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1. MHD equilibrium optimization 
(e.g. STELLOPT1, ROSE2)

How to design boundary for optimal confinement?

Stellarators require shape optimization (I)
Traditional two-step optimization

MHD force balance

1D.A. Spong et al, Nuclear Fusion, 41 (2001).
2M. Drevlak et al, Nuclear Fusion, 59 (2019).
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2. Coil design 
(e.g. REGCOIL3, FOCUS4)

How to design feasible coils to obtain desired plasma boundary?
How sensitive is a figure of merit to coil displacements?

1. MHD equilibrium optimization 
(e.g. STELLOPT1, ROSE2)

How to design boundary for optimal confinement?

Stellarators require shape optimization (I)
Traditional two-step optimization

MHD force balance

1D.A. Spong et al, Nuclear Fusion, 41 (2001).
2M. Drevlak et al, Nuclear Fusion, 59 (2019).
3M. Landreman, Nuclear Fusion, 57 (2017).
4C. Zhu et al, Nuclear Fusion, 58 (2017).

Biot-Savart
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1. MHD equilibrium direct optimization of coils1

How to design coils for optimal confinement and engineering 
feasibility?

Stellarators require shape optimization (II)
Combined one-step optimization

MHD force balance

1D. Strickler et al, IAEA FT/P2-06 (2003).
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1. MHD equilibrium direct optimization of coils1

How to design coils for optimal confinement and engineering 
feasibility?

Stellarators require shape optimization (II)
Combined one-step optimization

MHD force balance

“The highest priority for technology is to better integrate the engineering 
design with the physics design at the earliest possible stage.”

-Report from the National Stellarator Coordinating Committee2

1D. Strickler et al, IAEA FT/P2-06 (2003).
2D.Gates et al, J. Fusion Energy, 37 (2018).
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Analytic gradients are valuable in high-dimensional spaces (I)

Z. Lyu et al, Proc. Inter. Conf. Comp. 
Fluid Dyn., 11 (2014).

Analytic gradient-based Gradient-free optimization
Minimization of
2D Rosenbrock

function
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Analytic gradients are valuable in high-dimensional spaces (II)

Z. Lyu et al, Proc. Inter. Conf. Comp. 
Fluid Dyn., 11 (2014).

Gradient-based

Gradient-free

Dimension

Fu
nc

tio
n 

E
va

lu
at

io
ns

Minimization of
ND Rosenbrock

function
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• Figure of merit 𝑓(𝒙) s.t. L 𝒙 = 0

• Goal: compute 𝜕𝑓(𝒙)/𝜕Ω for Ω = {Ω!}!"#
$!

Adjoint method for analytic derivatives
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• Adjoint method requires 1 additional solve 
(rather than ≥ 𝑁% from finite differences)

• No noise from finite difference step size
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C. Othmer, J. Math. Industry, 4 (2014).

Inward for smaller drag
Outward for smaller drag

• Figure of merit 𝑓(𝒙) s.t. L 𝒙 = 0

• Goal: compute 𝜕𝑓(𝒙)/𝜕Ω for Ω = {Ω!}!"#
$!

• Adjoint method requires 1 additional solve 
(rather than ≥ 𝑁% from finite differences)

• No noise from finite difference step size

Adjoint methods widely used in
computational fluid dynamics

Adjoint method for analytic derivatives
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• Goal: compute 𝜕𝑓(𝒙)/𝜕Ω for Ω = {Ω!}!"#
$! (≥ 𝑵𝛀 + 𝟏 solves with finite differences)

𝑓(𝒙) = 𝒄'𝒙 s.t. 𝑨𝒙 = 𝒃

Adjoint method for a linear system
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Outline

• Introduction

• Shape gradients for MHD equilibria
• Introduction to shape gradients
• Fixed-boundary relation
• Free-boundary relation

• Perturbed equilibrium approach

• Conclusions

q Magnetic well
q Magnetic ripple
q Rotational transform
q Effective ripple (𝜖!""

#/%)
q Quasisymmetry
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• 𝑓(𝑆) = physics objective depending on 
equilibrium field

• Surface is displaced by vector field 𝛿𝒓
𝑆+ = 𝒓, + 𝜖𝛿𝒓 ∶ 𝒓, ∈ 𝑆

Describing derivatives with respect to plasma boundary

Unperturbed 
boundary

(𝑺)

Displacement 
(𝜹𝒓)

Perturbed 
boundary

(𝑺𝝐)
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• For any 𝛿𝒓, shape gradient, 𝒢, provides 
change to figure of merit, 𝛿𝑓

Unperturbed 
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(𝑺)

Displacement 
(𝜹𝒓)

Perturbed 
boundary

(𝑺𝝐)
Why is the shape gradient (𝒢) useful?
• Local sensitivity information
• Quantifying engineering tolerances 
• Gradient-based optimization

Describing derivatives with respect to plasma boundary
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• 𝑆 described by parameters 𝛺! #
$$

• 𝜕𝑓/𝜕𝛺 computed from finite differences
• ≥ 𝑁1+1 non-linear equilibrium 

evaluations

Computing MHD shape gradient directly is expensive 
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Computing MHD shape gradient directly is expensive 

1M. Landreman & E.J. Paul, Nuclear Fusion, 58 (2018).

