Variational Principles and Topological Constants of Motion for Non-Barotropic Magnetohydrodynamics

Asher Yahalom

PPPL Theory Seminar
Princeton University
12.11.2019
Contents

• Introduction
• Eulerian Variational Principles & Topological Constants of Motion
• Lagrangian Variational Principles & Topological Constants of Motion
• Stationary Variational Principle
Introduction
Basic Quantities

1. The magnetic field \vec{B} 3 functions.
2. The velocity field \vec{V} 3 functions.
3. The density field ρ 1 function.
4. The specific entropy s 1 function.

Total of 8 functions.
Derived quantities

Current:

\[\vec{J} = \frac{\vec{\nabla} \times \vec{B}}{4\pi} \]

Pressure:

\[P(\rho, s) \]

For non-Barotropic flows, (the general case).
Basic Equations

\[
\begin{align*}
\frac{\partial \vec{B}}{\partial t} &= \vec{\nabla} \times (\vec{v} \times \vec{B}) \\
\vec{\nabla} \cdot \vec{B} &= 0 \\
\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) &= 0 \\
\rho \frac{d\vec{v}}{dt} &= \rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla}) \vec{v} \right) = -\vec{\nabla} p + \frac{(\vec{\nabla} \times \vec{B}) \times \vec{B}}{4\pi}
\end{align*}
\]

7 equations – one equation is just an initial condition requirement.
Basic Equations

\[\frac{ds}{dt} = \frac{\partial s}{\partial t} + \vec{v} \cdot \nabla s = 0 \]

Total of 8 equations for 8 functions.
Content of the Equation

\[\nabla \cdot \vec{B} = 0 \]

The total magnetic field flux into a closed volume is null – what comes in must come out.
The MHD approximation

\[\frac{\partial \vec{B}}{\partial t} = \vec{\nabla} \times (\vec{v} \times \vec{B}) \]

The magnetic field lines are co-moving that is they move with the fluid.

Hence the topology of the field lines is conserved.
Physical Content of the Equation

Ohms law:

\[\vec{J} = \sigma \left(\vec{E} + \vec{v} \times \vec{B} \right) \]

Take the limit:

\[\lim_{\sigma \to 0} \frac{\vec{J}}{\sigma} = 0 \]

(Current density over Conductivity small)

\[\vec{E} = -\vec{v} \times \vec{B} \]
Physical Content of the Equation

Faraday’s law:

\[\vec{E} = -\vec{v} \times \vec{B} \]

\[\frac{\partial \vec{B}}{\partial t} = -\vec{\nabla} \times \vec{E} \]

\[\frac{\partial \vec{B}}{\partial t} = \vec{\nabla} \times (\vec{v} \times \vec{B}) \]
The continuity equation – mass is conserved.
The Euler equation: Newton’s second law for continuous matter moving under the influence of pressure and magnetic forces.
Physical Content

Heat is not created (zero viscosity, zero resistivity) and is not conducted only convection occurs.
Eulerian Variational Principles & Topological Constants of Motion
Questions

1. Can those equations be derived from a variational principle?

2. Can the numbers of functions describing the problem be reduced?
Bibliography

◆ Asher Yahalom “Simplified Variational Principles for Stationary non-Barotropic Magnetohydrodynamics” International Journal of Mechanics, Volume 10, 2016, p. 336-341. ISSN:
A. Yahalom
Asher Yahalom “Topological Bounds from Label Translation Symmetry of Non-Barotropic MHD” submitted.
Sakurai’s Idea

Let us represent the magnetic field lines as intersection of two co-moving surfaces χ and η. (Euler potentials)

This is essentially introducing a coordinate system connected to the magnetic field lines. The third coordinate parameterizes the distance along the magnetic field lines and was denoted “Magnetic Metage” μ by Yahalom & Lynden-Bell (2008).
Suppose:

\[\vec{B} = \nabla \chi \times \nabla \eta \]

The magnetic field lines are an intersection of two surfaces (Euler potentials)—this is true only for some field topologies.

The surfaces are co-moving
Economy

The two equations:

\[\frac{d\chi}{dt} = 0, \quad \frac{d\eta}{dt} = 0 \]

Replace the four equations:

\[\nabla \cdot \vec{B} = 0 \]
\[\frac{\partial \vec{B}}{\partial t} = \nabla \times (\vec{v} \times \vec{B}) \]
The Variational Principle

\[A \equiv \int \mathcal{L} d^3 x dt \]

\[\mathcal{L} \equiv \mathcal{L}_1 + \mathcal{L}_2, \]

\[\mathcal{L}_1 \equiv \rho \left(\frac{1}{2} \bar{v}^2 - \varepsilon(\rho, s) \right) + \frac{\bar{B}^2}{8\pi}, \]

\[\mathcal{L}_2 \equiv \nu \left[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \bar{v}) \right] - \rho \alpha \frac{d\chi}{dt} - \rho \beta \frac{d\eta}{dt} - \rho \sigma \frac{ds}{dt} - \frac{\bar{B}}{4\pi} \cdot \nabla \chi \times \nabla \eta \]
\[A \equiv \int \mathcal{L} d^3 x dt \]

Is the Action

\[\mathcal{L} \]

Is the Lagrangian density
The first part of the Lagrangian density contains the Kinetic Energy term and two potential energy terms, one is due to the internal energy (pressure & entropy) and the other is due to magnetic fields.
The second part of the Lagrangian density contains four terms which enforce by using Lagrange multipliers:

1. The equation of continuity.
2. The existence of two comoving surfaces.
3. The conservation of entropy.
4. The magnetic field lines being at the intersection of those two surfaces.
The Variational Equations

Variation with respect to nu, alpha and beta yields the continuity equations and two equations that express the fact that surfaces chi and eta are co-moving:

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0
\]

\[
\rho \frac{d\chi}{dt} = 0
\]

\[
\rho \frac{d\eta}{dt} = 0.
\]
The Variational Equations

Variation with respect to sigma yields the entropy equation:
The Variational Equations

Variation with respect to magnetic field results in the equation:

\[\vec{B} = \hat{B} \equiv \vec{\nabla} \chi \times \vec{\nabla} \eta \]

