An adjoint approach for the shape gradients of 3D MHD equilibria

Elizabeth Paul ${ }^{1}$, Thomas Antonsen, Jr. ${ }^{1}$, Matt Landreman ${ }^{1}$, W. Anthony Cooper ${ }^{2}$
${ }^{1}$ University of Maryland, College Park
${ }^{2}$ Swiss Alps Fusion Energy

PPPL Research Seminar
 November 25, 2019

Outline

- Introduction
- Stellarator shape optimization
- Adjoint methods
- Shape gradients for MHD equilibria
- Perturbed equilibrium approach
- Conclusions

Stellarators require shape optimization (I)

Traditional two-step optimization

1. MHD equilibrium optimization

(e.g. STELLOPT ${ }^{1}$, ROSE 2)

How to design boundary for optimal confinement?

MHD force balance

${ }^{1}$ D.A. Spong et al, Nuclear Fusion, 41 (2001).
${ }^{2}$ M. Drevlak et al, Nuclear Fusion, 59 (2019).

Stellarators require shape optimization (I)

Traditional two-step optimization

1. MHD equilibrium optimization

(e.g. STELLOPT ${ }^{1}$, ROSE 2)

How to design boundary for optimal confinement?

2. Coil design

(e.g. REGCOIL ${ }^{3}$, FOCUS 4)

How to design feasible coils to obtain desired plasma boundary? How sensitive is a figure of merit to coil displacements?
${ }^{1}$ D.A. Spong et al, Nuclear Fusion, 41 (2001).
${ }^{2}$ M. Drevlak et al, Nuclear Fusion, 59 (2019).
${ }^{3}$ M. Landreman, Nuclear Fusion, 57 (2017).
${ }^{4}$ C. Zhu et al, Nuclear Fusion, 58 (2017).

Stellarators require shape optimization (II)

Combined one-step optimization

1. MHD equilibrium direct optimization of coils ${ }^{1}$

How to design coils for optimal confinement and engineering feasibility?

MHD force balance

${ }^{1}$ D. Strickler et al, IAEA FT/P2-06 (2003).

Stellarators require shape optimization (II)

Combined one-step optimization

1. MHD equilibrium direct optimization of coils ${ }^{1}$

How to design coils for optimal confinement and engineering feasibility?

MHD force balance

"The highest priority for technology is to better integrate the engineering design with the physics design at the earliest possible stage." -Report from the National Stellarator Coordinating Committee ${ }^{2}$

Analytic gradients are valuable in high-dimensional spaces (I)

Analytic gradients are valuable in high-dimensional spaces (II)

Z. Lyu et al, Proc. Inter. Conf. Comp.

Fluid Dyn., 11 (2014).

Adjoint method for analytic derivatives

- Figure of merit $f(\boldsymbol{x})$ s.t. $\boldsymbol{L}(\boldsymbol{x})=0$
- Goal: compute $\partial f(\boldsymbol{x}) / \partial \Omega$ for $\Omega=\left\{\Omega_{i}\right\}_{i=1}^{N_{\Omega}}$

Adjoint method for analytic derivatives

- Figure of merit $f(\boldsymbol{x})$ s.t. $\boldsymbol{L}(\boldsymbol{x})=0$
- Goal: compute $\partial f(\boldsymbol{x}) / \partial \Omega$ for $\Omega=\left\{\Omega_{i}\right\}_{i=1}^{N_{\Omega}}$
- Adjoint method requires 1 additional solve (rather than $\geq N_{\Omega}$ from finite differences)
- No noise from finite difference step size

Adjoint method for analytic derivatives

Adjoint methods widely used in computational fluid dynamics

- Figure of merit $f(\boldsymbol{x})$ s.t. $\boldsymbol{L}(\boldsymbol{x})=0$
- Goal: compute $\partial f(\boldsymbol{x}) / \partial \Omega$ for $\Omega=\left\{\Omega_{i}\right\}_{i=1}^{N_{\Omega}}$
- Adjoint method requires 1 additional solve (rather than $\geq N_{\Omega}$ from finite differences)
- No noise from finite difference step size

Inward for smaller drag Outward for smaller drag
C. Othmer, J. Math. Industry, 4 (2014).

Adjoint method for a linear system

- Goal: compute $\partial f(x) / \partial \Omega$ for $\Omega=\left\{\Omega_{i}\right\}_{i=1}^{N_{\Omega}}\left(\geq N_{\Omega}+1\right.$ solves with finite differences)

$$
f(\boldsymbol{x})=\boldsymbol{c}^{T} \boldsymbol{x} \quad \text { s.t. } \overleftrightarrow{\boldsymbol{A}} \boldsymbol{x}=\boldsymbol{b}
$$

Adjoint method for a linear system

- Goal: compute $\partial f(x) / \partial \Omega$ for $\Omega=\left\{\Omega_{i}\right\}_{i=1}^{N_{\Omega}}\left(\geq N_{\Omega}+1\right.$ solves with finite differences)

$$
f(\boldsymbol{x})=\boldsymbol{c}^{T} \boldsymbol{x} \quad \text { s.t. } \overleftrightarrow{\boldsymbol{A}} \boldsymbol{x}=\boldsymbol{b}
$$

- Compute perturbations of linear system

$$
\frac{\partial \overleftrightarrow{\boldsymbol{A}}}{\partial \Omega_{i}} x+\overleftrightarrow{\boldsymbol{A}} \frac{\partial \boldsymbol{x}}{\partial \Omega_{i}}=\frac{\partial \boldsymbol{b}}{\partial \Omega_{i}} \quad \longrightarrow \frac{\partial \boldsymbol{x}}{\partial \Omega_{i}}=(\overleftrightarrow{\boldsymbol{A}})^{-\mathbf{1}}\left(\frac{\partial \boldsymbol{b}}{\partial \Omega_{i}}-\frac{\partial \overleftrightarrow{\boldsymbol{A}}}{\partial \Omega_{i}} x\right)
$$

Adjoint method for a linear system

- Goal: compute $\partial f(x) / \partial \Omega$ for $\Omega=\left\{\Omega_{i}\right\}_{i=1}^{N_{\Omega}}\left(\geq N_{\Omega}+1\right.$ solves with finite differences)

$$
f(x)=\boldsymbol{c}^{T} \boldsymbol{x} \quad \text { s.t. } \overleftrightarrow{\boldsymbol{A}} \boldsymbol{x}=\boldsymbol{b}
$$

- Compute perturbations of linear system

$$
\frac{\partial \overleftrightarrow{A}}{\partial \Omega_{i}} x+\overleftrightarrow{\boldsymbol{A}} \frac{\partial \boldsymbol{x}}{\partial \Omega_{i}}=\frac{\partial \boldsymbol{b}}{\partial \Omega_{i}} \quad \longrightarrow \frac{\partial \boldsymbol{x}}{\partial \Omega_{i}}=(\overleftrightarrow{\boldsymbol{A}})^{-\mathbf{1}}\left(\frac{\partial \boldsymbol{b}}{\partial \Omega_{i}}-\frac{\partial \overleftrightarrow{\boldsymbol{A}}}{\partial \Omega_{i}} x\right)
$$

