# An adjoint approach for the shape gradients of 3D MHD equilibria

**Elizabeth Paul**<sup>1</sup>, Thomas Antonsen, Jr.<sup>1</sup>, Matt Landreman<sup>1</sup>, W. Anthony Cooper<sup>2</sup>

<sup>1</sup>University of Maryland, College Park <sup>2</sup>Swiss Alps Fusion Energy





PPPL Research Seminar November 25, 2019

#### Outline

- Introduction
  - Stellarator shape optimization
  - Adjoint methods
- Shape gradients for MHD equilibria
- Perturbed equilibrium approach
- Conclusions

#### **Stellarators require shape optimization (I)**

Traditional two-step optimization

1. MHD equilibrium optimization (e.g. STELLOPT<sup>1</sup>, ROSE<sup>2</sup>)

How to design boundary for optimal confinement?



<sup>1</sup>D.A. Spong et al, *Nuclear Fusion*, 41 (2001). <sup>2</sup>M. Drevlak et al, *Nuclear Fusion*, 59 (2019).

Elizabeth Paul

**PPPL Research Seminar** 

November 25, 2019 1

#### **MHD** force balance

#### **Stellarators require shape optimization (I)**

Traditional two-step optimization

1. MHD equilibrium optimization (e.g. STELLOPT<sup>1</sup>, ROSE<sup>2</sup>)

How to design boundary for optimal confinement?

2. Coil design (e.g. REGCOIL<sup>3</sup>, FOCUS<sup>4</sup>)

How to design feasible coils to obtain desired plasma boundary? How sensitive is a figure of merit to coil displacements?

<sup>1</sup>D.A. Spong et al, *Nuclear Fusion*, 41 (2001).
<sup>2</sup>M. Drevlak et al, *Nuclear Fusion*, 59 (2019).
<sup>3</sup>M. Landreman, *Nuclear Fusion*, 57 (2017).
<sup>4</sup>C. Zhu et al, *Nuclear Fusion*, 58 (2017).

Elizabeth Paul

**PPPL Research Seminar** 





Biot-Savart

November 25, 2019

#### **Stellarators require shape optimization (II)**

**Combined one-step optimization** 

#### 1. MHD equilibrium direct optimization of coils<sup>1</sup>

*How to design coils for optimal confinement and engineering feasibility?* 



**MHD** force balance

<sup>1</sup>D. Strickler et al, *IAEA FT/P2-06* (2003).

**Elizabeth Paul** 

**PPPL Research Seminar** 

#### **Stellarators require shape optimization (II)**

**Combined one-step optimization** 

#### 1. MHD equilibrium direct optimization of coils<sup>1</sup>

*How to design coils for optimal confinement and engineering feasibility?* 



**MHD** force balance

"The highest priority for technology is to better integrate the engineering design with the physics design at the earliest possible stage." -Report from the National Stellarator Coordinating Committee<sup>2</sup>

<sup>1</sup>D. Strickler et al, *IAEA FT/P2-06* (2003). <sup>2</sup>D.Gates et al, *J. Fusion Energy*, 37 (2018).

Elizabeth Paul

## Analytic gradients are valuable in high-dimensional spaces (I)



Minimization of 2D Rosenbrock function

Z. Lyu et al, *Proc. Inter. Conf. Comp. Fluid Dyn.*, *11* (2014).

#### Analytic gradients are valuable in high-dimensional spaces (II)

Minimization of ND Rosenbrock function



Z. Lyu et al, *Proc. Inter. Conf. Comp. Fluid Dyn.*, *11* (2014).

**Elizabeth Paul** 

**PPPL Research Seminar** 

#### Adjoint method for analytic derivatives

- Figure of merit  $f(\mathbf{x})$  s.t.  $L(\mathbf{x}) = 0$
- Goal: compute  $\partial f(\mathbf{x})/\partial \Omega$  for  $\Omega = \{\Omega_i\}_{i=1}^{N_\Omega}$

5

#### **Adjoint method for analytic derivatives**

- Figure of merit  $f(\mathbf{x})$  s.t.  $L(\mathbf{x}) = 0$
- Goal: compute  $\partial f(\mathbf{x})/\partial \Omega$  for  $\Omega = \{\Omega_i\}_{i=1}^{N_{\Omega}}$
- Adjoint method requires 1 additional solve (rather than  $\geq N_{\Omega}$  from finite differences)
- No noise from finite difference step size

#### **Adjoint method for analytic derivatives**

- Figure of merit  $f(\mathbf{x})$  s.t.  $L(\mathbf{x}) = 0$
- Goal: compute  $\partial f(\mathbf{x})/\partial \Omega$  for  $\Omega = \{\Omega_i\}_{i=1}^{N_{\Omega}}$
- Adjoint method requires 1 additional solve (rather than  $\geq N_{\Omega}$  from finite differences)
- No noise from finite difference step size

## Adjoint methods widely used in computational fluid dynamics



Inward for smaller drag Outward for smaller drag

C. Othmer, J. Math. Industry, 4 (2014).

#### **PPPL Research Seminar**

• Goal: compute  $\partial f(\mathbf{x}) / \partial \Omega$  for  $\Omega = \{\Omega_i\}_{i=1}^{N_{\Omega}} (\geq N_{\Omega} + 1 \text{ solves with finite differences})$  $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x} \text{ s.t. } \overleftrightarrow{\mathbf{A}} \mathbf{x} = \mathbf{b}$ 