This equation is the Sakurai representation which expresses the fact that the magnetic field lines are the intersection of the two co-moving surfaces.
The Variational Equations

Variation with respect to velocity vector results in the equation:

\[
\vec{v} = \vec{\nabla}v + \alpha \vec{\nabla}\chi + \beta \vec{\nabla}\eta + \sigma \vec{\nabla}s
\]

This equation is a “Clebsch” like representation of the velocity.
The Variational Equations

Variation with respect to the density results in the Bernoulli type equation:

\[\frac{dv}{dt} = \frac{1}{2} v^2 - w \]

In which \(w \) is specific enthalpy.
The Variational Equations

Variation with respect to the entropy results in the sigma equation:

\[\frac{d\sigma}{dt} = T \]

In which \(T = \frac{\partial \varepsilon}{\partial s} \) is the temperature.
The Variational Equations

Finally variation with respect to chi and eta results in the equations:

\[\frac{d\alpha}{dt} = \frac{\nabla \eta \cdot \vec{J}}{\rho}, \quad \frac{d\beta}{dt} = -\frac{\nabla \chi \cdot \vec{J}}{\rho} \]
Relations to the Physical Equations

The two equations:

\[
\frac{d\chi}{dt} = 0, \quad \frac{d\eta}{dt} = 0
\]

Replace the four equations:

\[
\nabla \cdot \vec{B} = 0
\]
\[
\frac{\partial \vec{B}}{\partial t} = \nabla \times (\vec{v} \times \vec{B})
\]
Relations to the Physical Equations

Mass conservation is also assured:

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0
\]
Relations to the Physical Equations

The Euler equations are obtained by:

\[
\frac{d\vec{v}}{dt} = \frac{d\nabla\nu}{dt} + \frac{d\alpha}{dt} \nabla\chi + \alpha \frac{d\nabla\chi}{dt} + \frac{d\beta}{dt} \nabla\eta + \beta \frac{d\nabla\eta}{dt} + \frac{d\sigma}{dt} \nabla s + \sigma \frac{d\nabla s}{dt}
\]
After substituting the relevant equations we obtain the Euler equations

\[
\frac{d\vec{v}}{dt} = -\nabla v_k \left(\frac{\partial v}{\partial x_k} + \alpha \frac{\partial \chi}{\partial x_k} + \beta \frac{\partial \eta}{\partial x_k} + \sigma \frac{\partial s}{\partial x_k} \right) + \nabla \left(\frac{1}{2} \vec{v}^2 - w \right) + T\nabla s
+ \frac{1}{\rho} \left((\nabla \eta \cdot \vec{J}) \nabla \chi - (\nabla \chi \cdot \vec{J}) \nabla \eta \right)
\]

\[
= -\vec{v}_k v_k + \vec{\nabla} \left(\frac{1}{2} \vec{v}^2 - w \right) + T\nabla s + \frac{1}{\rho} \vec{J} \times (\nabla \chi \times \nabla \eta)
\]

\[
= -\frac{\vec{\nabla} p}{\rho} + \frac{1}{\rho} \vec{J} \times \vec{B}.
\]
Intermediate Account

1. We have succeeded in deriving a variational principle for magnetohydrodynamics of the topology assumed.

2. The variational equation contains the 8 physical variables + alpha, beta, nu, chi, eta & sigma 6 functions = 14 functions. This is too much!

3. Solution rearrange terms in the Lagrangian!
The Simplified Variational Principle

\[\mathcal{L} = \mathcal{\hat{L}} + \mathcal{L}_{\bar{v}} + \mathcal{L}_{\bar{B}} + \mathcal{L}_{\text{boundary}} \]

\[\mathcal{\hat{L}} \equiv -\rho \left[\frac{\partial \nu}{\partial t} + \alpha \frac{\partial \chi}{\partial t} + \beta \frac{\partial \eta}{\partial t} + \sigma \frac{\partial s}{\partial t} + \varepsilon(\rho, s) + \right. \]

\[\left. \frac{1}{2} (\nabla \nu + \alpha \nabla \chi + \beta \nabla \eta + \sigma \nabla s)^2 \right] - \frac{1}{8\pi} (\nabla \chi \times \nabla \eta)^2 \]

\[\mathcal{L}_{\bar{v}} \equiv \frac{1}{2} \rho (\bar{v} - \hat{v})^2 \]

\[\mathcal{L}_{\bar{B}} \equiv \frac{1}{8\pi} (\bar{B} - \hat{B})^2 \]

\[\mathcal{L}_{\text{boundary}} \equiv \frac{\partial (\nu \rho)}{\partial t} + \nabla \cdot (\nu \rho \bar{v}) \]
The terms:

\[\mathcal{L}_\bar{v} \equiv \frac{1}{2} \rho (\bar{v} - \hat{\bar{v}})^2 \]

\[\mathcal{L}_{\bar{B}} \equiv \frac{1}{8\pi} (\bar{B} - \hat{\bar{B}})^2 \]

Result in the equations:

\[\bar{v} = \hat{\bar{v}} \equiv \bar{\nabla} \nu + \alpha \bar{\nabla} \chi + \beta \bar{\nabla} \eta + \sigma \bar{\nabla} s \]

\[\bar{B} = \hat{\bar{B}} \equiv \bar{\nabla} \chi \times \bar{\nabla} \eta \]
The magnetic and velocity fields can be calculated using alpha, beta, nu, chi, eta, sigma & s after the relevant equations for those quantities are solved.
Hence we are left with:

\[\mathcal{L} = \mathcal{L} + \mathcal{L}_{\bar{v}} + \mathcal{L}_{\bar{B}} + \mathcal{L}_{\text{boundary}} \]

\[\mathcal{L} \equiv -\rho\left[\frac{\partial \nu}{\partial t} + \alpha \frac{\partial \chi}{\partial t} + \beta \frac{\partial \eta}{\partial t} + \sigma \frac{\partial s}{\partial t} + \varepsilon(\rho, s) + \frac{1}{2}(\bar{\nabla} \nu + \alpha \bar{\nabla} \chi + \beta \bar{\nabla} \eta + \sigma \bar{\nabla} s)^2 \right] - \frac{1}{8\pi} (\bar{\nabla} \chi \times \bar{\nabla} \eta)^2 \]

