Realistic characterization of chirping instabilities in tokamaks

Vinícius Duarte1,2

Nikolai Gorelenkov2, Herb Berk3, Mario Podestà2, Mike Van Zeeland4, David Pace4, Bill Heidbrink5

1University of São Paulo, Brazil
2Princeton Plasma Physics Laboratory
3University of Texas, Austin
4General Atomics
5University of California, Irvine

PPPL Theory Seminar, March 31, 2016
Outline

• Introduction to frequency chirping
• Berk-Breizman model: cubic equation for mode amplitude evolution at early times
• Bump-on-tail modeling
• Generalization to multi-dimensional resonances in \((P_\varphi, \mathcal{E}, \mu)\) space and realistic mode structure
• Inclusion of microturbulence in the model
• Analysis of modes in TFTR, DIII-D and NSTX
• Conclusions
Outline

• **Introduction to frequency chirping**
 • Berk-Breizman model: cubic equation for mode amplitude evolution at early times
 • Bump-on-tail modeling
 • Generalization to multi-dimensional resonances in \((P_\varphi, \mathcal{E}, \mu)\) space and realistic mode structure
 • Inclusion of microturbulence in the model

• Analysis of modes in TFTR, DIII-D and NSTX
• Conclusions
Two types of frequency shift observed experimentally

Frequency sweeping
- frequency shift due to time-dependent background equilibrium
- exists without resonant particles
- timescale: \(\sim 100\text{ms}\)

Frequency chirping
- frequency shift due to trapped particles
- does not exist without resonant particles
- timescale: \(\sim 1\text{ms}\)

Sharapov et al, PoP 2006

Pinches et al, NF 2004
Two types of frequency shift observed experimentally

Frequency sweeping
- frequency shift due to time-dependent background equilibrium
- exists without resonant particles
- timescale: ~100ms

Frequency chirping
- frequency shift due to trapped particles
- does not exist without resonant particles
- timescale: ~1ms

Sharapov et al, PoP 2006

Pinches et al, NF 2004
Chirping modes can degrade the confinement of energetic particles

Up to 40% of injected beam is observed to be lost in DIII-D and NSTX

Chirping is ubiquitous in NSTX but rare in DIII-D. Why??

This presentation focuses on the conditions for chirping onset rather than their long-term evolution
Phase space holes and clumps in kinetically driven, dissipative systems – reduced bump-on-tail model

- Nonlinear Landau damping perspective: incomplete phase mixing leads to small sideband oscillations that may tap free energy at the edges of the plateau
- Chirping in frequency may allow for a continuous interplay between the free energy from the distribution function and the wave dissipation
- Collisions eventually degrade the resonant island plateau, and the process restarts

Vlasov simulations by Lilley and Nyqvist, PRL 2014
Outline

- Introduction to frequency chirping
- Berk-Breizman model: cubic equation for mode amplitude evolution at early times
- Bump-on-tail modeling
- Generalization to multi-dimensional resonances in \((P_\varphi, E, \mu)\) space and realistic mode structure
- Inclusion of microturbulence in the model
- Analysis of modes in TFTR, DIII-D and NSTX
- Conclusions
Nonlinear dynamics of driven kinetic systems close to threshold

Starting point: kinetic equation plus wave power balance

Assumptions:
• Perturbative procedure for $\omega_b \ll \gamma$
• Truncation at third order due to closeness to marginal stability
• Bump-on-tail modal problem, uniform mode structure

Cubic equation: lowest-order nonlinear correction to the evolution of mode amplitude A:

$$\frac{dA}{dt} = A - \int_0^{t/2} d\tau \tau^2 A(t - \tau) \int_0^{t-2\tau} d\tau_1 e^{-\nu_{\text{scatt}}^3 \tau^2 (2\tau/3 + \tau_1) + \nu_{\text{drag}}^2 \tau (\tau + \tau_1)} A(t - \tau - \tau_1) A^*(t - 2\tau - \tau_1)$$