- Goal: compute  $\partial f(\mathbf{x})/\partial \Omega$  for  $\Omega = \{\Omega_i\}_{i=1}^{N_{\Omega}} (\geq N_{\Omega} + 1 \text{ solves with finite differences})$  $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x} \text{ s.t. } \overleftarrow{A}\mathbf{x} = \mathbf{b}$
- Compute perturbations of linear system

$$\frac{\partial \vec{A}}{\partial \Omega_i} x + \vec{A} \frac{\partial x}{\partial \Omega_i} = \frac{\partial b}{\partial \Omega_i} \longrightarrow \frac{\partial x}{\partial \Omega_i} = \left(\vec{A}\right)^{-1} \left(\frac{\partial b}{\partial \Omega_i} - \frac{\partial \vec{A}}{\partial \Omega_i} x\right)$$

- Goal: compute  $\partial f(\mathbf{x})/\partial \Omega$  for  $\Omega = \{\Omega_i\}_{i=1}^{N_{\Omega}} (\geq N_{\Omega} + 1 \text{ solves with finite differences})$  $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x} \text{ s.t. } \quad \overleftarrow{A}\mathbf{x} = \mathbf{b}$
- Compute perturbations of linear system

$$\frac{\partial \overrightarrow{A}}{\partial \Omega_i} x + \overrightarrow{A} \frac{\partial x}{\partial \Omega_i} = \frac{\partial b}{\partial \Omega_i} \longrightarrow \frac{\partial x}{\partial \Omega_i} = \left(\overrightarrow{A}\right)^{-1} \left(\frac{\partial b}{\partial \Omega_i} - \frac{\partial \overrightarrow{A}}{\partial \Omega_i} x\right)$$

• Compute derivative with chain rule

$$\frac{\partial f}{\partial \Omega_i} = \boldsymbol{c}^T \frac{\partial \boldsymbol{x}}{\partial \Omega_i} = \boldsymbol{c}^T \left( \overrightarrow{\boldsymbol{A}} \right)^{-1} \left( \frac{\partial \boldsymbol{b}}{\partial \Omega_i} - \frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial \Omega_i} \boldsymbol{x} \right) \longrightarrow \frac{\partial f}{\partial \Omega_i} = \left( \left( \overrightarrow{\boldsymbol{A}}^T \right)^{-1} \boldsymbol{c} \right)^T \left( \frac{\partial \boldsymbol{b}}{\partial \Omega_i} - \frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial \Omega_i} \boldsymbol{x} \right)$$

- Goal: compute  $\partial f(\mathbf{x})/\partial \Omega$  for  $\Omega = \{\Omega_i\}_{i=1}^{N_{\Omega}} (\geq N_{\Omega} + 1 \text{ solves with finite differences})$  $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x} \text{ s.t. } \quad \overleftarrow{A}\mathbf{x} = \mathbf{b}$
- Compute perturbations of linear system

$$\frac{\partial \overrightarrow{A}}{\partial \Omega_i} x + \overrightarrow{A} \frac{\partial x}{\partial \Omega_i} = \frac{\partial b}{\partial \Omega_i} \longrightarrow \frac{\partial x}{\partial \Omega_i} = \left(\overrightarrow{A}\right)^{-1} \left(\frac{\partial b}{\partial \Omega_i} - \frac{\partial \overrightarrow{A}}{\partial \Omega_i} x\right)$$

• Compute derivative with chain rule

$$\frac{\partial f}{\partial \Omega_i} = \mathbf{c}^T \frac{\partial \mathbf{x}}{\partial \Omega_i} = \mathbf{c}^T \left( \overrightarrow{A} \right)^{-1} \left( \frac{\partial \mathbf{b}}{\partial \Omega_i} - \frac{\partial \overrightarrow{A}}{\partial \Omega_i} \mathbf{x} \right) \longrightarrow \frac{\partial f}{\partial \Omega_i} = \left( \left( \overrightarrow{A}^T \right)^{-1} \mathbf{c} \right)^T \left( \frac{\partial \mathbf{b}}{\partial \Omega_i} - \frac{\partial \overrightarrow{A}}{\partial \Omega_i} \mathbf{x} \right)$$

• Solve adjoint equation

 $\overleftarrow{A}^T z = c$ 

- Goal: compute  $\partial f(\mathbf{x}) / \partial \Omega$  for  $\Omega = \{\Omega_i\}_{i=1}^{N_{\Omega}} (\geq N_{\Omega} + 1 \text{ solves with finite differences})$  $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x} \text{ s.t. } \overleftrightarrow{\mathbf{A}} \mathbf{x} = \mathbf{b}$
- Compute perturbations of linear system

$$\frac{\partial \overrightarrow{A}}{\partial \Omega_i} x + \overrightarrow{A} \frac{\partial x}{\partial \Omega_i} = \frac{\partial b}{\partial \Omega_i} \longrightarrow \frac{\partial x}{\partial \Omega_i} = \left(\overrightarrow{A}\right)^{-1} \left(\frac{\partial b}{\partial \Omega_i} - \frac{\partial \overrightarrow{A}}{\partial \Omega_i} x\right)$$