\[\mathcal{L}_{\bar{v}} \equiv \frac{1}{2} \bar{v}^2 \]

\[\mathcal{L}_{\bar{B}} \equiv \frac{1}{8\pi} (\bar{B}^2 - \hat{\bar{B}}^2) \]

\[\mathcal{L}_{\text{boundary}} \equiv \frac{\partial (\nu \rho)}{\partial t} + \bar{\nabla} \cdot (\nu \rho \bar{v}) \]
Or with:

\[\hat{L} \equiv -\rho \left[\frac{\partial \nu}{\partial t} + \alpha \frac{\partial \chi}{\partial t} + \beta \frac{\partial \eta}{\partial t} + \sigma \frac{\partial s}{\partial t} + \varepsilon(\rho, s) + \frac{1}{2} \left(\nabla \nu + \alpha \nabla \chi + \beta \nabla \eta + \sigma \nabla s \right)^2 \right] - \frac{1}{8\pi} \left(\nabla \chi \times \nabla \eta \right)^2 \]
The final Lagrangian contains only 8 functions and yields 8 equations:

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \]

\[\rho \frac{d\chi}{dt} = 0 \]

\[\rho \frac{d\eta}{dt} = 0. \]

\[\frac{dv}{dt} = \frac{1}{2} v^2 - w \]

\[\frac{d\alpha}{dt} = \frac{\nabla \eta \cdot \vec{J}}{\rho}, \quad \frac{d\beta}{dt} = -\frac{\nabla \chi \cdot \vec{J}}{\rho} \]

\[\frac{d\sigma}{dt} = T, \quad \frac{ds}{dt} = 0 \]
Analogy to Electromagnetic Theory

Potentials (vector + scalar):

\[E = -\nabla \phi - \frac{\partial A}{\partial t} \]
\[B = \nabla \times A. \]

\[\mathcal{L} = -\frac{1}{16\pi} F_{\alpha\beta} F^{\alpha\beta} - \frac{1}{c} J_\alpha A^\alpha \]

\[F^{\alpha\beta} = \partial^\alpha A^\beta - \partial^\beta A^\alpha \]
Intermediate Account

1. We have managed to represent magnetohydrodynamics as a Variational Problem in terms of 8 variables.

2. Can one reduce the number of functions further? The answer is probably yes.
A Simplified Lagrangian
Consider the three equations:

\[\frac{\partial \chi}{\partial t} + (\nabla \nu + \alpha \nabla \chi + \beta \nabla \eta + \sigma \nabla s) \cdot \nabla \chi = 0 \]

\[\frac{\partial \eta}{\partial t} + (\nabla \nu + \alpha \nabla \chi + \beta \nabla \eta + \sigma \nabla s) \cdot \nabla \eta = 0 \]

\[\frac{\partial s}{\partial t} + (\nabla \nu + \alpha \nabla \chi + \beta \nabla \eta + \sigma \nabla s) \cdot \nabla s = 0 \]

Those can be viewed as a set of three equations with three variables for \(\alpha \), \(\beta \) and \(\sigma \).
\[\alpha_i \equiv (\alpha, \beta, \sigma), \quad \chi_i \equiv (\chi, \eta, s), \quad k_i \equiv -\frac{\partial \chi_i}{\partial t} - \vec{\nabla} \nu \cdot \vec{\nabla} \chi_i, \quad i \in (1, 2, 3) \]

\[k_i = \alpha_j \vec{\nabla} \chi_i \cdot \vec{\nabla} \chi_j, \quad j \in (1, 2, 3) \]

\[A_{ij} \equiv \vec{\nabla} \chi_i \cdot \vec{\nabla} \chi_j \]

\[k_i = A_{ij} \alpha_j, \quad j \in (1, 2, 3) \]
\[A_{ij}^{-1} = |A|^{-1} \begin{pmatrix} A_{22}A_{33} - A_{23}^2 & A_{13}A_{23} - A_{12}A_{33} & A_{12}A_{23} - A_{13}A_{22} \\ A_{13}A_{23} - A_{12}A_{33} & A_{11}A_{33} - A_{13}^2 & A_{12}A_{13} - A_{11}A_{23} \\ A_{12}A_{23} - A_{13}A_{22} & A_{12}A_{13} - A_{11}A_{23} & A_{11}A_{22} - A_{12}^2 \end{pmatrix} \]

\[|A| = A_{11}A_{22}A_{33} - A_{11}A_{23}^2 - A_{22}A_{13}^2 - A_{33}A_{12}^2 + 2A_{12}A_{13}A_{23} \]

\[\alpha_i[\chi_i, \nu] = A_{ij}^{-1}k_{ij} \]
\[\vec{v} = -A_{ij}^{-1} \vec{\nabla} \chi_i \frac{\partial \chi_j}{\partial t} \]
\[\mathcal{L}[\chi_i, \nu, \rho] = -\rho \left[\frac{\partial \nu}{\partial t} + \alpha_k [\chi_i, \nu] \frac{\partial \chi_k}{\partial t} \right] \\
+ \varepsilon(\rho, \chi_3) + \frac{1}{2} \bar{\nu}[\chi_i]^2 - \frac{1}{8\pi} (\vec{\nabla} \chi_1 \times \vec{\nabla} \chi_2)^2 \]
\[\hat{L}[\chi_i, \nu, \rho] = \rho \left[\frac{1}{2} A^{-1}_{jn} \frac{\partial \chi_j}{\partial t} \frac{\partial \chi_n}{\partial t} + \frac{\partial \nu}{\partial \chi_m} \frac{\partial \chi_m}{\partial t} - \frac{\partial \nu}{\partial t} \right] \\
- \varepsilon(\rho, \chi_3)] - \frac{1}{8\pi} (\vec{\nabla}\chi_1 \times \vec{\nabla}\chi_2)^2. \]
\frac{dv}{dt} = \frac{1}{2} v^2 - w, \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0,
\frac{d\sigma}{dt} = T, \frac{d\alpha}{dt} = \frac{\nabla \eta \cdot \vec{J}}{\rho}, \frac{d\beta}{dt} = -\frac{\nabla \chi \cdot \vec{J}}{\rho}
A Simplified Hamiltonian