- Compute derivative with chain rule

$$
\frac{\partial f}{\partial \Omega_{i}}=\boldsymbol{c}^{T} \frac{\partial \boldsymbol{x}}{\partial \Omega_{\mathrm{i}}}=\boldsymbol{c}^{T}(\overleftrightarrow{\boldsymbol{A}})^{-\mathbf{1}}\left(\frac{\partial \boldsymbol{b}}{\partial \Omega_{i}}-\frac{\partial \overleftrightarrow{\boldsymbol{A}}}{\partial \Omega_{i}} \boldsymbol{x}\right) \quad \longrightarrow \quad \frac{\partial f}{\partial \Omega_{i}}=\left(\left(\overleftrightarrow{\boldsymbol{A}}^{T}\right)^{-\mathbf{1}} \boldsymbol{c}\right)^{T}\left(\frac{\partial \boldsymbol{b}}{\partial \Omega_{i}}-\frac{\partial \overleftrightarrow{\boldsymbol{A}}}{\partial \Omega_{i}} \boldsymbol{x}\right)
$$

Adjoint method for a linear system

- Goal: compute $\partial f(x) / \partial \Omega$ for $\Omega=\left\{\Omega_{i}\right\}_{i=1}^{N_{\Omega}}\left(\geq N_{\Omega}+1\right.$ solves with finite differences)

$$
f(x)=\boldsymbol{c}^{T} \boldsymbol{x} \quad \text { s.t. } \overleftrightarrow{\boldsymbol{A}} \boldsymbol{x}=\boldsymbol{b}
$$

- Compute perturbations of linear system

$$
\frac{\partial \overleftrightarrow{A}}{\partial \Omega_{i}} x+\overleftrightarrow{\boldsymbol{A}} \frac{\partial \boldsymbol{x}}{\partial \Omega_{i}}=\frac{\partial \boldsymbol{b}}{\partial \Omega_{i}} \quad \longrightarrow \frac{\partial \boldsymbol{x}}{\partial \Omega_{i}}=(\overleftrightarrow{\boldsymbol{A}})^{-\mathbf{1}}\left(\frac{\partial \boldsymbol{b}}{\partial \Omega_{i}}-\frac{\partial \overleftrightarrow{\boldsymbol{A}}}{\partial \Omega_{i}} x\right)
$$

- Compute derivative with chain rule

$$
\frac{\partial f}{\partial \Omega_{i}}=\boldsymbol{c}^{T} \frac{\partial \boldsymbol{x}}{\partial \Omega_{\mathrm{i}}}=\boldsymbol{c}^{T}(\overleftrightarrow{\boldsymbol{A}})^{-\mathbf{1}}\left(\frac{\partial \boldsymbol{b}}{\partial \Omega_{i}}-\frac{\partial \overleftrightarrow{\boldsymbol{A}}}{\partial \Omega_{i}} \boldsymbol{x}\right) \quad \longrightarrow \quad \frac{\partial f}{\partial \Omega_{i}}=\left(\left(\overleftrightarrow{\boldsymbol{A}}^{T}\right)^{-\mathbf{1}} \boldsymbol{c}\right)^{T}\left(\frac{\partial \boldsymbol{b}}{\partial \Omega_{i}}-\frac{\partial \overleftrightarrow{\boldsymbol{A}}}{\partial \Omega_{i}} \boldsymbol{x}\right)
$$

- Solve adjoint equation

$$
\overleftrightarrow{\boldsymbol{A}}^{T} \boldsymbol{Z}=\boldsymbol{c}
$$

Adjoint method for a linear system

- Goal: compute $\partial f(x) / \partial \Omega$ for $\Omega=\left\{\Omega_{i}\right\}_{i=1}^{N_{\Omega}}\left(\geq N_{\Omega}+1\right.$ solves with finite differences)

$$
f(\boldsymbol{x})=\boldsymbol{c}^{T} \boldsymbol{x} \text { s.t. } \overleftrightarrow{\boldsymbol{A}} \boldsymbol{x}=\boldsymbol{b}
$$

- Compute perturbations of linear system

$$
\frac{\partial \overleftrightarrow{A}}{\partial \Omega_{i}} x+\overleftrightarrow{\boldsymbol{A}} \frac{\partial \boldsymbol{x}}{\partial \Omega_{i}}=\frac{\partial \boldsymbol{b}}{\partial \Omega_{i}} \quad \longrightarrow \frac{\partial \boldsymbol{x}}{\partial \Omega_{i}}=(\overleftrightarrow{\boldsymbol{A}})^{-\mathbf{1}}\left(\frac{\partial \boldsymbol{b}}{\partial \Omega_{i}}-\frac{\partial \overleftrightarrow{\boldsymbol{A}}}{\partial \Omega_{i}} x\right)
$$

- Compute derivative with chain rule

$$
\frac{\partial f}{\partial \Omega_{i}}=\boldsymbol{c}^{T} \frac{\partial \boldsymbol{x}}{\partial \Omega_{\mathrm{i}}}=\boldsymbol{c}^{T}(\overleftrightarrow{\boldsymbol{A}})^{-\mathbf{1}}\left(\frac{\partial \boldsymbol{b}}{\partial \Omega_{i}}-\frac{\partial \overleftrightarrow{\boldsymbol{A}}}{\partial \Omega_{i}} \boldsymbol{x}\right) \quad \longrightarrow \quad \frac{\partial f}{\partial \Omega_{i}}=\left(\left(\overleftrightarrow{\boldsymbol{A}}^{T}\right)^{-\mathbf{1}} \boldsymbol{c}\right)^{T}\left(\frac{\partial \boldsymbol{b}}{\partial \Omega_{i}}-\frac{\partial \overleftrightarrow{\boldsymbol{A}}}{\partial \Omega_{i}} \boldsymbol{x}\right)
$$

- Solve adjoint equation

$$
\overleftrightarrow{\boldsymbol{A}}^{T} \boldsymbol{Z}=\boldsymbol{c}
$$

- Get derivative with respect to all Ω_{i} with 2 solutions of linear system $(\boldsymbol{x}, \boldsymbol{z})$

$$
\frac{\partial f}{\partial \Omega_{i}}=\boldsymbol{z}^{T}\left(\frac{\partial \boldsymbol{b}}{\partial \Omega_{i}}-\frac{\partial \overleftrightarrow{\boldsymbol{A}}}{\partial \Omega_{i}} \boldsymbol{x}\right)
$$

Outline

- Introduction
- Shape gradients for MHD equilibria
- Introduction to shape gradients
- Fixed-boundary relation
- Free-boundary relation
- Magnetic well
\square Magnetic ripple
\square Rotational transform
E Effective ripple ($\epsilon_{\text {eff }}^{3 / 2}$)
\square Quasisymmetry
- Perturbed equilibrium approach
- Conclusions

Describing derivatives with respect to plasma boundary

- $f(S)=$ physics objective depending on equilibrium field
- Surface is displaced by vector field $\delta \boldsymbol{r}$

$$
S_{\epsilon}=\left\{\boldsymbol{r}_{0}+\epsilon \delta r: \boldsymbol{r}_{0} \in S\right\}
$$

Describing derivatives with respect to plasma boundary

- $f(S)=$ physics objective depending on equilibrium field
- Surface is displaced by vector field $\delta \boldsymbol{r}$

$$
S_{\epsilon}=\left\{\boldsymbol{r}_{0}+\epsilon \delta \boldsymbol{r}: \boldsymbol{r}_{0} \in S\right\}
$$

- Shape derivative of $f(S)$

$$
\delta f(\delta r)=\lim _{\epsilon \rightarrow 0} \frac{f\left(S_{\epsilon}\right)-f(S)}{\epsilon}
$$

Describing derivatives with respect to plasma boundary

- $f(S)=$ physics objective depending on equilibrium field
- Surface is displaced by vector field $\delta \boldsymbol{r}$

$$
S_{\epsilon}=\left\{\boldsymbol{r}_{0}+\epsilon \delta r: \boldsymbol{r}_{0} \in S\right\}
$$