• Compute derivative with chain rule

$$\frac{\partial f}{\partial \Omega_i} = \mathbf{c}^T \frac{\partial \mathbf{x}}{\partial \Omega_i} = \mathbf{c}^T \left( \overrightarrow{\mathbf{A}} \right)^{-1} \left( \frac{\partial \mathbf{b}}{\partial \Omega_i} - \frac{\partial \overrightarrow{\mathbf{A}}}{\partial \Omega_i} \mathbf{x} \right) \longrightarrow \frac{\partial f}{\partial \Omega_i} = \left( \left( \overrightarrow{\mathbf{A}}^T \right)^{-1} \mathbf{c} \right)^T \left( \frac{\partial \mathbf{b}}{\partial \Omega_i} - \frac{\partial \overrightarrow{\mathbf{A}}}{\partial \Omega_i} \mathbf{x} \right)$$

Solve adjoint equation

$$\overrightarrow{A}^T \boldsymbol{z} = \boldsymbol{c}$$

• Get derivative with respect to all  $\Omega_i$  with 2 solutions of linear system (x, z)

$$\frac{\partial f}{\partial \Omega_i} = \mathbf{z}^T \left( \frac{\partial \mathbf{b}}{\partial \Omega_i} - \frac{\partial \vec{\mathbf{A}}}{\partial \Omega_i} \mathbf{x} \right)$$

#### Outline

- Introduction
- Shape gradients for MHD equilibria
  - Introduction to shape gradients
  - Fixed-boundary relation
  - Free-boundary relation
- Perturbed equilibrium approach
- Conclusions



#### **PPPL Research Seminar**

#### November 25, 2019

- f(S) = physics objective depending on equilibrium field
- Surface is displaced by vector field  $\delta r$

 $S_{\epsilon} = \{r_0 + \epsilon \delta r : r_0 \in S\}$ 



- f(S) = physics objective depending on equilibrium field
- Surface is displaced by vector field  $\delta r$  $S_{\epsilon} = \{r_0 + \epsilon \delta r : r_0 \in S\}$
- Shape derivative of f(S) $\delta f(\delta r) = \lim_{\epsilon \to 0} \frac{f(S_{\epsilon}) - f(S)}{\epsilon}$



- f(S) = physics objective depending on equilibrium field
- Surface is displaced by vector field  $\delta r$  $S_{\epsilon} = \{r_0 + \epsilon \delta r : r_0 \in S\}$
- Shape derivative of f(S) $\delta f(\delta r) = \lim_{\epsilon \to 0} \frac{f(S_{\epsilon}) - f(S)}{\epsilon}$
- Under assumption of smoothness

$$\delta f(\delta \boldsymbol{r}) = \int_{S} d^{2}x \, \delta \boldsymbol{r} \cdot \boldsymbol{n} \, \boldsymbol{\mathcal{G}}$$

• For any  $\delta r$ , shape gradient, G, provides change to figure of merit,  $\delta f$ 



- *f*(*S*) = physics objective depending on equilibrium field
- Surface is displaced by vector field  $\delta r$  $S_{\epsilon} = \{r_0 + \epsilon \delta r : r_0 \in S\}$
- Shape derivative of f(S) $\delta f(\delta r) = \lim_{\epsilon \to 0} \frac{f(S_{\epsilon}) - f(S)}{\epsilon}$
- Under assumption of smoothness  $\delta f(\delta \mathbf{r}) = \int_{S} d^{2}x \, \delta \mathbf{r} \cdot \mathbf{n} \, \mathcal{G}$
- For any  $\delta r$ , shape gradient, G, provides change to figure of merit,  $\delta f$

Why is the shape gradient (G) useful?

- Local sensitivity information
- Quantifying engineering tolerances
- Gradient-based optimization

## **Computing MHD shape gradient directly is expensive**

- *S* described by parameters  $\{\Omega_i\}_1^{N_{\Omega}}$
- $\partial f / \partial \Omega$  computed from finite differences
  - $\geq N_{\Omega} + 1$  non-linear equilibrium evaluations

## **Computing MHD shape gradient directly is expensive**

- *S* described by parameters  $\{\Omega_i\}_1^{N_{\Omega}}$
- $\partial f / \partial \Omega$  computed from finite differences
  - $\geq N_{\Omega} + 1$  non-linear equilibrium evaluations
- Fourier solution for shape gradient

$$\mathcal{G} = \sum_{j} S_j \cos(m_j \theta - n_j \phi)$$

• Shape gradient computed from linear system  $\frac{\partial f}{\partial \Omega_i} = \int_S d^2 x \, S_j \cos(m_j \theta - n_j \phi) \frac{\partial \boldsymbol{r}}{\partial \Omega_i} \cdot \boldsymbol{n}$ 

## **Computing MHD shape gradient directly is expensive**

- *S* described by parameters  $\{\Omega_i\}_1^{N_{\Omega}}$
- $\partial f / \partial \Omega$  computed from finite differences
  - $\geq N_{\Omega} + 1$  non-linear equilibrium evaluations
- Fourier solution for shape gradient

 $\mathcal{G} = \sum_{i} S_{j} \cos(m_{j}\theta - n_{j}\phi)$ 

• Shape gradient computed from linear system  $\frac{\partial f}{\partial \Omega_i} = \int_S d^2 x \, S_j \cos(m_j \theta - n_j \phi) \frac{\partial \mathbf{r}}{\partial \Omega_i} \cdot \mathbf{n}$ 



<sup>1</sup>M. Landreman & E.J. Paul, *Nuclear Fusion*, 58 (2018).

