ◊ Òn · Ò of my equation (except the dissipation/regularization D).
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We can mitigate the e�ects of incompatible data.

Let d¸ point along a density isocontour, then solve by characteristics
⁄

d¸ · Ò„ =
⁄

d¸
ẑ ◊ Òn

|Òn| · Ò„ =
⁄

d¸
ˆtn
|Òn|

For a closed density isocontour, single-valued „ requires:
j

Cn
d¸

ˆtn
|Òn| = 0

Data that fails to satisfy this has a portion of ˆtn (call it ˆtn) that is
constant along density isocontour, for which the algorithm reduces to

D„ = cˆtn, thus „ Ã D≠1
cˆtn

becomes large for small |D|.
To mitigate the e�ects of this:
I Average results of calculations with c = ±1, canceling „

I but nondissipative equation is invariant to c

I Subtract the isocontour average from ˆtn before velocimetry
I Can use ˆtn ¥ ‹S̄ for S̄ solving

)
n, S̄

*
= ≠‹S̄ + ˆtn
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The di�erential constraint Ò · v = 0 means we must

consider boundary conditions for „.

Many typical choices have implications, spelled
out here for example x boundaries:
I Periodic implies

s
dx vy ,inf = 0.

I Dirichlet forces
s

dx vy ,inf =„(Lx , y)≠„(0, y)
I also sets vx ,inf = ≠ˆy „ at x boundaries

I Neumann ˆx„ = 0 sets vy ,inf = 0 at boundary
I but vx ,inf is free

The best general-purpose appears to be periodicity on an extended domain:
I Original domain in upper-right quadrant (x > 0, y > 0)
I Other quadrants:n(x , y)=n(|x |, |y |), S„(x , y)=(signx)(signy)S„(|x |, |y |)
I Nondissipative equation unchanged, except sign flip in lower-right and

upper-left quadrants. (Note: dissipation has no sign flip.)
I Guarantees well-behaved countours, sets tangential velocity to zero.
I Actually only requires doubling domain size, with “flip-periodic” BCs.
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Simple tests demonstrate basic algorithm performance.
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I Subject simple sinuosoidal pattern to horizontally-sheared vertical flow
I Left: v = (cos x) ŷ , thus ¸ < L (regular ordering, but marginal)
I Center: v = (cos 5x) ŷ , thus ¸ > L (opposite standard ordering)

I Algorithm still captures vy pretty well (inferred vs actual vy , right)
I For real-life applications, many other challenges:

I boundary conditions, incompatible or underresolved data,. . .
I tests of more realistic cases are ongoing

I Fundamentally, the ’hidden velocity’ is still there
I other solutions equally valid, but proper averaging removes the di�erence
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We are starting to apply the algorithm to NSTX GPI data.

I NSTX gas-pu�-imaging (GPI) diagnostic
I view along B to see perp dynamics

I Emission a complicated function
I fluctuations taken roughly Ã n

I perp velocity approx divergence-free
I In terms of GPI, averaging result roughly:

I blob translation accurate, spin may not be
I result only holds if Ò · vinf = 0

I NSTX GPI used to study L-H transition
I 17 shots from 2010 campaign
I evaluate zonal flows and energy transfer
I challenging problem: error analysis ongoing

I Algorithm may be used for any other 2D movies
with roughly incompressible 2D flows
I Simple, lightweight Matlab implementation
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Conclusions
I Velocities can be inferred from 2D movies via a continuity equation

I but the problem is underdetermined without additional constraints
I Assumption of incompressible flow Ò · v = 0 mostly disambiguates

I but certain invisible flows are still permitted
I such errors can survive even under total spatial averaging
I if Òn changes direction more rapidly in space than v varies, then can

disambiguate (this assumption underlies classic “optical flow”)
I Even for strongly-sheared flows, the invisible velocity has restricted form:s

S dA vinf =
s

S dA v , when area S is bounded by a density isocontour
I For this, need both inferred (vinf) and actual (v) velocities incompressible
I Density flux and generalizions are also accurate under this average
I Other averaging regions may be easily constructed

I To exploit this result, do velocimetry enforcing Ò · v = 0
I Solve as inhomogeneous advection-di�usion equation for stream function „

I Or use (higher-order) variational formulation
I Best boundary conditions are periodicity on a symmetric extension
I Algorithm is implemented in Matlab, and is being tested and applied to

NSTX GPI data.
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