- Shape derivative of $f(S)$

$$
\delta f(\delta r)=\lim _{\epsilon \rightarrow 0} \frac{f\left(S_{\epsilon}\right)-f(S)}{\epsilon}
$$

- Under assumption of smoothness

$$
\delta f(\delta r)=\int_{S} d^{2} x \delta \boldsymbol{r} \cdot \boldsymbol{n} \mathcal{G}
$$

- For any δr, shape gradient, \mathcal{G}, provides

Unperturbed boundary

Displacement (δr) change to figure of merit, δf

Describing derivatives with respect to plasma boundary

- $f(S)=$ physics objective depending on equilibrium field
- Surface is displaced by vector field $\delta \boldsymbol{r}$

$$
S_{\epsilon}=\left\{\boldsymbol{r}_{0}+\epsilon \delta r: \boldsymbol{r}_{0} \in S\right\}
$$

- Shape derivative of $f(S)$

$$
\delta f(\delta r)=\lim _{\epsilon \rightarrow 0} \frac{f\left(S_{\epsilon}\right)-f(S)}{\epsilon}
$$

- Under assumption of smoothness

Why is the shape gradient (\mathcal{G}) useful?

- Local sensitivity information
- Quantifying engineering tolerances
- Gradient-based optimization

Computing MHD shape gradient directly is expensive

- S described by parameters $\left\{\Omega_{i}\right\}_{1}^{N_{\Omega}}$
- $\partial f / \partial \Omega$ computed from finite differences
- $\geq N_{\Omega}+1$ non-linear equilibrium evaluations

Computing MHD shape gradient directly is expensive

- S described by parameters $\left\{\Omega_{i}\right\}_{1}^{N_{\Omega}}$
- $\partial f / \partial \Omega$ computed from finite differences
- $\geq N_{\Omega}+1$ non-linear equilibrium evaluations
- Fourier solution for shape gradient

$$
\mathcal{G}=\sum_{j} S_{j} \cos \left(m_{j} \theta-n_{j} \phi\right)
$$

- Shape gradient computed from linear system

$$
\frac{\partial f}{\partial \Omega_{i}}=\int_{S} d^{2} x S_{j} \cos \left(m_{j} \theta-n_{j} \phi\right) \frac{\partial \boldsymbol{r}}{\partial \Omega_{i}} \cdot \boldsymbol{n}
$$

Computing MHD shape gradient directly is expensive

- S described by parameters $\left\{\Omega_{i}\right\}_{1}^{N_{\Omega}}$
- $\partial f / \partial \Omega$ computed from finite differences
- $\geq N_{\Omega}+1$ non-linear equilibrium evaluations
- Fourier solution for shape gradient

$$
\mathcal{G}=\sum_{j} S_{j} \cos \left(m_{j} \theta-n_{j} \phi\right)
$$

- Shape gradient computed from linear system

$$
\frac{\partial f}{\partial \Omega_{i}}=\int_{S} d^{2} x S_{j} \cos \left(m_{j} \theta-n_{j} \phi\right) \frac{\partial \boldsymbol{r}}{\partial \Omega_{i}} \cdot \boldsymbol{n}
$$

${ }^{1}$ M. Landreman \& E.J. Paul, Nuclear Fusion, 58 (2018).

Linearized MHD interpretation of shape derivatives

- MHD equilibrium with specified $p(\psi), \iota(\psi)$, and $S_{\text {plasma }}$

$$
0=\frac{(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}}{4 \pi}-\nabla p
$$

Note: magnetic surfaces assumed (variational solution ${ }^{1}$)
${ }^{1}$ M. Kruskal \& R.M. Kulsrud, Phys. Fluids, 1 (1958).

Linearized MHD interpretation of shape derivatives

- MHD equilibrium with specified $p(\psi), \iota(\psi)$, and $S_{\text {plasma }}$

$$
0=\frac{(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}}{4 \pi}-\nabla p
$$

Note: magnetic surfaces assumed (variational solution¹)

- Perturbation with fixed $\iota(\psi)$ and $p(\psi)$ determined from ξ_{1}

$$
\begin{aligned}
& \delta \boldsymbol{B}_{1}=\nabla \times\left(\xi_{1} \times \boldsymbol{B}\right) \\
& \delta p\left(\xi_{1}\right)=-\xi_{1} \cdot \nabla p
\end{aligned}
$$

${ }^{1}$ M. Kruskal \& R.M. Kulsrud, Phys. Fluids, 1 (1958).

Linearized MHD interpretation of shape derivatives

- MHD equilibrium with specified $p(\psi), \iota(\psi)$, and $S_{\text {plasma }}$

$$
0=\frac{(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}}{4 \pi}-\nabla p
$$

Note: magnetic surfaces assumed (variational solution¹)

- Perturbation with fixed $\iota(\psi)$ and $p(\psi)$ determined from ξ_{1}

$$
\begin{aligned}
& \delta \boldsymbol{B}_{1}=\nabla \times\left(\xi_{1} \times \boldsymbol{B}\right) \\
& \delta p\left(\xi_{1}\right)=-\xi_{1} \cdot \nabla p
\end{aligned}
$$

- Perturbed equilibrium with specified $\left.\delta \boldsymbol{r} \cdot \boldsymbol{n}\right|_{S_{\text {plasma }}}$ satisfies

${ }^{1}$ M. Kruskal \& R.M. Kulsrud, Phys. Fluids, 1 (1958).

$$
\boldsymbol{F}\left(\xi_{1}\right)=\frac{(\nabla \times \boldsymbol{B}) \times \delta \boldsymbol{B}_{1}+\nabla \times\left(\delta \boldsymbol{B}_{1}\right) \times \boldsymbol{B}}{4 \pi}-\boldsymbol{\nabla} \delta p\left(\xi_{1}\right)=0
$$

Linearized MHD interpretation of shape derivatives

Shape gradient calculation requires $\geq N_{\Omega}+1$ solutions of

$$
\begin{gathered}
\boldsymbol{F}\left(\xi_{1}\right)=0 \\
\left.\xi_{1} \cdot \boldsymbol{n}\right|_{S_{\text {plasma }}}=\left.\delta \Omega_{i} \frac{\partial \boldsymbol{r}}{\partial \Omega_{i}} \cdot \boldsymbol{n}\right|_{S_{\text {plasma }}}
\end{gathered}
$$

Computing MHD shape gradient with adjoint approach ${ }^{1}$

Take advantage of self-adjointness of MHD force operator ${ }^{2}$

$$
\int_{V_{\text {plasma }}} d^{3} x\left(-F\left(\xi_{1}\right) \cdot \xi_{2}+\boldsymbol{F}\left(\xi_{2}\right) \cdot \xi_{1}\right)+\frac{1}{4 \pi} \int_{S_{\text {plasma }}} d^{2} x \boldsymbol{n} \cdot\left(\xi_{1} \delta \boldsymbol{B}_{2} \cdot \boldsymbol{B}-\xi_{2} \delta \boldsymbol{B}_{1} \cdot \boldsymbol{B}\right)=0
$$

Computing MHD shape gradient with adjoint approach ${ }^{1}$

Generalization: allow for $\boldsymbol{\delta} \boldsymbol{\iota}$

$$
\begin{gathered}
\int_{V_{\text {plasma }}} d^{3} x\left(-\boldsymbol{F}\left(\xi_{1}\right) \cdot \xi_{2}+\boldsymbol{F}\left(\xi_{2}\right) \cdot \xi_{1}\right)+\frac{1}{4 \pi} \int_{S_{\text {plasma }}} d^{2} x \boldsymbol{n} \cdot\left(\xi_{1} \delta \boldsymbol{B}_{2} \cdot \boldsymbol{B}-\xi_{2} \delta \boldsymbol{B}_{1} \cdot \boldsymbol{B}\right) \\
-\frac{2 \pi}{c} \int_{V_{\text {plasma }}} d \psi\left(\delta I_{T, 2}(\psi) \delta \iota_{1}(\psi)-\delta I_{T, 1}(\psi) \delta \iota_{2}(\psi)\right)=0
\end{gathered}
$$

${ }^{1}$ T. Antonsen Jr., E.J. Paul, M. Landreman, J. Plasma Phys. 85 (2019).