Conjugate momenta:

\[p_\rho = \frac{\partial \tilde{L}}{\partial \dot{\rho}} = \nu, \quad \dot{\rho} = \frac{\partial \rho}{\partial t}. \]

\[p_{\chi_k} = \frac{\partial \tilde{L}}{\partial \dot{\chi}_k} = \rho[A^{-1}_{kj}\frac{\partial \chi_j}{\partial t} + \frac{\partial \nu}{\partial \chi_k}] = -\rho \alpha_k, \quad \dot{\chi}_k = \frac{\partial \chi_k}{\partial t}. \]
Hamiltonian:

\[\mathcal{H}[x_i, \rho, p_{x_k}, p_{\rho}] = p_{x_k} \dot{x}_k + p_\rho \dot{\rho} - \mathcal{L} \]
\[= \rho \left[\frac{1}{2} A_{jn}^{-1} \frac{\partial x_j}{\partial t} \frac{\partial x_n}{\partial t} + \varepsilon(\rho, x_3) \right] + \frac{1}{8\pi} (\vec{\nabla} x_1 \times \vec{\nabla} x_2)^2. \]
\[= \frac{1}{2} \rho^{-1} A_{kl} p_{x_k} p_{x_l} - p_{x_k} \vec{\nabla} x_k \cdot \vec{\nabla} p_\rho + \frac{1}{2} \rho (\vec{\nabla} p_\rho)^2 \]
\[+ \rho \varepsilon(\rho, x_3) + \frac{1}{8\pi} (\vec{\nabla} x_1 \times \vec{\nabla} x_2)^2. \]

\[\mathcal{H} = \frac{1}{2} \rho \vec{v}^2 + \rho \varepsilon + \frac{B^2}{8\pi} \]

The Hamiltonian is just the energy density as expected.
Hamilton's equations:

\[
\frac{\delta H}{\delta p_\rho} = \dot{\rho} - \frac{\delta H}{\delta \rho} = \ddot{\rho}_\rho
\]

\[
\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) = 0
\]

\[
\frac{d\nu}{dt} = \frac{1}{2} \vec{v}^2 - \omega
\]

\[
\rho \frac{d\chi}{dt} = 0, \quad \rho \frac{d\eta}{dt} = 0.
\]

\[
\rho \frac{ds}{dt} = 0.
\]
\[
- \frac{\delta \mathcal{H}}{\delta \chi_k} = \dot{p}_{\chi_k}
\]

\[
\frac{d\alpha}{dt} = \frac{\nabla \eta \cdot \vec{J}}{\rho}, \quad \frac{d\beta}{dt} = -\frac{\nabla \chi \cdot \vec{J}}{\rho},
\]

\[
\frac{d\sigma}{dt} = T.
\]
Intermediate Account

It is shown that non-barotropic magnetohydrodynamics can be derived from a variational principle of five functions:

\[\nu, \rho, \chi, \eta, s \]

In addition to the density and entropy, we need two surfaces on which the magnetic field lines lie and an additional Bernoulli type function.

Hamiltonian and Lagrangian densities are given in terms of the above quantities.
Topological Constant

Cross Helicity

\[H_C \equiv \int \vec{B} \cdot \vec{v} d^3x \]
Cross Helicity

\[H_C \equiv \int \vec{B} \cdot \vec{v} d^3x \]

Characterizing the degree of cross-knottiness of the magnetic field and velocity lines.
Cross Helicity is **not** conserved in non-barotropic MHD (as opposed to barotropic MHD)

\[
\frac{dH_C}{dt} = \int T \nabla S \cdot \vec{B} d^3x
\]
Question: What is the analogous topological conserved quantity in non-barotropic MHD?

Answer: This can be determined from the variational equations.
We know:

\[
\frac{d\nu}{dt} = \frac{1}{2}v^2 - w
\]

Since the right hand side is single valued so must be the left hand side, hence:

\[
\frac{d[v]}{dt} = 0
\]
Let us calculate the cross helicity in terms of the variational variables:

\[\vec{B} = \vec{\nabla}_\chi \times \vec{\nabla}_\eta \]

\[\vec{v} = \vec{\nabla}_\nu + \alpha \vec{\nabla}_\chi + \beta \vec{\nabla}_\eta + \sigma \vec{\nabla}_s \]

In:

\[H_C \equiv \int \vec{B} \cdot \vec{v} d^3x \]
The result is:

\[H_C = \int d\Phi[\nu] + \int d\Phi \oint \sigma dS \]

\[d\Phi = \vec{B} \cdot d\vec{S} = \nabla \chi \times \nabla \eta \cdot d\vec{S} = d\chi \, d\eta \]

The line integral is along the magnetic field line.
This suggests a modified topological constant:

\[H_{CNB} \equiv \int d\Phi [\nu] = H_C - \int d\Phi \oint \sigma dS \]

Which can also be written in a more familiar form in terms of topological velocity field as:

\[H_{CNB} = \int \vec{B} \cdot \vec{v}_t d^3x \]

\[\vec{v}_t = \vec{v} - \sigma \nabla S \]
A local topological constant also exists:

\[[\nu] = \frac{dH_{CNB}}{d\Phi} = \frac{dH_C}{d\Phi} + \oint Sd\sigma \]

The line integral is along the magnetic field line.
Question: Why should we care about topological constants (local or global)?