• MHD equilibrium with specified  $p(\psi), \iota(\psi)$ , and  $S_{\text{plasma}}$ 

$$0 = \frac{(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}}{4\pi} - \nabla p$$

Note: magnetic surfaces assumed (variational solution<sup>1</sup>)

<sup>1</sup>M. Kruskal & R.M. Kulsrud, *Phys. Fluids*, 1 (1958).

Elizabeth Paul

• MHD equilibrium with specified  $p(\psi), \iota(\psi)$ , and  $S_{\text{plasma}}$ 

$$0 = \frac{(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}}{4\pi} - \nabla p$$

Note: magnetic surfaces assumed (variational solution<sup>1</sup>)

• Perturbation with fixed  $\iota(\psi)$  and  $p(\psi)$  determined from  $\xi_1$ 

$$\delta \boldsymbol{B}_1 = \nabla \times (\boldsymbol{\xi}_1 \times \boldsymbol{B}) \\ \delta p(\boldsymbol{\xi}_1) = -\boldsymbol{\xi}_1 \cdot \nabla p$$

Unperturbed boundary

<sup>1</sup>M. Kruskal & R.M. Kulsrud, *Phys. Fluids*, 1 (1958).

Elizabeth Paul

**PPPL Research Seminar** 

November 25, 2019 9

Perturbed

boundary

**Displacement** 

 $(\delta \boldsymbol{r} \cdot \boldsymbol{n})$ 

• MHD equilibrium with specified  $p(\psi), \iota(\psi)$ , and  $S_{\text{plasma}}$ 

$$0 = \frac{(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}}{4\pi} - \nabla p$$

Note: magnetic surfaces assumed (variational solution<sup>1</sup>)

• Perturbation with fixed  $\iota(\psi)$  and  $p(\psi)$  determined from  $\xi_1$ 

$$\delta \boldsymbol{B}_1 = \nabla \times (\boldsymbol{\xi}_1 \times \boldsymbol{B})$$
$$\delta p(\boldsymbol{\xi}_1) = -\boldsymbol{\xi}_1 \cdot \nabla p$$

• Perturbed equilibrium with specified  $\delta \mathbf{r} \cdot \mathbf{n}|_{S_{\text{plasma}}}$  satisfies

$$\boldsymbol{F}(\boldsymbol{\xi}_{1}) = \frac{(\nabla \times \boldsymbol{B}) \times \delta \boldsymbol{B}_{1} + \nabla \times (\delta \boldsymbol{B}_{1}) \times \boldsymbol{B}}{4\pi} - \nabla \delta \boldsymbol{p}(\boldsymbol{\xi}_{1}) = 0$$
$$\boldsymbol{\xi}_{1} \cdot \boldsymbol{n} \Big|_{S_{\text{plasma}}} = \delta \boldsymbol{r} \cdot \boldsymbol{n} \Big|_{S_{\text{plasma}}}$$

Unperturbed boundary

<sup>1</sup>M. Kruskal & R.M. Kulsrud, *Phys. Fluids*, 1 (1958).

Elizabeth Paul

**PPPL Research Seminar** 

Perturbed

boundary

**Displacement**  $(\delta r \cdot n)$ 



**Elizabeth Paul** 

**PPPL Research Seminar** 



<sup>1</sup>T. Antonsen Jr., E.J. Paul, M. Landreman, *J. Plasma Phys.* 85 (2019). <sup>2</sup>I.B. Bernstein et al, *Proc. Royal Society A*, 244 (1958).

Elizabeth Paul



<sup>1</sup>T. Antonsen Jr., E.J. Paul, M. Landreman, J. Plasma Phys. 85 (2019).

Elizabeth Paul

$$\int_{V_{\text{plasma}}} d^3x \left(-F(\xi_1) \cdot \xi_2 + F(\xi_2) \cdot \xi_1\right) + \frac{1}{4\pi} \int_{S_{\text{plasma}}} d^2x \, \mathbf{n} \cdot \left(\xi_1 \delta \mathbf{B}_2 \cdot \mathbf{B} - \xi_2 \delta \mathbf{B}_1 \cdot \mathbf{B}\right)$$
$$-\frac{2\pi}{c} \int_{V_{\text{plasma}}} d\psi \left(\delta I_{T,2}(\psi) \delta \iota_1(\psi) - \delta I_{T,1}(\psi) \delta \iota_2(\psi)\right) = 0$$
1. Compute shape derivative for figure of merit
$$\delta f(\xi_1) = \int_{V_{\text{plasma}}} d^3x \, \xi_1 \cdot \mathbf{A}_1 + \int_{S_{\text{plasma}}} d^2x \, \mathbf{n} \cdot \xi_1 \mathbf{A}_2$$
2. Adjoint displacement  $\xi_2$  satisfies
$$F(\xi_2) = -\mathbf{A}_1$$
$$\xi_2 \cdot \mathbf{n}|_{S_{\text{plasma}}} = 0$$