Computing MHD shape gradient with adjoint approach ${ }^{1}$

$$
\begin{gathered}
\int_{V_{\text {plasma }}} d^{3} x\left(-\boldsymbol{F}\left(\xi_{1}\right) \cdot \xi_{2}+\boldsymbol{F}\left(\xi_{2}\right) \cdot \xi_{1}\right)+\frac{1}{4 \pi} \int_{S_{\text {plasma }}} d^{2} x \boldsymbol{n} \cdot\left(\xi_{1} \delta \boldsymbol{B}_{2} \cdot \boldsymbol{B}-\xi_{2} \delta \boldsymbol{B}_{1} \cdot \boldsymbol{B}\right) \\
-\frac{2 \pi}{c} \int_{V_{\text {plasma }}} d \psi\left(\delta I_{T, 2}(\psi) \delta \iota_{1}(\psi)-\delta I_{T, 1}(\psi) \delta \iota_{2}(\psi)\right)=0
\end{gathered}
$$

1. Compute shape derivative for figure of merit

$$
\delta f\left(\xi_{1}\right)=\int_{V_{\text {plasma }}} d^{3} x \xi_{1} \cdot \boldsymbol{A}_{1}+\int_{S_{\text {plasma }}} d^{2} x \boldsymbol{n} \cdot \xi_{1} A_{2}
$$

2. Adjoint displacement ξ_{2} satisfies

$$
\begin{gathered}
\boldsymbol{F}\left(\xi_{2}\right)=-\boldsymbol{A}_{1} \\
\left.\xi_{2} \cdot \boldsymbol{n}\right|_{S_{\text {plasma }}}=0
\end{gathered}
$$

${ }^{1}$ T. Antonsen Jr., E.J. Paul, M. Landreman, J. Plasma Phys. 85 (2019).

Computing MHD shape gradient with adjoint approach ${ }^{1}$

$$
\begin{gathered}
\int_{V_{\text {plasma }}} d^{3} x\left(-\boldsymbol{F}\left(\xi_{1}\right) \cdot \xi_{2}+\boldsymbol{F}\left(\xi_{2}\right) \cdot \xi_{1}\right)+\frac{1}{4 \pi} \int_{S_{\text {plasma }}} d^{2} x \boldsymbol{n} \cdot\left(\xi_{1} \delta \boldsymbol{B}_{2} \cdot \boldsymbol{B}-\xi_{2} \delta \boldsymbol{B}_{1} \cdot \boldsymbol{B}\right) \\
-\frac{2 \pi}{c} \int_{V_{\text {plasma }}} d \psi\left(\delta I_{T, 2}(\psi) \delta \iota_{1}(\psi)-\delta I_{T, 1}(\psi) \delta \iota_{2}(\psi)\right)=0
\end{gathered}
$$

1. Compute shape derivative for figure of merit

$$
\delta f\left(\xi_{1}\right)=\int_{V_{\text {plasma }}} d^{3} x \xi_{1} \cdot \boldsymbol{A}_{1}+\int_{S_{\text {plasma }}} d^{2} x \boldsymbol{n} \cdot \xi_{1} A_{2}
$$

2. Adjoint displacement ξ_{2} satisfies

$$
\begin{gathered}
\boldsymbol{F}\left(\xi_{2}\right)=-\boldsymbol{A}_{1} \\
\left.\xi_{2} \cdot \boldsymbol{n}\right|_{S_{\text {plasma }}}=0
\end{gathered}
$$

${ }^{1}$ T. Antonsen Jr., E.J. Paul, M. Landreman, J. Plasma Phys. 85 (2019).

Magnetic well shape gradient requires pressure perturbation

$$
f_{W}=\int_{V_{\text {plasma }}} d \psi\left(w_{2}(\psi) V^{\prime}(\psi)-w_{1}(\psi) V^{\prime}(\psi)\right) \approx V^{\prime \prime}(\psi)
$$

- Proxy for interchange stability $\left(p^{\prime}(\psi) V^{\prime \prime}(\psi)>0\right.$ favorable)

Magnetic well shape gradient requires pressure perturbation

$$
f_{W}=\int_{V_{\text {plasma }}} d \psi\left(w_{2}(\psi) V^{\prime}(\psi)-w_{1}(\psi) V^{\prime}(\psi)\right) \approx V^{\prime \prime}(\psi)
$$

- Proxy for interchange stability $\left(p^{\prime}(\psi) V^{\prime \prime}(\psi)>0\right.$ favorable)

$$
\delta f_{W}\left(\xi_{1}\right)=-\int_{V_{\text {plasma }}} d^{3} x \xi_{1} \cdot \nabla\left(w_{2}(\psi)-w_{1}(\psi)\right)+\int_{S_{\text {plasma }}} d^{2} x \xi_{1} \cdot \boldsymbol{n}\left(w_{2}(\psi)-w_{1}(\psi)\right)
$$

Magnetic well shape gradient requires pressure perturbation

$$
f_{W}=\int_{V_{\text {plasma }}} d \psi\left(w_{2}(\psi) V^{\prime}(\psi)-w_{1}(\psi) V^{\prime}(\psi)\right) \approx V^{\prime \prime}(\psi)
$$

- Proxy for interchange stability $\left(p^{\prime}(\psi) V^{\prime \prime}(\psi)>0\right.$ favorable)

$$
\delta f_{W}\left(\xi_{1}\right)=-\int_{V_{\text {plasma }}} d^{3} x \xi_{1} \cdot \nabla\left(w_{2}(\psi)-w_{1}(\psi)\right)+\int_{S_{\text {plasma }}} d^{2} x \xi_{1} \cdot \boldsymbol{n}\left(w_{2}(\psi)-w_{1}(\psi)\right)
$$

Adjoint problem

$$
\begin{gathered}
\boldsymbol{F}\left(\xi_{2}\right)=\nabla\left(w_{2}(\psi)-w_{1}(\psi)\right) \\
\left.\xi_{2} \cdot \boldsymbol{n}\right|_{S_{\text {plasma }}}=0 \longrightarrow \mathcal{G}_{W}=\left(\frac{\delta \boldsymbol{B}_{2} \cdot \boldsymbol{B}}{4 \pi}\right) \\
\delta I_{T, 2}(\psi)=0
\end{gathered}
$$

Magnetic well shape gradient computed with VMEC ${ }^{1}$

Linearization approximated with $\Delta_{P} \ll 1$

$$
\begin{gathered}
\boldsymbol{F}\left(\xi_{2}\right)=\nabla w(\psi) \\
\left.\xi_{2} \cdot \boldsymbol{n}\right|_{S_{\text {plasma }}}=0 \\
\delta I_{T, 2}(\psi)=0
\end{gathered}
$$

$$
\begin{gathered}
0=\frac{(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}}{4 \pi}-\nabla\left(p(\psi)+\Delta_{P} w(\psi)\right) \\
S_{\text {plasma }}, I_{T}(\psi), p(\psi) \text { prescribed }
\end{gathered}
$$

${ }^{1}$ S. Hirshman \& J.C. Whitson, Phys. Fluids, 26 (1983).