Answer: This may effect the stability of MHD flows.
A Bicycle
Null Angular Momentum = Instability
Non Zero Angular Momentum = Stability
Controlled Fusion
Tokomak vs. Stellarator
How does the new cross helicity effect stability?
Obviously:

\[0 \leq (\vec{B} - \vec{v}_t)^2 = \vec{B}^2 + \vec{v}_t^2 - 2\vec{v}_t \cdot \vec{B} \implies \]

\[\vec{v}_t \cdot \vec{B} \leq \frac{1}{2} \left(\vec{B}^2 + \vec{v}_t^2 \right) \]
Hence:

\[H_{CNB} = \int \vec{B} \cdot \vec{v}_t d^3 x \leq \frac{1}{2} \int (\vec{B}^2 + \vec{v}_t^2) d^3 x \]

- A non barotropic MHD flow with non zero non barotropic cross Helicity has a non zero lower bound on the “energy” of the flow.
- This bound is due to the non trivial topology of the flow.
- Since the non barotropic cross Helicity is a dynamical constant the “energy” is bounded no matter what the dynamics are and thus certain instabilities are prohibited for a flow with non trivial topology.
However, now we have a stronger constraint:

Consider a magnetic flux tube of a cross section S in which the magnetic field is almost constant in this tube:

$$H_{CNB} = \int d^3x \vec{B} \cdot \vec{v}_t \simeq [\nu] B \Delta S$$
Hence in this flux tube we deduce the lower bound:

\[[\nu]B\Delta S \leq \frac{1}{2} \int d^3x \left(\bar{v}_t^2 + \bar{B}^2 \right) \]

In which \(dl \) is a line element along the flux tube. We obtain the local bound for the discontinuity of \(\nu \):

\[[\nu] \leq \frac{1}{2B} \int dl \left(\bar{v}_t^2 + \bar{B}^2 \right) \]
This is a much more stringent stability condition!

\[\nu \leq \frac{1}{2B} \int dl \left(\frac{v_t^2}{2} + \mathbf{B}^2 \right) \]

- This is so because the constraint is local (and of course any flow satisfying the local condition also satisfies the global one).
Topological Constraints & Fusion

- To achieve fusion one needs to achieve a stable plasma which has the needed temperature and density to sustain fusion.
- Usually this is difficult to achieve for long enough durations in earth conditions (but not in the sun).
- A flow with non-trivial nu discontinuities seems to be more stable as the energy of the flow is bounded from below.
Fast and Slow Processes

- So far we have discussed only ideal MHD which does not describe a true plasma since it neglects among other things viscosity and finite conductivity.
- Non ideal MHD do not conserve topology due to the phenomena of line reconnection.
- Nevertheless, the most fast processes and most dangerous instabilities are due to the (ideal) dynamical processes.

”A spiky current profile causes a rapid dissipation of energy relative to magnetic helicity. If the evolution of a magnetic field is rapid, then it must be at constant helicity.”

Taylor's conjecture.

This will be true also for the cross Helicity per unit flux (discontinuity of nu)?
Lagrangian Variational Principles & Topological Constants of Motion
Sakurai’s Idea

Let us represent the magnetic field lines as intersection of two co-moving surfaces χ and η. (Euler potentials)

This is essentially introducing a coordinate system connected to the magnetic field lines. The third coordinate parameterizes the distance along the magnetic field lines and was denoted “Magnetic Metage” μ by Yahalom & Lynden-Bell (2008).
Magnetic Load and Metage

Consider a thin tube surrounding a magnetic field line.

An analogous treatment for non-magnetic fluid dynamics given by:

Two conserved quantities:

\[\Delta \Phi = \int \vec{B} \cdot d\vec{S} \]
\[\Delta M = \int \rho \,dl \cdot d\vec{S}, \]

The load is the relation of the two quantities:

\[\lambda = \frac{\Delta M}{\Delta \Phi} = \int \frac{\rho}{\vec{B}} \,dl \]
Obviously the load is conserved:

\[\frac{d\lambda}{dt} = 0 \]
Consider an arbitrary comoving point on the magnetic field line and denote it by \(i \), and consider an additional comoving point on the magnetic field line and denote it by \(r \), the quantity:

\[
\mu(r) = \int_{i}^{r} \frac{\rho}{B} \, dl + \mu(i)
\]

Is also conserved and is denoted Metage.
\[\mu(r) = \int_i^r \frac{\rho}{B} dl + \mu(i) \]

\[\frac{d\mu}{dt} = 0. \]

\[\nabla \mu \cdot \vec{B} = \rho. \]

\[\rho = \nabla \mu \cdot B = \nabla \mu \cdot (\nabla \chi \times \nabla \eta) = \frac{\partial (\chi, \eta, \mu)}{\partial (x, y, z)} \]
The Variational Principle for Barotropic Flows

\[A \equiv \int \mathcal{L} \, d^3x \, dt, \]
\[\mathcal{L} \equiv \rho \left(\frac{1}{2} v^2 - \varepsilon(\rho) \right) - \frac{B^2}{8\pi}, \]

\(\varepsilon(\rho) \) is the specific internal energy.
The Variational Derivative

\[\delta A = \int \delta \mathcal{L} \, d^3x \, dt, \]
\[\delta \mathcal{L} = \delta \rho \left(\frac{1}{2} \mathbf{v}^2 - w(\rho) \right) + \rho \mathbf{v} \cdot \delta \mathbf{v} - \frac{B \cdot \delta \mathbf{B}}{4\pi} \]

\[w = \frac{\partial (\varepsilon \rho)}{\partial \rho} \text{ is the specific enthalpy} \]
Only variations that conserve mass and magnetic flux are allowed:

\[\delta \rho = -\nabla \cdot (\rho \xi) \]

\[\delta B = \nabla \times (\xi \times B) \]

However, this hold automatically if one uses Sakurai representation for the magnetic field and the density Jacobian representation including the Metage.
The Variational Derivative

Assuming:

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \]

One obtains the Euler equations and boundary conditions.
Amalie Emmy Noether (23 March 1882 – 14 April 1935) German (Jewish) mathematician.

Described by Hilbert, Einstein as the most important woman in the history of mathematics.