𝓖 for rotational transform1
• 𝑆 described by parameters 𝛺! #
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• MHD equilibrium with specified 𝑝 𝜓 , 𝜄 𝜓 , and 𝑆345675

0 =
∇×𝑩 ×𝑩
4𝜋 − ∇𝑝

Note: magnetic surfaces assumed (variational solution1)

Linearized MHD interpretation of shape derivatives

1M. Kruskal & R.M. Kulsrud, Phys. Fluids, 1 (1958).
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Take advantage of self-adjointness of MHD force operator2

#
&!"#$%#

𝑑#𝑥 (−𝑭 𝝃' ⋅ 𝝃% + 𝑭 𝝃% ⋅ 𝝃' ) +
1
4𝜋

#
(!"#$%#

𝑑%𝑥 𝒏 ⋅ (𝝃'𝛿𝑩% ⋅ 𝑩 − 𝝃%𝛿𝑩' ⋅ 𝑩) = 0

1T. Antonsen Jr., E.J. Paul, M. Landreman, J. Plasma Phys. 85 (2019).
2I.B. Bernstein et al, Proc. Royal Society A, 244 (1958).

Computing MHD shape gradient with adjoint approach1
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Generalization: allow for 𝜹𝜾

#
&!"#$%#

𝑑#𝑥 (−𝑭 𝝃' ⋅ 𝝃% + 𝑭 𝝃% ⋅ 𝝃' ) +
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−
2𝜋
𝑐

#
&!"#$%#

𝑑𝜓 𝛿𝐼),% 𝜓 𝛿𝜄' 𝜓 − 𝛿𝐼),' 𝜓 𝛿𝜄% 𝜓 = 0

Computing MHD shape gradient with adjoint approach1

1T. Antonsen Jr., E.J. Paul, M. Landreman, J. Plasma Phys. 85 (2019).
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#
&!"#$%#

𝑑#𝑥 (−𝑭 𝝃' ⋅ 𝝃% + 𝑭 𝝃% ⋅ 𝝃' ) +
1
4𝜋

#
(!"#$%#
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−
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𝑐

#
&!"#$%#

𝑑𝜓 𝛿𝐼),% 𝜓 𝛿𝜄' 𝜓 − 𝛿𝐼),' 𝜓 𝛿𝜄% 𝜓 = 0

1T. Antonsen Jr., E.J. Paul, M. Landreman, J. Plasma Phys. 85 (2019).

Computing MHD shape gradient with adjoint approach1

1. Compute shape derivative for figure of merit
𝛿𝑓 𝝃# = ∫8%&'()' 𝑑

9𝑥 𝝃# ⋅ 𝑨# + ∫/%&'()' 𝑑
0𝑥 𝒏 ⋅ 𝝃#𝐴0

2. Adjoint displacement 𝝃0 satisfies
𝑭 𝝃0 = −𝑨#

𝝃0 ⋅ 𝒏|/%&'()' = 0 
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Computing MHD shape gradient with adjoint approach1

1. Compute shape derivative for figure of merit
𝛿𝑓 𝝃# = ∫8%&'()' 𝑑

9𝑥 𝝃# ⋅ 𝑨# + ∫/%&'()' 𝑑
0𝑥 𝒏 ⋅ 𝝃#𝐴0

2. Adjoint displacement 𝝃0 satisfies
𝑭 𝝃0 = −𝑨#

𝝃0 ⋅ 𝒏|/%&'()' = 0 

𝒢 =
𝛿𝑩0 ⋅ 𝑩
4𝜋 + 𝐴0

1T. Antonsen Jr., E.J. Paul, M. Landreman, J. Plasma Phys. 85 (2019).
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Magnetic well shape gradient requires pressure perturbation

𝑓: = C
8%&'()'

𝑑𝜓 (𝑤0 𝜓 𝑉; 𝜓 − 𝑤# 𝜓 𝑉′(𝜓)) ≈ 𝑉′′(𝜓)

• Proxy for interchange stability (𝑝; 𝜓 𝑉;; 𝜓 > 0 favorable)

0 0.5 1
/ 0

0

0.5

1

w
(
)

w2( )
w1( )

Elizabeth Paul PPPL Research Seminar November 25, 2019 11



Magnetic well shape gradient requires pressure perturbation

𝛿𝑓: 𝝃𝟏 = −C
8%&'()'

𝑑9𝑥 𝝃𝟏 ⋅ ∇ 𝑤0 𝜓 − 𝑤# 𝜓 + C
/%&'()'