<sup>1</sup>T. Antonsen Jr., E.J. Paul, M. Landreman, J. Plasma Phys. 85 (2019).

$$\int_{V_{\text{plasma}}} d^3x \left(-F(\xi_1) \cdot \xi_2 + F(\xi_2) \cdot \xi_1\right) + \frac{1}{4\pi} \int_{S_{\text{plasma}}} d^2x \, \mathbf{n} \cdot \left(\xi_1 \delta \mathbf{B}_2 \cdot \mathbf{B} - \xi_2 \delta \mathbf{B}_1 \cdot \mathbf{B}\right)$$
$$-\frac{2\pi}{c} \int_{V_{\text{plasma}}} d\psi \left(\delta I_{T,2}(\psi) \delta \iota_1(\psi) - \delta I_{T,1}(\psi) \delta \iota_2(\psi)\right) = 0$$
1. Compute shape derivative for figure of merit
$$\delta f(\xi_1) = \int_{V_{\text{plasma}}} d^3x \, \xi_1 \cdot \mathbf{A}_1 + \int_{S_{\text{plasma}}} d^2x \, \mathbf{n} \cdot \xi_1 \mathbf{A}_2$$
2. Adjoint displacement  $\xi_2$  satisfies
$$F(\xi_2) = -\mathbf{A}_1$$
$$\xi_2 \cdot \mathbf{n}|_{S_{\text{plasma}}} = 0$$

<sup>1</sup>T. Antonsen Jr., E.J. Paul, M. Landreman, J. Plasma Phys. 85 (2019).

**Elizabeth Paul** 

#### Magnetic well shape gradient requires pressure perturbation



 $\psi/\psi_0$ 

#### Magnetic well shape gradient requires pressure perturbation



#### Magnetic well shape gradient requires pressure perturbation



#### Magnetic well shape gradient computed with VMEC<sup>1</sup>

 $\approx$ 

*Linearization approximated with*  $\Delta_P \ll 1$ 

$$F(\xi_2) = \nabla w(\psi)$$
  
$$\xi_2 \cdot n \Big|_{S_{\text{plasma}}} = 0$$
  
$$\delta I_{T,2}(\psi) = 0$$

$$0 = \frac{(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}}{4\pi} - \nabla (p(\psi) + \Delta_{\boldsymbol{P}} w(\psi))$$
  
S<sub>plasma</sub>,  $I_T(\psi)$ ,  $p(\psi)$  prescribed

<sup>1</sup>S. Hirshman & J.C. Whitson, *Phys. Fluids*, 26 (1983).

Elizabeth Paul

**PPPL Research Seminar** 

#### Magnetic well shape gradient computed with VMEC<sup>1</sup>

*Linearization approximated with*  $\Delta_P \ll 1$ 



**Elizabeth Paul** 

**PPPL Research Seminar** 

#### Magnetic well shape gradient computed with VMEC<sup>1</sup>

*Linearization approximated with*  $\Delta_P \ll 1$ 



**Elizabeth Paul** 

November 25, 2019 12

#### Magnetic ripple shape gradient requires anisotropic pressure



#### Magnetic ripple shape gradient requires anisotropic pressure

**Elizabeth Paul** 

#### Variational principle for equilibria with anisotropic pressure

**Equilibrium with anisotropic pressure** 

$$\frac{\boldsymbol{J} \times \boldsymbol{B}}{c} = \nabla \cdot \left( p_{||} (\boldsymbol{\psi}, B) \boldsymbol{b} \boldsymbol{b} + p_{\perp} (\boldsymbol{\psi}, B) (\boldsymbol{\vec{I}} - \boldsymbol{b} \boldsymbol{b}) \right)$$

 $\frac{p_{\perp}(\psi, B)}{\partial B} = \frac{p_{\parallel}(\psi, B) - p_{\perp}(\psi, B)}{B}$ 

Elizabeth Paul

#### Variational principle for equilibria with anisotropic pressure

Equilibrium with anisotropic pressure

$$\frac{\boldsymbol{J} \times \boldsymbol{B}}{c} = \nabla \cdot \left( p_{||} (\psi, B) \boldsymbol{b} \boldsymbol{b} + p_{\perp} (\psi, B) (\boldsymbol{\vec{I}} - \boldsymbol{b} \boldsymbol{b}) \right)$$

 $\frac{p_{\perp}(\psi, B)}{\partial B} = \frac{p_{\parallel}(\psi, B)}{B}$ 

**Stationary points of** *W*[*B*, *p*]

$$W[B,p] = \int_{V_P} d^3x \, \frac{B^2}{8\pi} - p_{||}$$

Subject to:

- 1. Prescribed  $p_{\parallel}(\psi, B)$
- 2. Fixed  $\iota(\psi)$
- 3. Magnetic surfaces

#### Elizabeth Paul

#### **PPPL Research Seminar**

#### Variational principle for equilibria with anisotropic pressure

Equilibrium with anisotropic pressure

$$\frac{\mathbf{I} \times \mathbf{B}}{c} = \nabla \cdot \left( p_{||} (\psi, B) \mathbf{b} \mathbf{b} + p_{\perp}(\psi, B) (\mathbf{\vec{I}} - \mathbf{b} \mathbf{b}) \right)$$