Every Continuous Symmetry group generates conserved currents.
What is the continuous symmetry group which generates cross helicity?
Arnold’s (1966) Symmetry Group or Relabelling

The labels are not changed due to the flow!
A choice of appropriate continuous labels at \(t=0 \) assures by mass conservation:

\[
\rho(x^k) d^3x = \rho(x_0^k) d^3x_0 = \rho(x_0^k) \frac{\partial (x_0^1, x_0^2, x_0^3)}{\partial (\alpha^1, \alpha^2, \alpha^3)} d^3\alpha.
\]

\[
\rho(x^k) d^3x = d^3\alpha, \quad \rho = \frac{\partial (\alpha^1, \alpha^2, \alpha^3)}{\partial (x^1, x^2, x^3)}
\]
In fact our own magnetic line labeling has this property:

\[\rho = \nabla \mu \cdot B = \nabla \mu \cdot (\nabla \chi \times \nabla \eta) = \frac{\partial (\chi, \eta, \mu)}{\partial (x, y, z)} \]
Arnold’s Symmetry Group or Relabelling

The choice of alpha’s is not unique:

\[
\frac{\partial (\tilde{\alpha}^1, \tilde{\alpha}^2, \tilde{\alpha}^3)}{\partial (\alpha^1, \alpha^2, \alpha^3)} = 1.
\]
To apply Noether theorem we need to look at small symmetry transformations:

\[\tilde{\alpha}^i = \alpha^i + \delta \alpha^i \]
Volume and Surface Conditions:

\[
\frac{\partial \delta \alpha_k}{\partial \alpha_k} = 0, \quad \delta \alpha \cdot n \bigg|_{\text{surface}} = 0,
\]

Where \(n \) is a unit vector orthogonal to the surface of the alpha-space volume which we integrate over.

The surface restriction is only needed when the infinitesimal transformation changes the domain of integration in such a way as to modify \(L \).
Consider the subgroup of alpha translations:

\[\delta \alpha_k = a_k, \quad a_k = \text{const} \]

This subgroup satisfy trivially the volume condition but of course does not satisfy the surface condition unless at least few of the \(a \) are cyclic.
Take the following subgroup:

\[\delta \chi = 0, \, \delta \eta = 0, \, \delta \mu = \text{const}, \]

\(\text{Diagram:}\)
Metage was only defined up to a constant anyway!

\[\mu(r) = \int_{i}^{r} \rho B \, dl + \mu(i) \]
The corresponding displacement of the subgroup:

\[\delta \chi = 0, \ \delta \eta = 0, \ \delta \mu = \text{const}, \]

\[\xi = -\frac{\partial r}{\partial \mu} \delta \mu = -\delta \mu \frac{B}{\rho}. \]
Noether Theorem for MHD

\[\delta A = \int d^3x \rho v \cdot \xi |^{t_1}_{t_0} \]

\[+ \int dt \left\{ \oint dS \cdot \left[-\rho \xi (\frac{1}{2}v^2 - w(\rho)) + \rho v (v \cdot \xi) + \frac{1}{4\pi} B \times (\xi \times B) \right] \right\} \]

\[+ \int d^3 x \xi \cdot \left[-\rho \nabla w - \rho \frac{\partial v}{\partial t} - \rho (v \cdot \nabla)v - \frac{1}{4\pi} B \times (\nabla \times B) \right] \}

Provided that Euler equations and boundary conditions hold. And the transformation is a symmetry transformation \(\delta A = 0 \):
\[\int d^3 x \rho \vec{v} \cdot \vec{\xi} = \text{constant} \]

is null.
Lo and behold!

\[\int d^3 x \rho \vec{v} \cdot \vec{\xi} = \text{constant} \]

\[\xi = -\frac{\partial r}{\partial \mu} \delta \mu = -\delta \mu \frac{B}{\rho} \]

\[\int d^3 x \vec{v} \cdot \vec{B} = \text{constant} \]
The non magnetic helical case:

Intermediate Account

1. We have succeeded in finding the symmetry group associated with cross helicity.

2. This group has a particular simple representation in terms of the variables introduced.

3. What about non barotropic flows?
Cross Helicity is not Conserved

\[\frac{dH_C}{dt} = \int T \nabla_s \cdot B d^3 x, \]

What is conserved?
The Variational Principle

\[A \equiv \int \mathcal{L} d^3x dt, \]

\[\mathcal{L} \equiv \rho \left(\frac{1}{2} v^2 - \varepsilon(\rho, s) \right) - \frac{B^2}{8\pi} - \rho \sigma \frac{ds}{dt}, \]

Conservation of Entropy is enforced by a Lagrange multiplier
The Variation

\[\delta \xi A = \int d^3 x \rho (v - \sigma \nabla s) \cdot \xi \bigg|_{t_0}^{t_1} + \int dt \left\{ \int dS \cdot \left[-\rho \xi \left(\frac{1}{2} v^2 - w(\rho, s) \right) + \rho v ((v - \sigma \nabla s) \cdot \xi) + \frac{1}{4\pi} B \times (\xi \times B) \right] \right. \\
+ \int d^3 x \xi \cdot [-\nabla P - \rho \frac{\partial v}{\partial t} - \rho (v \cdot \nabla) v - \frac{1}{4\pi} B \times (\nabla \times B)] \right\}, \]
The Noether Current

\[\delta J = \int d^3x \rho (\mathbf{v} - \sigma \nabla s) \cdot \xi \]
Symmetry Group

\[\tilde{\chi} = \chi, \tilde{\eta} = \eta, \tilde{\mu} = \mu + a(\chi, \eta) \]

\[\xi = -\frac{\partial r}{\partial \mu} \delta \mu = -\delta \mu \frac{B}{\rho}. \]
The Noether Current for Metage Translations

\[\delta J = \int d^3x \rho (\mathbf{v} - \sigma \nabla s) \cdot \xi = - \int d^3x \delta \mu (\mathbf{v} - \sigma \nabla s) \cdot \mathbf{B} \]
The case of uniform translations along all magnetic field lines

\[\delta J = -\delta \mu \int d^3x (v - \sigma \nabla s) \cdot B = -\delta \mu H_{CNB} \]

Non barotropic cross helicity:

\[H_{CNB} \equiv \int d^3x (v - \sigma \nabla s) \cdot B = \int d^3x v_t \cdot B \]

Topological velocity:

\[v_t \equiv v - \sigma \nabla s \]
The case of non uniform translations along magnetic field lines

\[\delta J = - \int d^3x \delta \mu v_t \cdot B = - \int d\chi d\eta \delta \mu \oint_{\chi, \eta} d\mu \rho^{-1} v_t \cdot B \]