Magnetic well shape gradient computed with VMEC ${ }^{1}$

Linearization approximated with $\Delta_{P} \ll 1$

$$
\begin{gathered}
\boldsymbol{F}\left(\xi_{2}\right)=\nabla w(\psi) \\
\left.\xi_{2} \cdot \boldsymbol{n}\right|_{S_{\text {plasma }}}=0 \\
\delta I_{T, 2}(\psi)=0
\end{gathered}
$$

$$
\begin{gathered}
0=\frac{(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}}{4 \pi}-\nabla\left(p(\psi)+\Delta_{P} w(\psi)\right) \\
S_{\text {plasma }}, I_{T}(\psi), p(\psi) \text { prescribed }
\end{gathered}
$$

Finite difference

Adjoint

Calculation for LI383 equilibrium ${ }^{2}$
${ }^{1}$ S. Hirshman \& J.C. Whitson, Phys. Fluids, 26 (1983).
${ }^{2}$ M. Zarnstorff et al, Plasma Phys. \& Controlled Fusion, 43 (2001).

Magnetic well shape gradient computed with VMEC ${ }^{1}$

Linearization approximated with $\Delta_{P} \ll 1$

$$
\begin{gathered}
\boldsymbol{F}\left(\xi_{2}\right)=\nabla w(\psi) \\
\left.\xi_{2} \cdot \boldsymbol{n}\right|_{S_{\text {plasma }}}=0 \\
\delta I_{T, 2}(\psi)=0
\end{gathered}
$$

Finite difference

$$
\begin{gathered}
0=\frac{(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}}{4 \pi}-\nabla\left(p(\psi)+\Delta_{P} w(\psi)\right) \\
S_{\text {plasma }}, I_{T}(\psi), p(\psi) \text { prescribed }
\end{gathered}
$$

Adjoint

Calculation for
LI383 equilibrium ${ }^{2}$
${ }^{1}$ S. Hirshman \& J.C. Whitson, Phys. Fluids, 26 (1983).
${ }^{2}$ M. Zarnstorff et al, Plasma Phys. \& Controlled Fusion, 43 (2001).

Magnetic ripple shape gradient requires anisotropic pressure

$$
f_{R}=\int_{V_{\text {plasma }}} d^{3} x \underbrace{\frac{1}{2} w(\psi)(B-\bar{B})^{2}}_{\tilde{f}_{R}} \quad \bar{B}=\frac{\int_{V_{\text {plasma }}} d^{3} x w(\psi) B}{\int_{V_{\text {plasma }}} d^{3} x w(\psi)}
$$

- Proxy for quasi-symmetry (guiding center confinement) near axis

Magnetic ripple shape gradient requires anisotropic pressure

$$
f_{R}=\int_{V_{\text {plasma }}} d^{3} x \underbrace{\frac{1}{2} w(\psi)(B-\bar{B})^{2}}_{\tilde{f}_{R}} \bar{B}=\frac{\int_{V_{\text {plasma }}} d^{3} x w(\psi) B}{\int_{V_{\text {plasma }}} d^{3} x w(\psi)}
$$

- Proxy for quasi-symmetry (guiding center confinement) near axis

$$
\begin{aligned}
& \quad \begin{aligned}
& \boldsymbol{F}\left(\xi_{2}\right)=\nabla \cdot \boldsymbol{P} \quad \text { Adjoint Problem } \\
&\left.\xi_{2} \cdot \boldsymbol{n}\right|_{S_{\text {plasma }}}=0 \\
& \boldsymbol{P}= p_{\| \|} \boldsymbol{b} \boldsymbol{b}+p_{\perp}(\boldsymbol{I}-\boldsymbol{b} \boldsymbol{b}) \\
& p_{\|}=\tilde{f}_{R} \\
& p_{\perp}= p_{\|}-B \frac{\partial p_{\| \|}}{\partial B}
\end{aligned}
\end{aligned}
$$

Variational principle for equilibria with anisotropic pressure

Equilibrium with anisotropic pressure

$$
\frac{\boldsymbol{J} \times \boldsymbol{B}}{c}=\nabla \cdot\left(p_{\|}(\psi, B) \boldsymbol{b} \boldsymbol{b}+p_{\perp}(\psi, B)(\overrightarrow{\boldsymbol{I}}-\boldsymbol{b} \boldsymbol{b})\right)
$$

$p_{\perp}(\psi, B)$ determined from parallel force balance

$$
\frac{\partial p_{\|}(\psi, B)}{\partial B}=\frac{p_{\|}(\psi, B)-p_{\perp}(\psi, B)}{B}
$$

Variational principle for equilibria with anisotropic pressure

Equilibrium with anisotropic pressure

$$
\frac{\boldsymbol{J} \times \boldsymbol{B}}{c}=\nabla \cdot\left(p_{\| l}(\psi, B) \boldsymbol{b} \boldsymbol{b}+p_{\perp}(\psi, B)(\overrightarrow{\boldsymbol{I}}-\boldsymbol{b} \boldsymbol{b})\right)
$$

$p_{\perp}(\psi, B)$ determined from parallel force balance

$$
\frac{\partial p_{\|}(\psi, B)}{\partial B}=\frac{p_{\|}(\psi, B)-p_{\perp}(\psi, B)}{B}
$$

Stationary points of $W[B, p]$

$$
W[B, p]=\int_{V_{P}} d^{3} x \frac{B^{2}}{8 \pi}-p_{\|}
$$

Subject to:

1. Prescribed $p_{\|}(\psi, B)$
2. Fixed $\iota(\psi)$
3. Magnetic surfaces

Variational principle for equilibria with anisotropic pressure

Equilibrium with anisotropic pressure

$$
\frac{\boldsymbol{J} \times \boldsymbol{B}}{c}=\nabla \cdot\left(p_{\|}(\psi, B) \boldsymbol{b} \boldsymbol{b}+p_{\perp}(\psi, B)(\overrightarrow{\boldsymbol{I}}-\boldsymbol{b} \boldsymbol{b})\right)
$$

Stationary points of $W[B, p]$

$$
W[B, p]=\int_{V_{P}} d^{3} x \frac{B^{2}}{8 \pi}-p_{\|}
$$

Subject to:

1. Prescribed $p_{\|}(\psi, B)$
2. Fixed $\iota(\psi)$
3. Magnetic surfaces

- Solutions computed with ANIMEC ${ }^{1}$ code
- Used for analysis of energetic particle contributions to equilibria
${ }^{1}$ W.A. Cooper et al, Computer Phys. Comm., 72 (1992).