𝑑0𝑥 𝝃𝟏 ⋅ 𝒏 𝑤0 𝜓 − 𝑤# 𝜓

0 0.5 1
/ 0

0

0.5

1

w
(
)

w2( )
w1( )𝑓: = C

8%&'()'
𝑑𝜓 (𝑤0 𝜓 𝑉; 𝜓 − 𝑤# 𝜓 𝑉′(𝜓)) ≈ 𝑉′′(𝜓)

• Proxy for interchange stability (𝑝; 𝜓 𝑉;; 𝜓 > 0 favorable)
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Magnetic well shape gradient requires pressure perturbation

𝑭 𝝃0 = ∇ 𝑤0 𝜓 − 𝑤# 𝜓
𝝃𝟐 ⋅ 𝒏 g

/%&'()'
= 0

𝛿𝐼',0 𝜓 = 0

𝛿𝑓: 𝝃𝟏 = −C
8%&'()'

𝑑9𝑥 𝝃𝟏 ⋅ ∇ 𝑤0 𝜓 − 𝑤# 𝜓 + C
/%&'()'

𝑑0𝑥 𝝃𝟏 ⋅ 𝒏 𝑤0 𝜓 − 𝑤# 𝜓

𝑓: = C
8%&'()'

𝑑𝜓 (𝑤0 𝜓 𝑉; 𝜓 − 𝑤# 𝜓 𝑉′(𝜓)) ≈ 𝑉′′(𝜓)

• Proxy for interchange stability (𝑉;; 𝜓 < 0 favorable)
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(
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w2( )
w1( )

𝒢: =
𝛿𝑩0 ⋅ 𝑩
4𝜋

Adjoint problem

𝑓: = C
8%&'()'

𝑑𝜓 (𝑤0 𝜓 𝑉; 𝜓 − 𝑤# 𝜓 𝑉′(𝜓)) ≈ 𝑉′′(𝜓)

• Proxy for interchange stability (𝑝; 𝜓 𝑉;; 𝜓 > 0 favorable)
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Magnetic well shape gradient computed with VMEC1

𝑭 𝝃𝟐 = ∇𝑤 𝜓
𝝃𝟐 ⋅ 𝒏 g

/%&'()'
= 0

𝛿𝐼',0 𝜓 = 0

0 =
∇×𝑩 ×𝑩
4𝜋

− ∇ 𝑝 𝜓 + Δ>𝑤 𝜓
𝑆345675, 𝐼'(𝜓), 𝑝 𝜓 prescribed

Linearization approximated with 𝜟𝑷 ≪ 𝟏

≈

1S. Hirshman & J.C. Whitson, 
Phys. Fluids, 26 (1983).
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Magnetic well shape gradient computed with VMEC1

0 =
∇×𝑩 ×𝑩
4𝜋

− ∇ 𝑝 𝜓 + Δ>𝑤 𝜓
𝑆345675, 𝐼'(𝜓), 𝑝 𝜓 prescribed

Linearization approximated with 𝜟𝑷 ≪ 𝟏

≈

Finite difference Adjoint

1S. Hirshman & J.C. Whitson, 
Phys. Fluids, 26 (1983).
2M. Zarnstorff et al, Plasma 
Phys. & Controlled Fusion, 43 
(2001). 

Calculation for 
LI383 equilibrium2

𝑭 𝝃𝟐 = ∇𝑤 𝜓
𝝃𝟐 ⋅ 𝒏 g

/%&'()'
= 0

𝛿𝐼',0 𝜓 = 0
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Magnetic well shape gradient computed with VMEC1

0 =
∇×𝑩 ×𝑩
4𝜋

− ∇ 𝑝 𝜓 + Δ>𝑤 𝜓
𝑆345675, 𝐼'(𝜓), 𝑝 𝜓 prescribed

Linearization approximated with 𝜟𝑷 ≪ 𝟏

≈

Finite difference Adjoint

1S. Hirshman & J.C. Whitson, 
Phys. Fluids, 26 (1983).
2M. Zarnstorff et al, Plasma 
Phys. & Controlled Fusion, 43 
(2001). 

Calculation for 
LI383 equilibrium2

> 6000 
VMEC evals

2 VMEC 
evals

𝑭 𝝃𝟐 = ∇𝑤 𝜓
𝝃𝟐 ⋅ 𝒏 g

/%&'()'
= 0

𝛿𝐼',0 𝜓 = 0
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𝑓@ = ∫8%&'()' 𝑑
9𝑥 #

0
𝑤 𝜓 𝐵 − 𝐵

0

Magnetic ripple shape gradient requires anisotropic pressure

9𝑓+

𝐵 =
∫8%&'()' 𝑑

9𝑥 𝑤 𝜓 𝐵

∫8%&'()' 𝑑
9𝑥 𝑤(𝜓)