Berk, Breizman and Pekker, PRL 1996
Lilley, Breizman and Sharapov, PRL 2009
Nonlinear dynamics of driven kinetic systems close to threshold

Starting point: **kinetic equation** plus **wave power balance**

Assumptions:
- Perturbative procedure for $\omega_b \ll \gamma$
- Truncation at third order due to closeness to marginal stability
- Bump-on-tail modal problem, uniform mode structure

Cubic equation: lowest-order nonlinear correction to the evolution of mode amplitude A:

$$\frac{dA}{dt} = A - \int_0^{t/2} d\tau \tau^2 A(t-\tau) \left(\int_0^{t-2\tau} d\tau_1 e^{-\nu_{\text{scatt}}^2 (2\tau/3+\tau_1)} - \nu_{\text{drag}}^2 \tau (\tau+\tau_1) A^* (t-\tau-\tau_1) A(t-2\tau-\tau_1) \right)$$

- **Stabilizing**
- **Destabilizing (makes integral sign flip)**

Berk, Breizman and Pekker, PRL 1996 Lilley, Breizman and Sharapov, PRL 2009
Nonlinear dynamics of driven kinetic systems close to threshold

Starting point: kinetic equation plus wave power balance

Assumptions:
• Perturbative procedure for $\omega_b \ll \gamma$
• Truncation at third order due to closeness to marginal stability
• Bump-on-tail modal problem, uniform mode structure

Cubic equation: lowest-order nonlinear correction to the evolution of mode amplitude A:

\[
\frac{dA}{dt} = A - \int_0^{t/2} d\tau \tau^2 A(t-\tau) \int_0^{t-2\tau} d\tau_1 e^{-\frac{\nu_{\text{scatt}}^3}{\nu_{\text{drag}}^2} (2\tau/3+\tau_1)} + w_{\text{drag}}^2 (\tau+\tau_1) A(t-\tau-\tau_1) A^*(t-2\tau-\tau_1)
\]

- If nonlinearity is weak: linear stability, solution saturates at a low level and f merely flattens (system not allowed to further evolve nonlinearly).
- If solution of cubic equation explodes: system enters a strong nonlinear phase with large mode amplitude and can be driven unstable (precursor of chirping modes).

Berk, Breizman and Pekker, PRL 1996 Lilley, Breizman and Sharapov, PRL 2009
Outline

• Introduction to frequency chirping
• Berk-Breizman model: cubic equation for mode amplitude evolution at early times
• **Bump-on-tail modeling**
 • Generalization to multi-dimensional resonances in \((P_\phi, \mathcal{E}, \mu)\) space and realistic mode structure
• Inclusion of microturbulence in the model
• Analysis of modes in TFTR, DIII-D and NSTX
• Conclusions
Existence and stability boundaries of solutions of the cubic equation – bump-on-tail case

Lilley, Breizman and Sharapov, PRL 2009

Scattering
Existence and stability boundaries of solutions of the cubic equation – bump-on-tail case

Lilley, Breizman and Sharapov, PRL 2009

We want to compare this prediction with modes observed in real discharges. How?

Stable steady solution cannot exist without scattering
Mode structure identification

• NOVA code: finds linear, ideal mode structures
• Its kinetic postprocessor NOVA-K computes resonance surfaces and provides damping and linear growth rates. Phase space and bounce averages are necessary to calculate effective collisional coefficients
• NOVA’s mode structures are compared with NSTX reflectometer measurements (fluid displacement times the local density gradient is equivalent to the density fluctuation). In DIII-D ECE is used

Podestà et al, NF 2012
Chirping in terms of effective collisional coefficients for realistic resonances and mode structures

Pitch-angle scattering: leads to loss of correlation (loss of phase information from one bounce to another)

Drag (slowing down): coherently moves structures down in velocity

Bump-on-tail modeling is not enough to resolve the regions in collisional space that allows for chirping modes

Missing physics in the simplified theoretical prediction: mode structure, (multiple) resonance surfaces and phase-space and bounce averages
Outline

