A gyrokinetic discovery of fast L-H bifurcation physics in a realistic diverted tokamak edge geometry

Seung-Hoe Ku1, C.S. Chang1, R.M. Churchill1, I. Cziegler2, M. Greenwald3, R. Hager1, J. Hughes3, G.R. Tynan4

1Princeton Plasma Physics Laboratory, USA, 2Univ. York, UK, 3PSFC, MIT, USA, 4UC San Diego, USA

*Computing resources provided by OLCF at ORNL and ALCF at ANL

27th IAEA Fusion Energy Conference, 22 – 27 October 2018, Ahmedabad, India
Outline

- Introduction to XGC and the edge timescale
- Simulation setup
- XGC sees two turbulence suppression mechanisms by ExB shearing
 - Reynolds stress
 - Neoclassical (X-loss)
- Different suppression time-scale between electron and ion modes
 - Fast suppression of electron modes
 - Slow suppression of ion modes
- Conclusion and discussion
XGC gyrokinetic PIC codes (V&V summary at hbps.pppl.gov)

- XGC: X-point Gyrokinetic Code
- Steep electrostatic pedestal ordering [Hahm PoP 2009]
- Heat and momentum source in core
- Monte Carlo neutrals with wall recycling
- Fully nonlinear Fokker-Planck Coulomb collision operation
- Logical wall-sheath
- Unstructured triangular mesh

Capabilities
- ES with GK ions + drift-kinetic electrons [C.S. Chang TH/P7-22, R.M. Churchill TH/P7-26, J. Chowdhury TH/P8-7]
- Impurity ions [J. Dominski TH/P6-20]
- RMP or 3D B-field [J.M. Kwon TH/8-1, R. Hager TH/P5-9, G. Park TH/P5-26]
- Stellarator [M. Cole TH/P6-21, T. Moritaka TH/P5-5]
- EM with fully implicit drift-kinetic electrons (partially verified)
- Gyrokinetic electrons for ETG
Different timescales between core and edge

For simplicity, let’s use the drift kinetic equation for this argument

\[
\frac{\partial f}{\partial t} + (v_{\parallel} + v_d) \cdot \nabla f + \frac{e}{m} E_{\parallel} v_{\parallel} \frac{\partial f}{\partial w} = C(f, f) + \text{Sources/Sinks}
\]

Core \(f \) evolves slowly: \(\tau > 1\text{ms} \)

- Near-thermal equilibrium: \(f = f_M + \delta f \);
 \[
 C(\delta f), v_{\parallel}/L_{\parallel}, v_d/L_r, ev_{\parallel}E_{\parallel}/T, = O(\rho \omega_{bi})
 \]
 \[\partial \delta f/\partial t=O(\rho \omega_{bi})\]

Edge \(f \) evolves fast: \(\tau < 0.1\text{ms} \)

- Non-Maxwellian: \(f \neq f_M \);
 \[
 C(f), v_{\parallel}/L_{\parallel}, v_d/L_r, ev_{\parallel}E_{\parallel}/T, S= O(\omega_{bi})
 \]
 \[\partial f/\partial t=O(\omega_{bi})\]
Why has a gyrokinetic L-H study not been done previously?

- Scale-inseparable, nonlocal multiscale in space and time
 - Edge turbulence including large-amplitude blobs
 - Neoclassical with X-loss
 - Neutral particle recycling with ionization and charge exchange
 - Overlapping space-time scale: e.g., turbulence correl. width ~ plasma gradient scale length ~ orbit width ~ ExB shearing width ~ neutral penetration length

- Magnetic separatrix interfacing two different magnetic topologies

- Non-Maxwellian plasma, requiring nonlinear Fokker-Planck collision

- Long global transport equilibrium time >> GK simulation time

→ We thought it would require exascale computer; non-existent yet.
A new strategy for GK simulation of L-H transition to make the bifurcation study possible on present HPCs

• Bifurcation may not be a global transport-equilibrium phenomenon
 – But, an edge localized phenomenon [Yan, PRL14; Cziegler, PPCF14, …]
 – May not need to wait until GAMs die out [Conway, PRL11; …]

• Study only the edge bifurcation itself, as soon as the L-mode edge turbulence establishes, without waiting for the pedestal buildup.
 – We want to force the bifurcation by having $P_{\text{edge}} / P_{\text{LH}} \gtrsim 2$
 – A forced L-H bifurcation action could be completed in $\lesssim 0.1\text{ms}$ (Cziegler PPCF14, Yan, PRL14, and others).
 – Take advantage of $\approx 0.1\text{ms}$ establishment of the nonlinear edge turbulence.