 $\frac{p_{\perp}(\psi, B)}{\partial B} = \frac{p_{\parallel}(\psi, B) - p_{\perp}(\psi, B)}{B}$ 

**Stationary points of** *W*[*B*, *p*]

$$W[B,p] = \int_{V_P} d^3x \, \frac{B^2}{8\pi} - p_{||}$$

Subject to:

- 1. Prescribed  $p_{||}(\psi, B)$
- 2. Fixed  $\iota(\psi)$
- 3. Magnetic surfaces

- Solutions computed with ANIMEC<sup>1</sup> code
- Used for analysis of energetic particle contributions to equilibria

<sup>1</sup>W.A. Cooper et al, *Computer Phys. Comm.*, 72 (1992).

#### Magnetic ripple shape gradient computed with ANIMEC<sup>1</sup>

*Linearization approximated with*  $\Delta_P \ll 1$ 

$$F(\xi_2) = \nabla \cdot P$$
  
$$\xi_2 \cdot n \Big|_{S_{\text{plasma}}} = 0$$
  
$$\delta \iota_2(\psi) = 0$$

$$0 = \frac{(\nabla \times \boldsymbol{B}) \times \boldsymbol{B}}{4\pi} - \nabla (p(\psi)) - \Delta_{\boldsymbol{P}} \nabla \cdot \boldsymbol{P}$$
  
S<sub>plasma</sub>,  $\iota(\psi)$ ,  $p(\psi)$ ,  $p_{||}(\psi, B)$  prescribed

<sup>1</sup>W.A. Cooper et al, *Computer Phys. Comm.*, 72 (1992).

**Elizabeth Paul** 

#### **PPPL Research Seminar**

#### Magnetic ripple shape gradient computed with ANIMEC<sup>1</sup>

*Linearization approximated with*  $\Delta_P \ll 1$ 



**Elizabeth Paul** 

**PPPL Research Seminar** 

#### Magnetic ripple shape gradient computed with ANIMEC<sup>1</sup>

Linearization approximated with  $\Delta_P \ll 1$ 



**Elizabeth Paul** 

**PPPL Research Seminar** 

## Many other applications of adjoint approach possible<sup>1</sup> Effective Ripple<sup>2</sup> ( $\epsilon_{eff}^{3/2}$ )

**PPPL Research Seminar** 

- Proxy for low-collisionality neoclassical confinement
- Adjoint approach requires bulk force  $\mathcal{F} = \nabla \cdot \mathbf{P}(\psi, \alpha)$  $f_{OS} = \int d^3x \, \epsilon_{eff}^{3/2}(\psi) w(\psi)$

<sup>1</sup>E.J. Paul et al, *submitted to J. Plasma Phys.*, (arXiv:1910.14144).
<sup>2</sup>V.V. Nemov et al, *Phys. Plasmas*, 6 (1999).
<sup>3</sup>P. Helander, *Rep. Prog. Phys.*, 77 (2014).

**Elizabeth Paul** 



## Many other applications of adjoint approach possible<sup>1</sup> Effective Ripple<sup>2</sup> ( $\epsilon_{eff}^{3/2}$ )

- Proxy for low-collisionality neoclassical confinement
- Adjoint approach requires bulk force  $\mathcal{F} = \nabla \cdot \mathbf{P}(\psi, \alpha)$  $f_{QS} = \int d^3x \ \epsilon_{eff}^{3/2}(\psi) w(\psi)$

Cannot be implemented with ANIMEC

<sup>1</sup>E.J. Paul et al, *submitted to J. Plasma Phys.*, (arXiv:1910.14144).
<sup>2</sup>V.V. Nemov et al, *Phys. Plasmas*, 6 (1999).
<sup>3</sup>P. Helander, *Rep. Prog. Phys.*, 77 (2014).



#### Many other applications of adjoint approach possible<sup>1</sup> Departure from quasi-symmetry

• Quasi-symmetry → guiding center confinement, reduced neoclassical transport

 $f_{QS} = \int d^3x \, w(\psi) (\boldsymbol{B} \times \nabla B \cdot \nabla \psi - F(\psi) \boldsymbol{B} \cdot \nabla B)^2$ 

Does not require Boozer coordinate transformation





<sup>1</sup>E.J. Paul et al, *submitted to J. Plasma Phys.*, (arXiv:1910.14144). <sup>2</sup>L.M. Imbert-Gerard, E.J. Paul, A. Wright, (arXiv:1908.05360).

**Elizabeth Paul** 

**PPPL Research Seminar** 

#### Many other applications of adjoint approach possible<sup>1</sup> Departure from quasi-symmetry

• Quasi-symmetry → guiding center confinement, reduced neoclassical transport

 $f_{QS} = \int d^3x \, w(\psi) (\boldsymbol{B} \times \nabla B \cdot \nabla \psi - F(\psi) \boldsymbol{B} \cdot \nabla B)^2$ 

Does not require Boozer coordinate transformation

• Adjoint approach requires bulk force,  $\mathcal{F}(r)$ 





<sup>1</sup>E.J. Paul et al, *submitted to J. Plasma Phys.*, (arXiv:1910.14144). <sup>2</sup>L.M. Imbert-Gerard, E.J. Paul, A. Wright, (arXiv:1908.05360).