• Proxy for quasi-symmetry (guiding center confinement) near axis
0 0.5 1

/ 0

0

0.5

1

w
(
)
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𝒢@ =
𝛿𝑩0 ⋅ 𝑩
4𝜋

+ 𝑝A

𝑓@ = ∫8%&'()' 𝑑
9𝑥 #

0
𝑤 𝜓 𝐵 − 𝐵

0

𝑭 𝝃𝟐 = ∇ ⋅ 𝑷
𝝃𝟐 ⋅ 𝒏 g

/%&'()'
= 0

𝑷 = 𝑝||𝒃𝒃 + 𝑝A 𝑰 − 𝒃𝒃
𝑝|| = x𝑓@

𝑝A = 𝑝|| − 𝐵
𝜕𝑝||
𝜕𝐵

Magnetic ripple shape gradient requires anisotropic pressure

9𝑓+

𝐵 =
∫8%&'()' 𝑑

9𝑥 𝑤 𝜓 𝐵

∫8%&'()' 𝑑
9𝑥 𝑤(𝜓)

• Proxy for quasi-symmetry (guiding center confinement) near axis
0 0.5 1

/ 0

0

0.5

1

w
(
)

Adjoint Problem
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Variational principle for equilibria with anisotropic pressure

𝑱×𝑩
𝑐

= ∇ ⋅ 𝑝|| (𝜓, 𝐵)𝒃𝒃 + 𝑝A(𝜓, 𝐵) �⃡� − 𝒃𝒃

𝑝A(𝜓, 𝐵)determined from parallel force balance
• b

𝜕𝑝||(𝜓, 𝐵)
𝜕𝐵 =

𝑝||(𝜓, 𝐵) − 𝑝A(𝜓, 𝐵)
𝐵

Equilibrium with anisotropic pressure
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Variational principle for equilibria with anisotropic pressure

Stationary points of 𝑊[𝐵, 𝑝]Equilibrium with anisotropic pressure

=
𝑊[𝐵, 𝑝] = C

8*

𝑑9𝑥
𝐵0

8𝜋 −𝑝||

Subject to:
1. Prescribed 𝑝||(𝜓, 𝐵)
2. Fixed 𝜄 𝜓
3. Magnetic surfaces

𝑱×𝑩
𝑐

= ∇ ⋅ 𝑝|| (𝜓, 𝐵)𝒃𝒃 + 𝑝A(𝜓, 𝐵) �⃡� − 𝒃𝒃

𝑝A(𝜓, 𝐵)determined from parallel force balance
• b

𝜕𝑝||(𝜓, 𝐵)
𝜕𝐵 =

𝑝||(𝜓, 𝐵) − 𝑝A(𝜓, 𝐵)
𝐵
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Variational principle for equilibria with anisotropic pressure

Subject to:
1. Prescribed 𝑝||(𝜓, 𝐵)
2. Fixed 𝜄 𝜓
3. Magnetic surfaces

Stationary points of 𝑊[𝐵, 𝑝]Equilibrium with anisotropic pressure

=
𝑊[𝐵, 𝑝] = C

8*

𝑑9𝑥
𝐵0

8𝜋 −𝑝||

1W.A. Cooper et al, Computer Phys. Comm., 72 (1992).

• Solutions computed with ANIMEC1 code
• Used for analysis of energetic particle contributions to equilibria

𝑱×𝑩
𝑐

= ∇ ⋅ 𝑝|| (𝜓, 𝐵)𝒃𝒃 + 𝑝A(𝜓, 𝐵) �⃡� − 𝒃𝒃

𝑝A(𝜓, 𝐵)determined from parallel force balance
• b

𝜕𝑝||(𝜓, 𝐵)
𝜕𝐵 =

𝑝||(𝜓, 𝐵) − 𝑝A(𝜓, 𝐵)
𝐵
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Magnetic ripple shape gradient computed with ANIMEC1

1W.A. Cooper et al, Computer 
Phys. Comm., 72 (1992).

𝑭 𝝃𝟐 = ∇ ⋅ 𝑷
𝝃𝟐 ⋅ 𝒏 g

/%&'()'
= 0

𝛿𝜄0 𝜓 = 0

0 =
∇×𝑩 ×𝑩
4𝜋

− ∇ 𝑝 𝜓 − Δ>∇ ⋅ 𝑷
𝑆345675, 𝜄(𝜓), 𝑝 𝜓 , 𝑝|| 𝜓, 𝐵 prescribed

Linearization approximated with 𝜟𝑷 ≪ 𝟏

≈
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Magnetic ripple shape gradient computed with ANIMEC1

1W.A. Cooper et al, Computer 
Phys. Comm., 72 (1992).