Magnetic ripple shape gradient computed with ANIMEC¹

Linearization approximated with $\Delta_{P} \ll 1$

$$
\begin{gathered}
\boldsymbol{F}\left(\xi_{2}\right)=\nabla \cdot \boldsymbol{P} \\
\left.\xi_{2} \cdot \boldsymbol{n}\right|_{S_{\text {plasma }}}=0 \\
\delta \iota_{2}(\psi)=0
\end{gathered}
$$

$$
\begin{gathered}
0=\frac{(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}}{4 \pi}-\nabla(p(\psi))-\Delta_{P} \nabla \cdot \boldsymbol{P} \\
S_{\text {plasma }}, \iota(\psi), p(\psi), p_{\| \mid}(\psi, B) \quad \text { prescribed }
\end{gathered}
$$

Magnetic ripple shape gradient computed with ANIMEC ${ }^{1}$

Linearization approximated with $\Delta_{P} \ll 1$

$$
\begin{gathered}
\boldsymbol{F}\left(\xi_{2}\right)=\nabla \cdot \boldsymbol{P} \\
\left.\xi_{2} \cdot \boldsymbol{n}\right|_{S_{\text {plasma }}}=0 \\
\delta l_{2}(\psi)=0
\end{gathered}
$$

Finite difference

Adjoint

${ }^{1}$ W.A. Cooper et al, Computer Phys. Comm., 72 (1992).

Magnetic ripple shape gradient computed with ANIMEC ${ }^{1}$

Linearization approximated with $\Delta_{P} \ll 1$

$$
\begin{gathered}
\boldsymbol{F}\left(\xi_{2}\right)=\nabla \cdot \boldsymbol{P} \\
\left.\xi_{2} \cdot \boldsymbol{n}\right|_{S_{\text {plasma }}}=0 \\
\delta \iota_{2}(\psi)=0
\end{gathered}
$$

Finite difference

Adjoint

${ }^{1}$ W.A. Cooper et al, Computer Phys. Comm., 72 (1992).

Many other applications of adjoint approach possible ${ }^{1}$

Effective Ripple ${ }^{2}\left(\epsilon_{\text {eff }}^{3 / 2}\right)$

- Proxy for low-collisionality neoclassical confinement
- Adjoint approach requires bulk force

$$
\mathcal{F}=\nabla \cdot \boldsymbol{P}(\psi, \alpha)
$$

$$
f_{Q S}=\int d^{3} x \epsilon_{\mathrm{eff}}^{3 / 2}(\psi) w(\psi)
$$

${ }^{1}$ E.J. Paul et al, submitted to J. Plasma Phys., (arXiv:1910.14144).
${ }^{2}$ V.V. Nemov et al, Phys. Plasmas, 6 (1999).
${ }^{3}$ P. Helander, Rep. Prog. Phys., 77 (2014).

Many other applications of adjoint approach possible ${ }^{1}$

Effective Ripple ${ }^{2}\left(\epsilon_{\text {eff }}^{3 / 2}\right)$

- Proxy for low-collisionality neoclassical confinement
- Adjoint approach requires bulk force

$$
\mathcal{F}=\nabla \cdot \boldsymbol{P}(\psi, \alpha)
$$

$$
f_{Q S}=\int d^{3} x \epsilon_{\mathrm{eff}}^{3 / 2}(\psi) w(\psi)
$$

Cannot be implemented with ANIMEC
${ }^{1}$ E.J. Paul et al, submitted to J. Plasma Phys., (arXiv:1910.14144).
${ }^{2}$ V.V. Nemov et al, Phys. Plasmas, 6 (1999).
${ }^{3}$ P. Helander, Rep. Prog. Phys., 77 (2014).

Many other applications of adjoint approach possible ${ }^{1}$

Departure from quasi-symmetry

- Quasi-symmetry \rightarrow guiding center confinement, reduced neoclassical transport

$$
f_{Q S}=\int d^{3} x w(\psi)(\boldsymbol{B} \times \nabla B \cdot \nabla \psi-F(\psi) \boldsymbol{B} \cdot \nabla B)^{2}
$$

Does not require Boozer coordinate transformation

HSX field strength ${ }^{\mathbf{2}}$

${ }^{1}$ E.J. Paul et al, submitted to J. Plasma Phys., (arXiv:1910.14144).
${ }^{2}$ L.M. Imbert-Gerard, E.J. Paul, A. Wright, (arXiv:1908.05360).

Many other applications of adjoint approach possible ${ }^{1}$

Departure from quasi-symmetry

- Quasi-symmetry \rightarrow guiding center confinement, reduced neoclassical transport

$$
f_{Q S}=\int d^{3} x w(\psi)(\boldsymbol{B} \times \nabla B \cdot \nabla \psi-F(\psi) \boldsymbol{B} \cdot \nabla B)^{2}
$$

Does not require Boozer coordinate transformation

- Adjoint approach requires bulk force, $\boldsymbol{\mathcal { F }}(\boldsymbol{r})$

HSX field strength ${ }^{\mathbf{2}}$

${ }^{1}$ E.J. Paul et al, submitted to J. Plasma Phys., (arXiv:1910.14144).
${ }^{2}$ L.M. Imbert-Gerard, E.J. Paul, A. Wright, (arXiv:1908.05360).

Adjoint approach for coil shape gradient

Generalization of self-adjointness of MHD force operator ${ }^{1}$

$$
\begin{gathered}
\int_{V_{\text {plasma }}} d^{3} x\left(-\boldsymbol{F}\left(\xi_{1}\right) \cdot \xi_{2}+\boldsymbol{F}\left(\xi_{2}\right) \cdot \xi_{1}\right)+\frac{1}{c} \sum_{k}\left(I_{C_{k}} \int_{C_{k}} d l\left(\delta \boldsymbol{r}_{C_{1, k}} \cdot \boldsymbol{t} \times \delta \boldsymbol{B}_{2}-\delta \boldsymbol{r}_{2, k} \cdot \boldsymbol{t} \times \delta \boldsymbol{B}_{1}\right)\right) \\
-\frac{2 \pi}{\boldsymbol{c}} \int_{V_{\text {plasma }}} d \psi\left(\delta I_{T, 2}(\psi) \delta \iota_{1}(\psi)-\delta I_{T, 1}(\psi) \delta \iota_{2}(\psi)\right)=0
\end{gathered}
$$

${ }^{1}$ T. Antonsen Jr., E.J. Paul, M. Landreman, J. Plasma Phys., 85 (2019).

Adjoint approach for coil shape gradient

Generalization of self-adjointness of MHD force operator ${ }^{1}$

$$
\begin{gathered}
\int_{V_{\text {plasma }}} d^{3} x\left(-\boldsymbol{F}\left(\xi_{1}\right) \cdot \xi_{2}+\boldsymbol{F}\left(\xi_{2}\right) \cdot \xi_{1}\right)+\frac{1}{c} \sum_{k}\left(I_{C_{k}} \int_{C_{k}} d l\left(\delta \boldsymbol{r}_{C_{1, k}} \cdot \boldsymbol{t} \times \delta \boldsymbol{B}_{2}-\delta \boldsymbol{r}_{2, k} \cdot \boldsymbol{t} \times \delta \boldsymbol{B}_{1}\right)\right) \\
-\frac{2 \pi}{c} \int_{V_{\text {plasma }}} d \psi\left(\delta I_{T, 2}(\psi) \delta \iota_{1}(\psi)-\delta I_{T, 1}(\psi) \delta \iota_{2}(\psi)\right)=0
\end{gathered}
$$

1. Compute shape derivative for figure of merit

$$
\delta f\left(\xi_{1}\right)=\int_{V_{\text {plasma }}} d^{3} x \xi_{1} \cdot A_{1}
$$

2. Adjoint displacement ξ_{2} satisfies

$$
\begin{gathered}
\boldsymbol{F}\left(\xi_{2}\right)=-\boldsymbol{A}_{1} \\
\delta \boldsymbol{r}_{2, k}=0
\end{gathered}
$$

${ }^{1}$ T. Antonsen Jr., E.J. Paul, M. Landreman, J. Plasma Phys., 85 (2019).