Elizabeth Paul

**PPPL Research Seminar** 

## Adjoint approach for coil shape gradient



<sup>1</sup>T. Antonsen Jr., E.J. Paul, M. Landreman, J. Plasma Phys., 85 (2019).

Elizabeth Paul

## Adjoint approach for coil shape gradient

Generalization of self-adjointness of MHD force operator<sup>1</sup>  $\int_{V_{\text{plasma}}} d^3x \left( -F(\xi_1) \cdot \xi_2 + F(\xi_2) \cdot \xi_1 \right) + \frac{1}{c} \sum_k \left( I_{C_k} \int_{C_k} dl \left( \delta r_{C_{1,k}} \cdot t \times \delta B_2 - \delta r_{2,k} \cdot t \times \delta B_1 \right) \right)$   $- \frac{2\pi}{c} \int_{V_{\text{plasma}}} d\psi \left( \delta I_{T,2}(\psi) \delta \iota_1(\psi) - \delta I_{T,1}(\psi) \delta \iota_2(\psi) \right) = 0$ 

1. Compute shape derivative for figure of merit  $\delta f(\xi_1) = \int_{V_{\text{plasma}}} d^3x \ \xi_1 \cdot A_1$ 2. Adjoint displacement  $\xi_2$  satisfies  $F(\xi_2) = -A_1$  $\delta r_{2,k} = 0$ 

<sup>1</sup>T. Antonsen Jr., E.J. Paul, M. Landreman, J. Plasma Phys., 85 (2019).

## Adjoint approach for coil shape gradient

Generalization of self-adjointness of MHD force operator<sup>1</sup>  $\int_{V_{\text{plasma}}} d^3x \left( -\mathbf{F}(\boldsymbol{\xi}_1) \cdot \boldsymbol{\xi}_2 + \mathbf{F}(\boldsymbol{\xi}_2) \cdot \boldsymbol{\xi}_1 \right) + \frac{1}{c} \sum_{\nu} \left( I_{C_k} \int_{C_{\nu}} dl \left( \delta \mathbf{r}_{C_{1,k}} \cdot \mathbf{t} \times \delta \mathbf{B}_2 - \delta \mathbf{r}_{2,k} \cdot \mathbf{t} \times \delta \mathbf{B}_1 \right) \right)$  $-\frac{2\pi}{c} \int d\psi \left( \delta I_{T,2}(\psi) \delta \iota_1(\psi) - \delta I_{T,1}(\psi) \delta \iota_2(\psi) \right) = 0$ V<sub>plasma</sub> 1. Compute shape derivative for figure of merit  $\delta f(\boldsymbol{\xi}_{1}) = \sum_{k} \int_{C_{k}} dl \, \delta \boldsymbol{r}_{C_{1,k}} \cdot \boldsymbol{t} \times \boldsymbol{\delta B}_{2} \, \frac{I_{C_{k}}}{c}$  $\delta f(\boldsymbol{\xi}_1) = \int_{V_{\text{plasma}}} d^3 x \ \boldsymbol{\xi}_1 \cdot \boldsymbol{A}_1$ 2. Adjoint displacement  $\xi_2$  satisfies  $F(\xi_2) = -A_1$  $S_k$  = coil shape gradient  $\delta \mathbf{r}_{2k} = 0$ 

<sup>1</sup>T. Antonsen Jr., E.J. Paul, M. Landreman, J. Plasma Phys., 85 (2019).

Elizabeth Paul

#### **Rotational transform coil shape gradient with VMEC**



19

#### **Rotational transform coil shape gradient with VMEC**



#### **Rotational transform coil shape gradient with VMEC**



Elizabeth Paul

**PPPL Research Seminar** 

#### Outline

- Introduction
- Shape gradients for MHD equilibria
- Perturbed equilibrium approach
  - Variational principle for linear MHD
  - Euler-Lagrange solutions
- Conclusions

#### Variational principle for perturbed MHD equilibria

Perturbed equilibrium with bulk force  $F(\xi) + \delta F = \frac{(\nabla \times B) \times \delta B + (\nabla \times (\delta B)) \times B}{4\pi} - \nabla \delta p(\xi) + \delta F = 0$   $\delta B(\xi) = \nabla \times (\xi \times B)$   $\delta p = -\xi \cdot \nabla p$   $\xi \cdot \nabla \psi \mid_{\psi=0} = \xi \cdot \nabla \psi \mid_{\psi=\psi_0} = 0$ 

Elizabeth Paul

#### Variational principle for perturbed MHD equilibria

Perturbed equilibrium with bulk force  $F(\xi) + \delta F = \frac{(\nabla \times B) \times \delta B + (\nabla \times (\delta B)) \times B}{4\pi} - \nabla \delta p(\xi) + \delta F = 0$   $\delta B(\xi) = \nabla \times (\xi \times B)$   $\delta p = -\xi \cdot \nabla p$   $\xi \cdot \nabla \psi \mid_{\psi=0} = \xi \cdot \nabla \psi \mid_{\psi=\psi_0} = 0$ 