Non barotropic cross helicity:

\[I = \oint_{\chi, \eta} d\mu \rho^{-1} v_t \cdot B \]

Along a magnetic field line:

\[d\mu = \nabla \mu \cdot dr = \nabla \mu \cdot \hat{B} dr = \frac{\rho}{B} dr \]
Circulation Conservation of the topological velocity along the magnetic field lines

\[I = \oint_{x,\eta} d\mathbf{r} \mathbf{v}_t \cdot \hat{B} = \oint_{x,\eta} d\mathbf{r} \cdot \mathbf{v}_t. \]
Connection to Previous Works

Generalized Clebsch form:

\[\mathbf{v} = \nabla \nu + \alpha \nabla \chi + \beta \nabla \eta + \sigma \nabla \mathbf{s}. \]

\[\mathbf{v}_t = \nabla \nu + \alpha \nabla \chi + \beta \nabla \eta \]
Thus I is a non barotropic cross helicity per unit of magnetic flux.
More Topological Conservation Laws?
Remember the Conditions:

\[\frac{\partial \delta \alpha_k}{\partial \alpha_k} = 0, \quad \delta \alpha \cdot n \big|_{\text{surface}} = 0, \]

Consider the symmetry subgroup:

\[
\tilde{\eta} = \eta + \delta \eta(\chi, \eta), \quad \tilde{\chi} = \chi + \delta \chi(\chi, \eta), \quad \tilde{\mu} = \mu
\]
This leads to the equation:

\[\partial_\eta \delta \eta + \partial_\chi \delta \chi = 0. \]

With the general solution:

\[\delta \eta = \partial_\chi \delta f, \quad \delta \chi = -\partial_\eta \delta f, \]
This is equivalent to a particle displacement:

\[\tilde{\xi} = -\frac{\partial \tilde{r}}{\partial \chi} \delta \chi - \frac{\partial \tilde{r}}{\partial \eta} \delta \eta = \]

\[-\frac{1}{\rho} \left(\tilde{\nabla} \eta \times \tilde{\nabla} \mu \delta \chi + \tilde{\nabla} \mu \times \tilde{\nabla} \chi \delta \eta \right) = \]

\[\frac{\tilde{\nabla} \mu}{\rho} \times (\tilde{\nabla} \eta \delta \chi - \tilde{\nabla} \chi \delta \eta) \]
Let us consider constant chi and mu variations (translations), obviously they satisfy the equation:

\[\partial_\eta \delta \eta + \partial_\chi \delta \chi = 0. \]
This will lead to two conserved currents:

\[\delta J_\chi = \delta \chi \int d^3 x \vec{v}_t \cdot \vec{\nabla} \mu \times \vec{\nabla} \eta = \delta \chi \ H_{CNBX}, \]

\[\delta J_\eta = \delta \eta \int d^3 x \vec{v}_t \cdot \vec{\nabla} \chi \times \vec{\nabla} \mu = \delta \eta \ H_{CNB\eta}. \]
Which in turn lead to two new conserved helicities:

\[H_{\text{CNB}\chi} \equiv \int d^3 x \vec{\nu}_t \cdot \vec{\nabla}_\mu \times \vec{\nabla}\eta, \]

\[H_{\text{CNB}\eta} \equiv \int d^3 x \vec{\nu}_t \cdot \vec{\nabla}_\chi \times \vec{\nabla}\mu \]

Each suffer a topological interpretation (knotted field lines) but with a different vector field.
Caveat:
Boundary conditions must be respected

\[\int d\vec{S} \cdot \left[-\rho \vec{\xi} \left(\frac{1}{2} \vec{v}^2 - w(\rho, s) \right) + \rho \vec{v} (\vec{v}_t \cdot \vec{\xi}) + \frac{1}{4\pi} \vec{B} \times (\vec{\xi} \times \vec{B}) \right] = 0 \]

For either (or both):

\[\vec{\xi}_\chi = \frac{1}{\rho} \left(\vec{\nabla}_\mu \times \vec{\nabla}_\eta \right) \delta \chi, \quad \vec{\xi}_\eta = \frac{1}{\rho} \left(\vec{\nabla}_\chi \times \vec{\nabla}_\mu \right) \delta \eta \]
Intermediate Account

1. We have succeeded in finding the symmetry group associated with cross helicity and non barotropic cross helicity.

2. We have succeeded in finding a local version of non barotropic cross helicity using symmetry considerations.

3. This group has a particular simple representation in terms of metage translations (uniform and non uniform across magnetic field lines).

4. But are those variables useful also for deriving a better variational principle? The answer is yes.
The Stationary Variational Principle
Entropy

• Obviously a three-dimensional flow allows only three labels.
• However, the entropy in an ideal flow is a fourth label.
• We distinguish two cases:
 1. Magnetic field lines lie on entropy surfaces. In this case the Metage is independent of the entropy.
 2. Magnetic field lines do not lie on entropy surfaces. In this case the Metage can be made a function of the entropy alone.
\[\rho = \frac{\partial \mu}{\partial s} \frac{\partial(x, \eta, s)}{\partial(x, y, z)}. \]
Representation

How can we represent the physical quantities:\n
\[\vec{B}, \vec{V}, \rho \]

In terms of the three functions: \(\chi, \mu, \eta \)?