• Introduction to frequency chirping
• Berk-Breizman model: cubic equation for mode amplitude evolution at early times
• Bump-on-tail modeling
• **Generalization to multi-dimensional resonances in \((P_\varphi, E, \mu)\) space and realistic mode structure**
• Inclusion of microturbulence in the model
• Analysis of modes in TFTR, DIII-D and NSTX
• Conclusions
Generalization: cubic equation with collisional coefficients varying along resonances and particle orbits

Action-angle formalism for the general problem, with a similar perturbative approach employed before, leads to the generalized criterion for existence of steady-state solutions (no chirping):

\[
\sum_{l, \sigma} \int d\varphi \int d\mu \frac{\tau_b}{\nu_{\text{drag}}^4} |V_l|^4 \left| \frac{\partial \Omega_l}{\partial I} \right| \frac{\partial F}{\partial I} \text{Int} > 0
\]

\[
\text{Int} \equiv -Re \int_0^\infty dz \frac{z}{\nu_{\text{drag}}^3} \exp \left[-2 \frac{\nu_{\text{diff}}^3}{\nu_{\text{drag}}^3} z^3 / 3 + iz^2 \right]
\]
Generalization: cubic equation with collisional coefficients varying along resonances and particle orbits

Action-angle formalism for the general problem, with a similar perturbative approach employed before, leads to the generalized criterion for existence of steady-state solutions (no chirping):

\[\sum_{l,s} \int dP \int d\mu \left(\frac{\tau_b}{\nu_{dr}^{3/4}} \right) |V_l|^4 \left| \frac{\partial \Omega_l}{\partial I} \right| \frac{\partial F}{\partial I} \text{Int} > 0 \]

\[\text{Int} \equiv -Re \int_0^\infty dz \frac{z}{\nu_{\text{diff}}^{3/2}} \exp \left[-2 \frac{\nu_{\text{diff}}^{3/2}}{\nu_{dr}^{3/2}} \frac{z^3}{3} + iz^2 \right] \]

allows steady solution (no chirping allowed)

Boundary at \(\frac{v_{\text{scall}}}{v_{\text{drag}}} \approx 1.04 \)

(if \(v_{\text{scall}}, v_{\text{drag}} \) are constants)
Generalization: cubic equation with collisional coefficients varying along resonances and particle orbits

Action-angle formalism for the general problem, with a similar perturbative approach employed before, leads to the **generalized criterion for existence of steady-state solutions** (no chirping):

\[
\sum_{l,\sigma} \int dP_\varphi \int d\mu \frac{\tau_b}{v_{\text{drag}}^4} |V_l|^4 \left| \frac{\partial \Omega_l}{\partial I} \right| \frac{\partial F}{\partial I} \text{Int} > 0
\]

\[
\text{Int} \equiv -\text{Re} \int_0^\infty dz \left(\frac{v_{\text{diff}}^3}{v_{\text{drag}}^3} z + i \right) \exp \left(-2 \frac{v_{\text{diff}}^3}{v_{\text{drag}}^3} \frac{z^3}{3} + i z^2 \right)
\]

Phase space integration

allows steady solution (no chirping allowed)

Boundary at \(\frac{v_{\text{scatt}}}{v_{\text{drag}}} \approx 1.04 \)

(if \(v_{\text{scatt}}, v_{\text{drag}} \) are constants)
Generalization: cubic equation with collisional coefficients varying along resonances and particle orbits

Action-angle formalism for the general problem, with a similar perturbative approach employed before, leads to the **generalized criterion for existence of steady-state solutions** (no chirping):

$$\sum_{l,\sigma} \int dP_\varphi \int d\mu \frac{\tau_b}{v_{\text{drag}}^4} \left(V_l \right)^{1/2} \left| \frac{\partial \Omega_l}{\partial I} \right| \left| \frac{\partial F}{\partial I} \right| \text{Int} > 0$$

$$\text{Int} \equiv -\text{Re} \int_0^\infty dz \frac{z}{v_{\text{drag}}^3} \exp \left[-2 \frac{v_{\text{drag}}^3}{v_{\text{drag}}^3} \left(\frac{z^3}{3} + iz^2 \right) \right]$$