Adjoint approach for coil shape gradient

Generalization of self-adjointness of MHD force operator ${ }^{1}$

$$
\begin{gathered}
\int_{V_{\text {plasma }}} d^{3} x\left(-\boldsymbol{F}\left(\xi_{1}\right) \cdot \xi_{2}+\boldsymbol{F}\left(\xi_{2}\right) \cdot \xi_{1}\right)+\frac{1}{c} \sum_{k}\left(I_{C_{k}} \int_{C_{k}} d l\left(\delta \boldsymbol{r}_{C_{1, k}} \cdot \boldsymbol{t} \times \delta \boldsymbol{B}_{2}-\delta \boldsymbol{r}_{2, k} \cdot \boldsymbol{t} \times \delta \boldsymbol{B}_{1}\right)\right) \\
-\frac{2 \pi}{c} \int_{V_{\text {plasma }}} d \psi\left(\delta I_{T, 2}(\psi) \delta \iota_{1}(\psi)-\delta I_{T, 1}(\psi) \delta \iota_{2}(\psi)\right)=0
\end{gathered}
$$

1. Compute shape derivative for figure of merit

$$
\delta f\left(\xi_{1}\right)=\int_{V_{\text {plasma }}} d^{3} x \xi_{1} \cdot \boldsymbol{A}_{1}
$$

2. Adjoint displacement ξ_{2} satisfies

$$
\begin{gathered}
\boldsymbol{F}\left(\xi_{2}\right)=-\boldsymbol{A}_{1} \\
\delta \boldsymbol{r}_{2, k}=0
\end{gathered}
$$

$$
\begin{aligned}
& \delta f\left(\xi_{1}\right)= \\
& \sum_{k} \int_{C_{k}} d l \delta \boldsymbol{r}_{C_{1, k}} \cdot \boldsymbol{t} \times \delta \boldsymbol{B}_{2} \frac{{ }^{I} C_{k}}{\mathrm{c}} \\
& \quad \boldsymbol{S}_{k}=\text { coil shape gradient }
\end{aligned}
$$

${ }^{1}$ T. Antonsen Jr., E.J. Paul, M. Landreman, J. Plasma Phys., 85 (2019).

Rotational transform coil shape gradient with VMEC

$$
f_{l}=\int_{V_{\text {plasma }}} d \psi w(\psi) \iota(\psi) \underbrace{}_{0} \underbrace{1}_{\substack{0.5 \\ \psi / \psi_{0}}}
$$

Rotational transform coil shape gradient with VMEC

$$
f_{\iota}=\int_{V_{\text {plasma }}} d \psi w(\psi) \iota(\psi)
$$

Adjoint problem

$$
F\left(\xi_{2}\right)=0
$$

$$
\delta \boldsymbol{r}_{C_{k, 2}}=0
$$

$$
\delta I_{T, 2}(\psi)=w(\psi)
$$

$\boldsymbol{S}_{k}=-I_{C_{k}} \boldsymbol{t} \times \frac{\delta \boldsymbol{B}_{2}}{2 \pi}$

Rotational transform coil shape gradient with VMEC

$$
f_{\iota}=\int_{V_{\text {plasma }}} d \psi w(\psi) \iota(\psi)
$$

$$
F\left(\xi_{2}\right)=0
$$

$$
\delta \boldsymbol{r}_{C_{k, 2}}=0
$$

$$
\delta I_{T, 2}(\psi)=w(\psi)
$$

$$
\boldsymbol{S}_{k}=-I_{C_{k}} \boldsymbol{t} \times \frac{\delta \boldsymbol{B}_{2}}{2 \pi} \quad \begin{gathered}
\text { Computed with } \\
\text { DIAGNO }^{2}
\end{gathered}
$$

${ }^{1}$ D. Williamson et al, Fusion Engineering, (2005).
${ }^{2}$ S. Lazerson, Plasma Phys. Control. Fusion, 55 (2013).

Outline

- Introduction
- Shape gradients for MHD equilibria
- Perturbed equilibrium approach
- Variational principle for linear MHD
- Euler-Lagrange solutions
- Conclusions

Variational principle for perturbed MHD equilibria

Perturbed equilibrium with bulk force

$$
\begin{gathered}
\boldsymbol{F}(\xi)+\delta \boldsymbol{F}=\frac{(\nabla \times \boldsymbol{B}) \times \delta \boldsymbol{B}+(\nabla \times(\delta \boldsymbol{B})) \times \boldsymbol{B}}{4 \pi}-\nabla \delta p(\xi)+\delta \boldsymbol{F}=0 \\
\delta \boldsymbol{B}(\xi)=\nabla \times(\xi \times \boldsymbol{B}) \\
\delta p=-\xi \cdot \nabla p \\
\left.\xi \cdot \nabla \psi\right|_{\psi=0}=\left.\xi \cdot \nabla \psi\right|_{\psi=\psi_{0}}=0
\end{gathered}
$$

Variational principle for perturbed MHD equilibria

Perturbed equilibrium with bulk force

$$
\begin{gathered}
\boldsymbol{F}(\xi)+\delta \boldsymbol{F}=\frac{(\nabla \times \boldsymbol{B}) \times \delta \boldsymbol{B}+(\nabla \times(\delta \boldsymbol{B})) \times \boldsymbol{B}}{4 \pi}-\nabla \delta p(\xi)+\delta \boldsymbol{F}=0 \\
\delta \boldsymbol{B}(\xi)=\nabla \times(\xi \times \boldsymbol{B}) \\
\delta p=-\xi \cdot \nabla p \\
\left.\xi \cdot \nabla \psi\right|_{\psi=0}=\left.\xi \cdot \nabla \psi\right|_{\psi=\psi_{0}}=0
\end{gathered}
$$

II

Stationary points of $W[\xi]$

$$
\begin{gathered}
W[\xi]=\int_{V_{P}} d^{3} x\left(-\frac{\delta \boldsymbol{B} \cdot \delta \boldsymbol{B}}{4 \pi}+\frac{\xi \cdot \boldsymbol{J} \times \delta \boldsymbol{B}}{c}-\xi \cdot \nabla p(\nabla \cdot \xi)-2 \xi \cdot \delta \boldsymbol{F}\right) \\
\left.\delta \xi \cdot \nabla \psi\right|_{\psi=0}=\left.\delta \boldsymbol{\xi} \cdot \nabla \psi\right|_{\psi=\psi_{0}}=0
\end{gathered}
$$

Spectral solution of Euler-Lagrange equation (I)

$$
\begin{gathered}
\xi \cdot B=0 \rightarrow \\
2 \text { independent } \\
\text { components }
\end{gathered}
$$

$$
\begin{gathered}
W\left[\xi^{\psi}, \xi^{\alpha}\right]=\int_{V_{P}} d^{3} x\left(-\frac{\delta \boldsymbol{B} \cdot \delta \boldsymbol{B}}{4 \pi}+\frac{\boldsymbol{\xi} \cdot \boldsymbol{J} \times \delta \boldsymbol{B}}{c}-\boldsymbol{\xi} \cdot \nabla p(\boldsymbol{\nabla} \cdot \boldsymbol{\xi})-2 \boldsymbol{\xi} \cdot \delta \boldsymbol{F}\right) \\
\xi^{\psi}=\xi \cdot \nabla \psi \\
\xi^{\alpha}=\xi \cdot \nabla \theta-\iota(\psi) \xi \cdot \nabla \phi \\
\left.\xi^{\psi}\right|_{\psi=0}=\left.\xi^{\psi}\right|_{\psi=\psi_{0}}=0
\end{gathered}
$$

Spectral solution of Euler-Lagrange equation (I)