0 =
∇×𝑩 ×𝑩
4𝜋

− ∇ 𝑝 𝜓 − Δ>∇ ⋅ 𝑷
𝑆345675, 𝜄(𝜓), 𝑝 𝜓 , 𝑝|| 𝜓, 𝐵 prescribed

Linearization approximated with 𝜟𝑷 ≪ 𝟏

≈

Finite difference Adjoint

𝑭 𝝃𝟐 = ∇ ⋅ 𝑷
𝝃𝟐 ⋅ 𝒏 g

/%&'()'
= 0

𝛿𝜄0 𝜓 = 0
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Magnetic ripple shape gradient computed with ANIMEC1

1W.A. Cooper et al, Computer 
Phys. Comm., 72 (1992).

0 =
∇×𝑩 ×𝑩
4𝜋

− ∇ 𝑝 𝜓 − Δ>∇ ⋅ 𝑷
𝑆345675, 𝜄(𝜓), 𝑝 𝜓 , 𝑝|| 𝜓, 𝐵 prescribed

Linearization approximated with 𝜟𝑷 ≪ 𝟏

≈

Finite difference Adjoint

> 6000 
VMEC evals

1 VMEC + 
1 ANIMEC eval

𝑭 𝝃𝟐 = ∇ ⋅ 𝑷
𝝃𝟐 ⋅ 𝒏 g

/%&'()'
= 0

𝛿𝜄0 𝜓 = 0

Elizabeth Paul PPPL Research Seminar November 25, 2019 15



Many other applications of adjoint approach possible1
Effective Ripple2 (𝜖,--

./0)

1E.J. Paul et al, submitted to J. Plasma Phys., 
(arXiv:1910.14144).
2V.V. Nemov et al, Phys. Plasmas, 6 (1999).
3P. Helander, Rep. Prog. Phys., 77 (2014).  

• Proxy for low-collisionality
neoclassical confinement

• Adjoint approach requires bulk force 
𝓕 = ∇ ⋅ 𝑷(𝜓, 𝛼)

𝑓C/ = ∫ 𝑑9𝑥 𝜖DEE
9/0 𝜓 𝑤(𝜓)

N
eo

cl
as

si
ca

l d
iff

us
io

n 
co

ef
fic

ie
nt
3

𝜈∗ = 𝜈𝑅/𝜄𝑣
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Many other applications of adjoint approach possible1
Effective Ripple2 (𝜖,--

./0)

• Proxy for low-collisionality
neoclassical confinement

• Adjoint approach requires bulk force 
𝓕 = ∇ ⋅ 𝑷(𝜓, 𝛼)

𝑓C/ = ∫ 𝑑9𝑥 𝜖DEE
9/0 𝜓 𝑤(𝜓)

N
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cl
as

si
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us
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nt
3

𝜈∗ = 𝜈𝑅/𝜄𝑣

Cannot be implemented 
with ANIMEC

1E.J. Paul et al, submitted to J. Plasma Phys., 
(arXiv:1910.14144).
2V.V. Nemov et al, Phys. Plasmas, 6 (1999).
3P. Helander, Rep. Prog. Phys., 77 (2014).  
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1E.J. Paul et al, submitted to J. Plasma Phys., (arXiv:1910.14144).
2L.M. Imbert-Gerard, E.J. Paul, A. Wright, (arXiv:1908.05360).

• Quasi-symmetry → guiding center 
confinement, reduced neoclassical transport

𝑓C/ = ∫ 𝑑9𝑥 𝑤 𝜓 𝑩×∇𝐵 ⋅ ∇𝜓 − 𝐹 𝜓 𝑩 ⋅ ∇𝐵 0

Does not require Boozer coordinate 
transformation

Many other applications of adjoint approach possible1
Departure from quasi-symmetry

HSX field strength2

𝜑-../!0/(2𝜋/𝑁1)

𝜗 -
..
/!
0/
2𝜋
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1E.J. Paul et al, submitted to J. Plasma Phys., (arXiv:1910.14144).
2L.M. Imbert-Gerard, E.J. Paul, A. Wright, (arXiv:1908.05360).

• Quasi-symmetry → guiding center 
confinement, reduced neoclassical transport

𝑓C/ = ∫ 𝑑9𝑥 𝑤 𝜓 𝑩×∇𝐵 ⋅ ∇𝜓 − 𝐹 𝜓 𝑩 ⋅ ∇𝐵 0

Does not require Boozer coordinate 
transformation

• Adjoint approach requires bulk force, 𝓕(𝒓)

Many other applications of adjoint approach possible1
Departure from quasi-symmetry

HSX field strength2

𝜑-../!0/(2𝜋/𝑁1)

𝜗 -
..
/!
0/
2𝜋
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1T. Antonsen Jr., E.J. Paul, M. Landreman, J. Plasma Phys., 85 (2019).