Phase space integration

Eigenstructure information:

$$q \int dt v_{dr} \cdot \delta E e^{i\omega t}$$

![Graph showing the relationship between $v_{\text{scatt}}/v_{\text{drag}}$ and Int](image)
Generalization: cubic equation with collisional coefficients varying along resonances and particle orbits

Action-angle formalism for the general problem, with a similar perturbative approach employed before, leads to the **generalized criterion for existence of steady-state solutions** (no chirping):

\[
\sum_{l,\sigma} \int dP_{\phi} \int d\mu \frac{\tau_b}{v_{\text{drag}}^4} \begin{vmatrix} V_l \end{vmatrix} \left| \frac{\partial \Omega_l}{\partial I} \frac{\partial F}{\partial I} \right|, \quad \text{Int} > 0
\]

\[
\text{Int} \equiv -\Re \int_0^{\infty} dz \exp \left[-\frac{2\nu_{\text{diff}}^3}{\nu_{\text{drag}}^3} z^3/3 + iz^2 \right]
\]

Phase space integration

Eigenstructure information:

\[
q \int dt v_{dr} \cdot \delta E e^{i\omega t}
\]

Resonance surfaces:

\[
\Omega (E, P_{\phi}, \mu) = 0
\]
Generalization: cubic equation with collisional coefficients varying along resonances and particle orbits

Action-angle formalism for the general problem, with a similar perturbative approach employed before, leads to the **generalized criterion for existence of steady-state solutions** (no chirping):

\[
\sum_{l,\sigma} \int \frac{dP_{\varphi}}{P_{\varphi}} \int d\mu \frac{\tau_b}{v_{\text{drag}}^2} \left(V_l \right) \left| \frac{\partial \Omega_l}{\partial I} \right| \left| \frac{\partial F}{\partial I} \right| \text{Int} > 0
\]

\[
\text{Int} \equiv -Re \int_0^\infty dz \frac{z}{v_{\text{drag}}^2} \exp \left[-2 \frac{v_{\text{diff}}^3}{v_{\text{drag}}^3} \frac{z^3}{3} + iz^2 \right]
\]

Phase space integration

Eigenstructure information:

\[
q \int dt v_{dr} \cdot \delta \mathbf{E} e^{i\omega t}
\]

Resonance surfaces:

\[
\Omega (\mathcal{E}, P_{\varphi}, \mu) = 0
\]

>0: steady solution is guaranteed

<0: chirping may happen

![Graph showing the relationship between \(v_{\text{scatt}}/v_{\text{drag}}\) and the integral (Int). The graph indicates a boundary at \(v_{\text{scatt}}/v_{\text{drag}} \approx 1.04\).](image)
Generalization: cubic equation with collisional coefficients varying along resonances and particle orbits

Action-angle formalism for the general problem, with a similar perturbative approach employed before, leads to the **generalized criterion for existence of steady-state solutions** (no chirping):

\[
\sum_{l,\sigma_{ll}} \int dP_{\phi} \int d\mu \frac{\tau_b}{v_{\text{drag}}^3} \left(V_l^{(l)} \right) \frac{\partial \Omega_l}{\partial I} \frac{\partial F}{\partial I} \text{Int} > 0
\]

\[
\text{Int} \equiv -\text{Re} \int_{0}^{\infty} dz \frac{z}{-\frac{v_{\text{diff}}}{v_{\text{drag}}} z + i} \exp \left[-2 \frac{v_{\text{diff}}^3}{v_{\text{drag}}^3} \frac{z^3}{3} + iz^2 \right]
\]

Criterion was incorporated into NOVA-K

- \(\text{Int} > 0 \): steady solution is guaranteed
- \(\text{Int} < 0 \): chirping may happen
Outline