$\xi \cdot \boldsymbol{B}=\mathbf{0} \rightarrow$
2 independent components

Expand in

$$
\begin{gathered}
W\left[\xi^{\psi}, \xi^{\alpha}\right]=\int_{V_{P}} d^{3} x\left(-\frac{\delta \boldsymbol{B} \cdot \delta \boldsymbol{B}}{4 \pi}+\frac{\boldsymbol{\xi} \cdot \boldsymbol{J} \times \delta \boldsymbol{B}}{c}-\xi \cdot \nabla p(\boldsymbol{\nabla} \cdot \boldsymbol{\xi})-2 \xi \cdot \delta \boldsymbol{F}\right) \\
\xi^{\psi}=\xi \cdot \nabla \psi \\
\xi^{\alpha}=\xi \cdot \nabla \theta-\iota(\psi) \xi \cdot \nabla \phi \\
\left.\xi^{\psi}\right|_{\psi=0}=\left.\xi^{\psi}\right|_{\psi=\psi_{0}}=0
\end{gathered}
$$

Fourier series

$$
\begin{aligned}
& \xi^{\psi, \alpha}(\psi, \theta, \phi)=\sum_{m, n} \xi_{m n c}^{\psi, \alpha} \cos (m \theta-n \phi)+\xi_{m n s}^{\psi, \alpha} \sin (m \theta-n \phi)=\Xi^{\psi, \alpha}(\psi) \cdot \mathcal{F}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\Xi^{\alpha} \cdot \stackrel{\boldsymbol{A}^{\alpha \psi}}{\Xi^{\psi}}+\Xi^{\alpha} \cdot \stackrel{\boldsymbol{A}^{\alpha \psi^{\prime}}}{\Xi^{\prime}}{ }^{\prime}(\psi)+\Xi^{\alpha} \cdot \overleftrightarrow{\boldsymbol{A}^{\alpha \alpha}} \Xi^{\alpha}+\boldsymbol{C}^{\psi} \cdot \Xi^{\psi}+C^{\alpha} \cdot \Xi^{\alpha}\right)
\end{aligned}
$$

Spectral solution of Euler-Lagrange equation (II)

$$
\begin{aligned}
& \text { Variation w.r.t. } \Xi^{\alpha}
\end{aligned}
$$

Spectral solution of Euler-Lagrange equation (II)

Variation w.r.t. Ξ^{α}

\downarrow

Variation w.r.t. Ξ^{ψ} (Ξ^{α} eliminated)

$$
\left.\Xi^{\psi}\right|_{\psi=0}=\left.\Xi^{\psi}\right|_{\psi=\psi_{0}}=0
$$

Spectral solution of Euler-Lagrange equation (II)

\downarrow

$$
\begin{gathered}
\text { Variation w.r.t. } \Xi^{\psi}\left(\Xi^{\alpha} \text { eliminated }\right) \\
\overleftrightarrow{\boldsymbol{C}^{\psi}} \Xi^{\psi}(\psi)+\stackrel{\boldsymbol{C}^{\boldsymbol{\sigma}^{\prime}}}{\Xi} \psi^{\prime}(\psi)+\stackrel{\boldsymbol{C}^{\psi^{\prime \prime}}}{\Xi} \psi^{\prime \prime}(\psi)+\overrightarrow{\boldsymbol{D}}=\mathbf{0} \\
\left.\Xi^{\psi}\right|_{\psi=0}=\Xi \Xi_{\psi=\psi_{0}}=0
\end{gathered}
$$

- $2^{\text {nd }}$ order coupled 2-point BVP solved with finite difference
- Similar to Euler-Lagrange eqn. solved by DCON ${ }^{1}$
${ }^{1}$ A. Glasser, Phys. Plasmas, 23 (2016).

Spectral solution of Euler-Lagrange equation (II)

$$
2{\overleftarrow{A^{\alpha \alpha}}}_{\Xi}{ }^{\alpha}(\psi)=\left({\overleftrightarrow{A^{\alpha \psi}}}_{\Xi}{ }^{\psi}(\psi)+{\overleftrightarrow{A^{\alpha \psi^{\prime}}}}_{\underline{\Xi}} \psi^{\prime}(\psi)+C^{\alpha}\right)
$$

Singular at rational surfaces in 3D

Variation w.r.t. Ξ^{ψ} (Ξ^{α} eliminated)

$$
\begin{gathered}
\overleftrightarrow{\boldsymbol{C}^{\psi}} \Xi^{\psi}(\psi)+\overleftrightarrow{\boldsymbol{C}^{\psi^{\prime}}} \Xi^{\psi^{\prime}}(\psi)+\overleftrightarrow{\boldsymbol{C}}^{\psi^{\prime \prime}} \Xi \psi^{\prime \prime}(\psi)+\overrightarrow{\boldsymbol{D}}=\mathbf{0} \\
\Xi_{\psi=0}=\left.\Xi^{\psi}\right|_{\psi=\psi_{0}}=0
\end{gathered}
$$

- $2^{\text {nd }}$ order coupled 2-point BVP solved with finite difference
- Similar to Euler-Lagrange eqn. solved by DCON ${ }^{1}$
${ }^{1}$ A. Glasser, Phys. Plasmas, 23 (2016).

Preliminary perturbed equilibrium results

- Equilibrium with θ and z symmetry
- Bulk force $=$ pressure perturbation

$$
\delta F=-\nabla \delta P(\psi)
$$

- Benchmark with FD VMEC solution

Outline

- Introduction
- Shape gradients for MHD equilibria
- Perturbed equilibrium approach
- Conclusions

Conclusions (I)

Open questions

- How to extend linearized MHD approach to 3D (e.g. Frobenius analysis as in DCON^{1})?
- Can we prevent flux surface overlap in linearized approach?
- Can adjoint approach be generalized to avoid assumption of surfaces?
${ }^{1}$ A. Glasser, Phys. Plasmas, 23 (2016).

Conclusions (I)

Open questions

- How to extend linearized MHD approach to 3D (e.g. Frobenius analysis as in DCON)?
- Can we prevent flux surface overlap in linearized approach?
- Can adjoint approach be generalized to avoid assumption of surfaces?

Future work

- Application of adjoint approach for fixed and free-boundary optimization (e.g. incorporation in STELLOPT).
- Demonstration for other important figures of merit (e.g. energetic particle confinement)

Conclusions (II)

- Adjoint methods allow efficient computation of geometric derivatives
- Gradient-based optimization
- Sensitivity and tolerance analysis
- Adjoint approach for MHD equilibria used to compute shape gradient for plasma boundary and coil shapes
\checkmark Magnetic well
\checkmark Magnetic ripple
\checkmark Rotational transform
- Effective ripple $\left(\epsilon_{\text {eff }}^{3 / 2}\right)$
- Quasisymmetry
? Energetic particles

Conclusions (II)

- Adjoint methods allow efficient computation of geometric derivatives
- Gradient-based optimization
- Sensitivity and tolerance analysis
- Adjoint approach for MHD equilibria used to compute shape gradient for plasma boundary and coil shapes

References for this work

- T.M. Antonsen, E.J. Paul, M. Landreman, J. Plasma Phys., 85 (2019).
- E.J. Paul et al, submitted to J. Plasma Phys., (arXiv:1910.14144).

Other adjoint methods for stellarators

- Optimization of coil shapes E.J. Paul et al, Nuclear Fusion, 58 (2018).
- Optimization of neoclassical quantities E.J. Paul et al, J. Plasma Phys., 85 (2019).

Thank you for your attention