Adjoint approach for coil shape gradient  

Generalization of self-adjointness of MHD force operator1

#
&!"#$%#

𝑑#𝑥 −𝑭 𝝃' ⋅ 𝝃% + 𝑭 𝝃% ⋅ 𝝃' +
1
𝑐B

2

(𝐼3&#
3&
𝑑𝑙 (𝛿𝒓3',2 ⋅ 𝒕×𝛿𝑩% − 𝛿𝒓%,2 ⋅ 𝒕×𝛿𝑩'))

−
2𝜋
𝑐

#
&!"#$%#

𝑑𝜓 𝛿𝐼),% 𝜓 𝛿𝜄' 𝜓 − 𝛿𝐼),' 𝜓 𝛿𝜄% 𝜓 = 0
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1T. Antonsen Jr., E.J. Paul, M. Landreman, J. Plasma Phys., 85 (2019).

Adjoint approach for coil shape gradient  

Generalization of self-adjointness of MHD force operator1

#
&!"#$%#

𝑑#𝑥 −𝑭 𝝃' ⋅ 𝝃% + 𝑭 𝝃% ⋅ 𝝃' +
1
𝑐B

2

(𝐼3&#
3&
𝑑𝑙 (𝛿𝒓3',2 ⋅ 𝒕×𝛿𝑩% − 𝛿𝒓%,2 ⋅ 𝒕×𝛿𝑩'))

−
2𝜋
𝑐

#
&!"#$%#

𝑑𝜓 𝛿𝐼),% 𝜓 𝛿𝜄' 𝜓 − 𝛿𝐼),' 𝜓 𝛿𝜄% 𝜓 = 0

1. Compute shape derivative for figure of merit 
𝛿𝑓 𝝃# = ∫8%&'()' 𝑑

9𝑥 𝝃# ⋅ 𝑨#
2. Adjoint displacement 𝝃0 satisfies

𝑭 𝝃0 = −𝑨#
𝛿𝒓0,G = 0 
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1T. Antonsen Jr., E.J. Paul, M. Landreman, J. Plasma Phys., 85 (2019).

Adjoint approach for coil shape gradient  

Generalization of self-adjointness of MHD force operator1

#
&!"#$%#

𝑑#𝑥 −𝑭 𝝃' ⋅ 𝝃% + 𝑭 𝝃% ⋅ 𝝃' +
1
𝑐B

2

(𝐼3&#
3&
𝑑𝑙 (𝛿𝒓3',2 ⋅ 𝒕×𝛿𝑩% − 𝛿𝒓%,2 ⋅ 𝒕×𝛿𝑩'))

−
2𝜋
𝑐

#
&!"#$%#

𝑑𝜓 𝛿𝐼),% 𝜓 𝛿𝜄' 𝜓 − 𝛿𝐼),' 𝜓 𝛿𝜄% 𝜓 = 0

1. Compute shape derivative for figure of merit 
𝛿𝑓 𝝃# = ∫8%&'()' 𝑑

9𝑥 𝝃# ⋅ 𝑨#
2. Adjoint displacement 𝝃0 satisfies

𝑭 𝝃0 = −𝑨#
𝛿𝒓0,G = 0 

𝛿𝑓 𝝃# = 
∑G ∫H+ 𝑑𝑙 𝛿𝒓H#,G ⋅ 𝒕×𝛿𝑩0

I,+
J

𝑺G= coil shape gradient
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Rotational transform coil shape gradient with VMEC

𝑓K = C
8%&'()'

𝑑𝜓 𝑤(𝜓)𝜄(𝜓)

0 0.5 1
/ 0

0

0.5

1

w
(
)
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Rotational transform coil shape gradient with VMEC

𝑓K = C
8%&'()'

𝑑𝜓 𝑤(𝜓)𝜄(𝜓)

0 0.5 1
/ 0

0

0.5

1

w
(
)

𝑭 𝝃𝟐 = 0
𝛿𝒓H+,. = 0

𝛿𝐼',0 𝜓 = 𝑤(𝜓)

Adjoint problem

Current 
perturbation

𝑺G = −𝐼H+𝒕×
𝛿𝑩0
2𝜋
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Rotational transform coil shape gradient with VMEC

Calculation for 
C09R00 coils1

1D. Williamson et al, Fusion Engineering, (2005).
2S. Lazerson, Plasma Phys. Control. Fusion, 55 (2013). 

𝑺G = −𝐼H+𝒕×
𝛿𝑩0
2𝜋

𝑓K = C
8%&'()'

𝑑𝜓 𝑤(𝜓)𝜄(𝜓)

0 0.5 1
/ 0

0

0.5

1

w
(
)

𝑭 𝝃𝟐 = 0
𝛿𝒓H+,. = 0

𝛿𝐼',0 𝜓 = 𝑤(𝜓)

Adjoint problem

Current 
perturbation

Computed with
DIAGNO2
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Outline

• Introduction

• Shape gradients for MHD equilibria

• Perturbed equilibrium approach
• Variational principle for linear MHD
• Euler-Lagrange solutions

• Conclusions
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Variational principle for perturbed MHD equilibria