• Low beta electrostatic simulation: EM simulation in near future
Outline

• Introduction to XGC and the edge timescale

• Simulation setup
 • XGC sees two turbulence suppression mechanisms by ExB shearing
 – Reynolds stress
 – Neoclassical (X-loss)
 • Different suppression time-scale between electron and ion modes
 – Fast suppression of electron modes
 – Slow suppression of ion modes

• Conclusion and discussion
For the present L-H bifurcation study in XGC, we use a low-beta electrostatic edge plasma

Plasma input condition
- C-Mod #1140613017 in L-mode, single-null, \(\nabla B \)-drift away from X-point
- \(\beta_e \approx 0.01\% < m_e/m_i \) in the bifurcation layer
- \(\nabla B \)-drift has been flipped to be into the divertor for this presentation

Include the most important multi physics
- Neoclassical kinetic physics
- Nonlinear electrostatic turbulence
 - ITG, TEM, Resistive ballooning, Kelvin-Helmholtz, other drift waves
- Neutral particle recycling with CX and ionization
- Realistic diverted geometry

Electromagnetic correction to the present result is left for a future work.
An L-mode plasma from C-Mod (beta-edge~0.01%)

- Ion heat flux across $\Psi_N \approx 0.95$ is ~ 1.8 MW and well above $P_{\text{LH}^{i+e}} \sim 1$-1.5 MW.
- Edge temperature increases from heat accumulation.
- Transition layer is at $0.96 < \Psi_N < 0.98$, agreeing with C-Mod, DIII-D [Cziegler PPCF14, Yan PRL 14] and other devices.
Outline

• Introduction to XGC and the edge timescale
• Simulation setup
• **XGC sees two turbulence suppression mechanisms by ExB shearing**
 – Reynolds stress
 – Neoclassical (X-loss)
• Different suppression time-scale between electron and ion modes
 – Fast suppression of electron modes
 – Slow suppression of ion modes
• Conclusion and discussion
Overview of the turbulence behavior at bifurcation

Two different shearing actions noticed

1. At $t \sim 0.175-0.21\,\text{ms}$, lower frequency turbulence is sheared to higher frequency turbulence (by Reynolds-stress ExB shearing, to be shown).

2. At $t > 0.21\,\text{ms}$, shearing and suppression of all frequency turbulence (neoclassical ExB shearing, to be shown, Biglari-Diamond PoF1990)
Time-radius behavior of the sheared ExB flow, V_E'

1. $t_A=0.12\text{ms}$, V_E' and L-mode turbulence settle down in edge layer
2. $t< t_B=0.175\text{ms}$, L-mode V_E' remains negative in the edge layer ($\rho>0$)
3. $t\sim t_B$, something pushes the V_E' to >0 in the edge layer ($\rho<0$): Reynolds
4. $t> t_C=0.2\text{ms}$, V_E' locks into mean ExB shearing in the bifurcation layer: neoclassial
The bifurcation criterion is identified to be \(V'_E > 150 \text{ kHz} \) (Growth rate of dissipative TEMs [Romanelli PoP 2007]).
Reynolds stress induces the jump in ExB shearing at t_B

- The normalized, turbulence Reynolds consumption rate $P = \langle \tilde{v}_r\tilde{v}_\theta \rangle V'/\langle \mathcal{V}_{\text{eff}}^2 \rangle /2$ becomes peaked (> 3) in the beginning of the bifurcation action, but becomes ≤ 1 after that; and dies out eventually.

- What is then keeping the turbulence suppressed?

Various opinions exist on the role of Reynolds consumption:
- Kobayashi PRL13, Cavedon NF17, Stoltzfus-Dueck PoP16, Diallo NF17
- Yan PRL14, Schmidt NF17, Tynan NF13, Istvan PPCF14, papers by Diamond

Similar behaviors of Reynolds consumption rate has been reported in EAST, C-Mod, and DIII-D experiments. [Manz PoP12, Tynan NF13, Yan PRL14]
The X-point orbit-loss [Chang PoP02, Ku PoP04] provides the answer

- The negative Reynolds force is canceled by orbit-loss force, and not effective.
- Orbit-loss force is pushing V'_{ExB} further to positive direction after 0.175 ms.
- This V'_{ExB} is keeping the turbulence suppressed after the bifurcation.

[S. Ku et al., PoP 2004]
Outline

• Introduction to XGC and the edge timescale
• Simulation setup
• XGC sees two turbulence suppression mechanisms by ExB shearing
 – Reynolds stress
 – Neoclassical (X-loss)
• Different suppression time-scale between electron and ion modes
 – Fast suppression of electron modes
 – Slow suppression of ion modes
• Conclusion and discussion
Electron modes disappear immediately around the transition time

- Figures at right: Time-averaged wavenumber spectrum of the turbulence at $\Psi_n = 0.975$
- Top: Before the first-phase $E \times B$ shearing starts ($t = 0.12 - 0.17$ ms)
 - Both ion and electron modes exist
- Well into the second-phase shearing activities ($t = 0.22 - 0.26$ ms)
 - Electron modes have disappeared
 - Ion modes are being sheared away to higher frequency
- Would be interesting to compare with experimental results.
Conclusion and Discussions

• A forced, fast L-H like bifurcation physics has been revealed under favorable magnetic drift condition, with transport suppression in both the heat and particle channels.

• The turbulent Reynolds stress and the neoclassical X-loss physics work together in achieving the L-H bifurcation.
 – How will the geometry and plasma condition change their combination?
 – How will this affect P_{L-H} in 15MA ITER that has small ρ_i/a?

• Fast suppression of electron modes by Reynolds-stress ExB shearing, followed by slower suppression of ion modes by neoclassical ExB shearing: experiments?

Not shown in this talk:

• Unfavorable ∇B case shows stronger GAMs. Weakly coherent modes appears during the bifurcation.

• Hydrogen isotope simulation gives higher GAM damping and weaker ExB shear