For the magnetic field and density the answer is known:

\[
\vec{B} = \vec{\nabla} \chi \times \vec{\nabla} \eta
\]

\[
\rho = \vec{\nabla} \mu \cdot \vec{B} = \vec{\nabla} \mu \cdot (\vec{\nabla} \chi \times \vec{\nabla} \eta) = \frac{\partial (\chi, \eta, \mu)}{\partial (x, y, z)}
\]
The Velocity of a Stationary Flow

\[\frac{\partial \vec{E}}{\partial t} = \vec{\nabla} \times (\vec{v} \times \vec{B}) \]

\[\vec{\nabla} \cdot (\rho \vec{v}) = 0 \]

\[\vec{\nabla} \times (\vec{v} \times \vec{B}) = 0 \]

\[\frac{dX}{dt} = 0 \]

\[\vec{v} \cdot \vec{\nabla} X = 0 \]
Solution

After some calculations we obtain the simple result:

\[\vec{v} = \frac{\vec{\nabla} \mu \times \vec{\nabla} \chi}{\rho} \]
Euler’s Equations for Stationary Flow

At this stage all the relevant equations are solved except Euler’s equations of stationary flow:

\[\rho \frac{d\vec{v}}{dt} = \rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} \right) = -\nabla p + \frac{(\nabla \times \vec{B}) \times \vec{B}}{4\pi} \]

The solution will be derived from a Variational Principle.
The Variational Principle

\[A \equiv \int L \, d^3x \, dt \]

Is the Action

Is the Lagrangian density
The Lagrangian density contains the Kinetic Energy term and two potential energy terms, one is due to the internal energy (pressure) and the other is due to magnetic fields.

\[\mathcal{L} \equiv \rho \left(\frac{1}{2} \mathbf{v}^2 - \varepsilon(\rho, s) \right) - \frac{\mathbf{B}^2}{8\pi} \]
The Variational Principle in Terms of the New Variables

Calculating the variational derivative will lead to Euler’s equations of stationary flow.
\[\delta \alpha_i = -\nabla \alpha_i \cdot \xi. \]

\[\delta s = \frac{\partial s}{\partial \alpha_i} \delta \alpha_i = -\frac{\partial s}{\partial \alpha_i} \nabla \alpha_i \cdot \xi = -\nabla s \cdot \xi. \]

\[\delta \rho = -\nabla \cdot (\rho \xi). \]

\[\delta B = \nabla \times (\xi \times B). \]

\[\delta v = -\frac{\delta \rho}{\rho} v + \frac{1}{\rho} \nabla \times (\rho \xi \times v). \]
\[
\delta A = \int \delta \mathcal{L} d^3 x dt,
\]
\[
\delta \mathcal{L} = \delta \rho \left(\frac{1}{2} v^2 - w(\rho, s) \right) - \rho T \delta s + \rho v \cdot \delta v - \frac{B \cdot \delta B}{4\pi}.
\]

\[
\delta \mathcal{L} = v \cdot \nabla \times (\rho \xi \times v) - \frac{B \cdot \nabla \times (\xi \times B)}{4\pi} - \delta \rho \left(\frac{1}{2} v^2 + w \right) + \rho T \nabla s \cdot \xi
\]
\[
= v \cdot \nabla \times (\rho \xi \times v) - \frac{B \cdot \nabla \times (\xi \times B)}{4\pi} + \nabla \cdot (\rho \xi) \left(\frac{1}{2} v^2 + w \right) + \rho T \nabla s \cdot \xi.
\]
\[\delta A = \int dt \left\{ \int dS \cdot \left[\rho (\xi \times v) \times v - \frac{(\xi \times B) \times B}{4\pi} + \frac{1}{2} v^2 + w \right] \rho \xi \right\} + \int d^3 x \xi \cdot \left[\rho v \times \omega + J \times B - \rho \nabla \left(\frac{1}{2} v^2 + w \right) + \rho T \nabla s \right]. \]

\[\omega = \nabla \times v \]

\[\rho v \times \omega + J \times B - \rho \nabla \left(\frac{1}{2} v^2 + w \right) + \rho T \nabla s = 0. \]
\[
\frac{1}{2} \nabla (v^2) = (v \cdot \nabla)v + v \times (\nabla \times v)
\]

\[
\rho (v \cdot \nabla)v = -\nabla p + J \times B.
\]
Conclusion

1. We have managed to reduce the stationary non-barotroic magneto-hydrodynamic equations from 8 equations containing 7 quantities to 3 equations with 3 variables.

2. Furthermore we have managed to represent stationary magnetohydrodynamics as a Variational Problem in terms of those 3 variables.
Examples

Non Single Valued Variational Variables
Let us define the variable r:

$$r = \sqrt{z^2 + (R - 1)^2}$$

$\Psi = \Psi(r)$. In this case surfaces of constant Ψ are nested tori.
A numerically integrated field line assuming that $\Psi = r + r^3$, $\alpha = 1$ and starting from the point $R = 0.6, \phi = 0, z = 0$. The plot shows twenty rotations.
\[\chi = \frac{1}{2\pi} \int \mathbf{B} \cdot d\mathbf{S} = \frac{1}{2\pi} \oint \mathbf{A} \cdot dl = \frac{1}{2\pi} \int_{0}^{2\pi} A_\phi R \ d\phi = A_\phi R = \alpha \Psi \]

\[\eta = \phi + C(z, R) \]

\[C = \frac{1}{\alpha} \left[\frac{r \Psi''}{\Psi'} I(r, \eta^*) + II(r, \eta^*) \right] \]

\[I(r, \eta^*) \equiv \int \frac{d\eta^*}{1 + r \cos \eta^*} \]

\[= \frac{2}{\sqrt{1 - r^2}} \left[\arctan \left(\sqrt{\frac{1 - r}{1 + r}} \tan \left(\frac{\eta^*}{2} \right) \right) + \begin{cases} 0, & 0 \leq \eta^* < \pi \\ \pi, & \pi \leq \eta^* < 2\pi \end{cases} \right] \]

\[II(r, \eta^*) \equiv \int \frac{d\eta^*}{(1 + r \cos \eta^*)^2} = \frac{I(r, \eta^*)}{1 - r^2} - \frac{r \sin \eta^*}{(1 - r^2)(1 + r \cos \eta^*)} \]
\[\chi = \chi(r) \]

Single Valued

\[\eta = \phi + C(z, R) \]

Double Non Single Valued

\[C = \frac{1}{\alpha} \left[\frac{r \Psi''}{\Psi'} I(r, \eta^*) + II(r, \eta^*) \right] \]
Question

Can we have a magnetic field represented by two single valued functions in the Sakurai representation?
Answer: Yes, consider a ball with stripes which are the magnetic field lines.
Single Valued (r the ball radius)

\[\chi = \frac{B_0 r^2}{2\pi}. \]

Single Valued
(θ the elevation angle)

\[\eta = -\pi \cos(\theta). \]