𝑭 𝝃 + 𝛿𝑭 =
∇×𝑩 ×𝛿𝑩 + (∇× )(𝛿𝑩) ×𝑩

4𝜋 − 𝛁𝛿𝑝 𝝃 + 𝛿𝑭 = 0
𝛿𝑩 𝝃 = ∇×(𝝃×𝑩)
𝛿𝑝 = − 𝝃 ⋅ ∇𝑝

𝝃 ⋅ ∇𝜓 |L", = 𝝃 ⋅ ∇𝜓 |L"L/ = 0

Perturbed equilibrium with bulk force
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Variational principle for perturbed MHD equilibria

𝑭 𝝃 + 𝛿𝑭 =
∇×𝑩 ×𝛿𝑩 + (∇× )(𝛿𝑩 )×𝑩

4𝜋 − 𝛁𝛿𝑝 𝝃 + 𝛿𝑭 = 0
𝛿𝑩 𝝃 = ∇×(𝝃×𝑩)
𝛿𝑝 = − 𝝃 ⋅ ∇𝑝

𝝃 ⋅ ∇𝜓 |L", = 𝝃 ⋅ ∇𝜓 |L"L/ = 0

𝑊 𝝃 = C
8*

𝑑9𝑥 −
𝛿𝑩 ⋅ 𝛿𝑩
4𝜋

+
𝝃 ⋅ 𝑱×𝛿𝑩

𝑐
− 𝝃 ⋅ ∇𝑝 𝛁 ⋅ 𝝃 − 2𝝃 ⋅ 𝛿𝑭

𝛿𝝃 ⋅ ∇𝜓 |L", = 𝛿𝝃 ⋅ ∇𝜓 |L"L/ = 0

Perturbed equilibrium with bulk force

Stationary points of 𝑊 𝝃

=
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Spectral solution of Euler-Lagrange equation (I)

𝝃 ⋅ 𝑩 = 𝟎 →
2 independent 
components

𝑊 𝜉L, 𝜉M = C
8*

𝑑9𝑥 −
𝛿𝑩 ⋅ 𝛿𝑩
4𝜋 +

𝝃 ⋅ 𝑱×𝛿𝑩
𝑐 − 𝝃 ⋅ ∇𝑝 𝛁 ⋅ 𝝃 − 2𝝃 ⋅ 𝛿𝑭

𝜉L = 𝝃 ⋅ ∇𝜓
𝜉M = 𝝃 ⋅ ∇𝜃 − 𝜄 𝜓 𝝃 ⋅ ∇𝜙
𝜉L|L", = 𝜉L|L"L/ = 0
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Spectral solution of Euler-Lagrange equation (I)

𝜉L,M 𝜓, 𝜃, 𝜙 =J
N,O

𝜉NOP
L,M cos 𝑚𝜃 − 𝑛𝜙 + 𝜉NOQ

L,M sin 𝑚𝜃 − 𝑛𝜙 = 𝚵𝝍,𝜶(𝜓) ⋅ 𝓕

𝑊 𝜉L, 𝜉M = C
8*

𝑑9𝑥 �𝚵𝝍 ⋅ 𝑨𝝍𝝍𝚵𝝍 + 𝚵𝝍 ⋅ 𝑨𝝍𝝍0𝚵𝝍; 𝜓 + 𝚵𝝍′(𝜓) ⋅ 𝑨𝝍0𝝍0𝚵𝝍′(𝜓) +

�𝚵𝜶 ⋅ 𝑨𝜶𝝍𝚵𝝍 + 𝚵𝜶 ⋅ 𝑨𝜶𝝍0𝚵𝝍′ 𝜓 + 𝚵𝜶 ⋅ 𝑨𝜶𝜶𝚵𝜶 + 𝑪𝝍 ⋅ 𝚵𝝍+ 𝑪 𝜶 ⋅ 𝚵𝜶

𝝃 ⋅ 𝑩 = 𝟎 →
2 independent 
components

𝑊 𝜉L, 𝜉M = C
8*

𝑑9𝑥 −
𝛿𝑩 ⋅ 𝛿𝑩
4𝜋 +

𝝃 ⋅ 𝑱×𝛿𝑩
𝑐 − 𝝃 ⋅ ∇𝑝 𝛁 ⋅ 𝝃 − 2𝝃 ⋅ 𝛿𝑭

𝜉L = 𝝃 ⋅ ∇𝜓
𝜉M = 𝝃 ⋅ ∇𝜃 − 𝜄 𝜓 𝝃 ⋅ ∇𝜙
𝜉L|L", = 𝜉L|L"L/ = 0Expand in 

Fourier series
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Spectral solution of Euler-Lagrange equation (II)

Variation w.r.t. 𝚵𝜶

𝟐𝑨𝜶𝜶𝚵𝜶 𝜓 = 𝑨𝜶𝝍𝚵𝝍 𝜓 + 𝑨𝜶𝝍0𝚵𝝍′(𝜓) + 𝑪 𝜶
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Variation w.r.t. 𝚵𝜶