#### 

Stationary points of  $W[\xi]$  $W[\xi] = \int_{V_P} d^3x \left( -\frac{\delta B \cdot \delta B}{4\pi} + \frac{\xi \cdot J \times \delta B}{c} - \xi \cdot \nabla p(\nabla \cdot \xi) - 2\xi \cdot \delta F \right)$   $\delta \xi \cdot \nabla \psi \mid_{\psi=0} = \delta \xi \cdot \nabla \psi \mid_{\psi=\psi_0} = 0$ 

**Elizabeth Paul** 

 $\xi \cdot B = 0 \rightarrow$ 2 independent components

$$W[\boldsymbol{\xi}^{\boldsymbol{\psi}}, \boldsymbol{\xi}^{\boldsymbol{\alpha}}] = \int_{V_P} d^3 x \left( -\frac{\delta \boldsymbol{B} \cdot \delta \boldsymbol{B}}{4\pi} + \frac{\boldsymbol{\xi} \cdot \boldsymbol{J} \times \delta \boldsymbol{B}}{c} - \boldsymbol{\xi} \cdot \nabla p(\boldsymbol{\nabla} \cdot \boldsymbol{\xi}) - 2\boldsymbol{\xi} \cdot \delta \boldsymbol{F} \right)$$
$$\boldsymbol{\xi}^{\boldsymbol{\psi}} = \boldsymbol{\xi} \cdot \nabla \boldsymbol{\psi}$$
$$\boldsymbol{\xi}^{\boldsymbol{\alpha}} = \boldsymbol{\xi} \cdot \nabla \boldsymbol{\theta} - \iota(\boldsymbol{\psi}) \boldsymbol{\xi} \cdot \nabla \boldsymbol{\phi}$$
$$\boldsymbol{\xi}^{\boldsymbol{\psi}}|_{\boldsymbol{\psi}=0} = \boldsymbol{\xi}^{\boldsymbol{\psi}}|_{\boldsymbol{\psi}=\psi_0} = 0$$

Variation w.r.t.  $\Xi^{\alpha}$ 

$$2\overleftarrow{A^{\alpha\alpha}}\Xi^{\alpha}(\psi) = \left(\overleftarrow{A^{\alpha\psi}}\Xi^{\psi}(\psi) + \overleftarrow{A^{\alpha\psi'}}\Xi^{\psi'}(\psi) + C^{\alpha}\right)$$

Elizabeth PaulPPPL Research SeminarNovember 25, 2019

22



Elizabeth Paul PPPL Research Seminar



• 2<sup>nd</sup> order coupled 2-point BVP solved with finite difference

• Similar to Euler-Lagrange eqn. solved by DCON<sup>1</sup>

<sup>1</sup>A. Glasser, *Phys. Plasmas*, 23 (2016).

Elizabeth Paul



Elizabeth Paul

#### Preliminary perturbed equilibrium results



**Elizabeth Paul** 

**PPPL Research Seminar** 

#### Outline

- Introduction
- Shape gradients for MHD equilibria
- Perturbed equilibrium approach
- Conclusions

## **Conclusions (I)**

#### **Open questions**

- How to extend linearized MHD approach to 3D (e.g. Frobenius analysis as in DCON<sup>1</sup>)?
- Can we prevent flux surface overlap in linearized approach?
- Can adjoint approach be generalized to avoid assumption of surfaces?

<sup>1</sup>A. Glasser, *Phys. Plasmas*, 23 (2016).

Elizabeth Paul

## **Conclusions (I)**

#### **Open questions**

- How to extend linearized MHD approach to 3D (e.g. Frobenius analysis as in DCON)?
- Can we prevent flux surface overlap in linearized approach?
- Can adjoint approach be generalized to avoid assumption of surfaces?

#### Future work

- Application of adjoint approach for fixed and free-boundary optimization (e.g. incorporation in STELLOPT).
- Demonstration for other important figures of merit (e.g. energetic particle confinement)

## **Conclusions (II)**

- Adjoint methods allow efficient computation of geometric derivatives
  - Gradient-based optimization
  - Sensitivity and tolerance analysis
- Adjoint approach for MHD equilibria used to compute shape gradient for plasma boundary and coil shapes
  - ✓ Magnetic well
  - ✓ Magnetic ripple
  - ✓ Rotational transform
  - $\Box$  Effective ripple ( $\epsilon_{eff}^{3/2}$ )
  - **Quasisymmetry**
  - ? Energetic particles

## **Conclusions (II)**

- Adjoint methods allow efficient computation of geometric derivatives
  - Gradient-based optimization
  - Sensitivity and tolerance analysis
- Adjoint approach for MHD equilibria used to compute shape gradient for plasma boundary and coil shapes

#### **References for this work**

- T.M. Antonsen, E.J. Paul, M. Landreman, J. *Plasma Phys.*, 85 (2019).
- E.J. Paul et al, *submitted to J. Plasma Phys.*, (arXiv:1910.14144).

#### Other adjoint methods for stellarators

- Optimization of coil shapes E.J. Paul et al, *Nuclear Fusion*, 58 (2018).
- Optimization of neoclassical quantities E.J. Paul et al, *J. Plasma Phys.*, 85 (2019).

Thank you for your attention