𝟐𝑨𝜶𝜶𝚵𝜶 𝜓 = 𝑨𝜶𝝍𝚵𝝍 𝜓 + 𝑨𝜶𝝍0𝚵𝝍′(𝜓) + 𝑪 𝜶

Spectral solution of Euler-Lagrange equation (II)

Variation w.r.t. 𝚵𝝍 (𝚵𝜶 eliminated)
𝑪𝝍 𝚵𝝍 𝜓 + 𝑪𝝍; 𝚵𝝍; 𝜓 + 𝑪𝝍;;𝚵𝝍;; 𝜓 + 𝑫 = 𝟎

𝚵𝝍|L", = 𝚵𝝍|L"L/ = 0
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• 2nd order coupled 2-point BVP solved with finite difference
• Similar to Euler-Lagrange eqn. solved by DCON1

Spectral solution of Euler-Lagrange equation (II)

Variation w.r.t. 𝚵𝝍 (𝚵𝜶 eliminated)
𝑪𝝍 𝚵𝝍 𝜓 + 𝑪𝝍; 𝚵𝝍; 𝜓 + 𝑪𝝍;;𝚵𝝍;; 𝜓 + 𝑫 = 𝟎

𝚵𝝍|L", = 𝚵𝝍|L"L/ = 0

1A. Glasser, Phys. Plasmas, 23 (2016). 

Variation w.r.t. 𝚵𝜶

𝟐𝑨𝜶𝜶𝚵𝜶 𝜓 = 𝑨𝜶𝝍𝚵𝝍 𝜓 + 𝑨𝜶𝝍0𝚵𝝍′(𝜓) + 𝑪 𝜶
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• 2nd order coupled 2-point BVP solved with finite difference
• Similar to Euler-Lagrange eqn. solved by DCON1

Spectral solution of Euler-Lagrange equation (II)

Variation w.r.t. 𝚵𝝍 (𝚵𝜶 eliminated)
𝑪𝝍 𝚵𝝍 𝜓 + 𝑪𝝍; 𝚵𝝍; 𝜓 + 𝑪𝝍;;𝚵𝝍;; 𝜓 + 𝑫 = 𝟎

𝚵𝝍|L", = 𝚵𝝍|L"L/ = 0

1A. Glasser, Phys. Plasmas, 23 (2016). 

Singular at rational 
surfaces in 3D

Variation w.r.t. 𝚵𝜶

𝟐𝑨𝜶𝜶𝚵𝜶 𝜓 = 𝑨𝜶𝝍𝚵𝝍 𝜓 + 𝑨𝜶𝝍0𝚵𝝍′(𝜓) + 𝑪 𝜶
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Preliminary perturbed equilibrium results

• Equilibrium with 𝜃 and 𝑧 symmetry
• Bulk force = pressure perturbation

𝛿𝑭 = −∇𝛿𝑃(𝜓)
• Benchmark with FD VMEC solution
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Outline

• Introduction

• Shape gradients for MHD equilibria

• Perturbed equilibrium approach

• Conclusions
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Conclusions (I)

Open questions
• How to extend linearized MHD approach to 3D (e.g. Frobenius analysis as in 

DCON1)?
• Can we prevent flux surface overlap in linearized approach?
• Can adjoint approach be generalized to avoid assumption of surfaces?

1A. Glasser, Phys. Plasmas, 23 (2016). 
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Conclusions (I)

Open questions
• How to extend linearized MHD approach to 3D (e.g. Frobenius analysis as in 

DCON)?
• Can we prevent flux surface overlap in linearized approach?
• Can adjoint approach be generalized to avoid assumption of surfaces?

Future work
• Application of adjoint approach for fixed and free-boundary optimization (e.g. 

incorporation in STELLOPT).
• Demonstration for other important figures of merit (e.g. energetic particle 

confinement)
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Conclusions (II)

• Adjoint methods allow efficient computation of geometric derivatives
• Gradient-based optimization
• Sensitivity and tolerance analysis

• Adjoint approach for MHD equilibria used to compute shape gradient for plasma 
boundary and coil shapes 

ü Magnetic well
ü Magnetic ripple
ü Rotational transform
q Effective ripple (𝜖!""

#/%)
q Quasisymmetry
？ Energetic particles
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Other adjoint methods for stellarators
• Optimization of coil shapes 

E.J. Paul et al, Nuclear Fusion, 58 (2018).
• Optimization of neoclassical quantities 

E.J. Paul et al, J. Plasma Phys., 85 (2019).

Conclusions (II)

• Adjoint methods allow efficient computation of geometric derivatives
• Gradient-based optimization
• Sensitivity and tolerance analysis

• Adjoint approach for MHD equilibria used to compute shape gradient for plasma 
boundary and coil shapes 

References for this work
• T.M. Antonsen, E.J. Paul, M. Landreman, J. 

Plasma Phys., 85 (2019).
• E.J. Paul et al, submitted to J. Plasma Phys., 

(arXiv:1910.14144).

Thank you for your attention
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