• Introduction to frequency chirping
• Berk-Breizman model: cubic equation for mode amplitude evolution at early times
• Bump-on-tail modeling
• Generalization to multi-dimensional resonances in \((P_\varphi, \mathcal{E}, \mu)\) space and realistic mode structure
 • **Inclusion of microturbulence in the model**
 • Analysis of modes in TFTR, DIII-D and NSTX
• Conclusions
Correction to the diffusion coefficient: the inclusion of electrostatic microturbulence

- Microturbulence can well exceed pitch-angle scattering at the resonance\(^1\)
- From GTC gyrokinetic simulations for passing particles:\(^2\)
 \[
 D_{EP}(E) \approx D_{th,i} \frac{5T_e}{E}
 \]
- As pitch-angle scattering, microturbulence acts to destroy phase-space holes and clumps
- Unlike DIII-D and TFTR, transport in NSTX in mostly neoclassical
- Complex interplay between gyroaveraging, field anisotropy and poloidal drift effects leads to non-zero EP diffusivity\(^3\)

\(^1\) Lang and Fu, PoP 2011
\(^2\) Zhang, Lin and Chen, PRL 2008
\(^3\) Estrada-Mila et al, PoP 2005
Outline

• Introduction to frequency chirping
• Berk-Breizman model: cubic equation for mode amplitude evolution at early times
• Bump-on-tail modeling
• Generalization to multi-dimensional resonances in \((P_\varphi, \mathcal{E}, \mu)\) space and realistic mode structure
• Inclusion of microturbulence in the model
• **Analysis of modes in TFTR, DIII-D and NSTX**
• Conclusions
TAE in TFTR shot 103101: no chirping observed

TAE mode structure

Gorelenkov et al, PoP 1999
TAE in TFTR shot 103101: no chirping observed

Gorelenkov et al, PoP 1999
TAE in TFTR shot 103101: no chirping observed

Drag vs pitch-angle scattering:

Drag vs pitch-angle scattering + microturbulence:

Gorelenkov et al, PoP 1999
TAE in TFTR shot 103101: no chirping observed

TAE mode structure

Drag vs pitch-angle scattering:

Microturbulence has a strong effect on destroying resonant, coherent phase-space structures

Gorelenkov et al, PoP 1999
Characterization of a rarely observed chirping mode in DIII-D
Characterization of a rarely observed chirping mode in DIII-D

![CO2 Interferometer Image]

![Transp Run Graph]
Characterization of a rarely observed chirping mode in DIII-D

Before chirping, at
900ms: D~1m²/s

TRANSP run
Characterization of a rarely observed chirping mode in DIII-D

Before chirping, at 900ms: $D \sim 1m^2/s$

During chirping, at 960ms: $D \sim 0.2m^2/s$
Characterization of a rarely observed chirping mode in DIII-D

Before chirping, at 900ms: $D \sim 1m^2/s$

During chirping, at 960ms: $D \sim 0.2m^2/s$

Diffusivity drop due to L→H mode transition

Strong rotation shear was observed
Non-chirping DIII-D shot analyzed in terms of pitch-angle scattering and drag.
Inclusion of microturbulence in non-chirping DIII-D shots

Microturbulence has a substantial effect on bringing modes to the steady region.
Microturbulence does not have appreciable effects in NSTX.

Even if scattering levels is increased several times the modes cannot reach the boundary.

All cases have negative values for the criterion, which is consistent with observation.
Outline

• Introduction to frequency chirping
• Berk-Breizman model: cubic equation for mode amplitude evolution at early times
• Bump-on-tail modeling
• Generalization to multi-dimensional resonances in \((P_\varphi, \mathcal{E}, \mu)\) space and realistic mode structure
• Inclusion of microturbulence in the model
• Analysis of modes in TFTR, DIII-D and NSTX
• Conclusions
Conclusions

• Diffusive effects suppress chirping structures while slowing down enhances them
Conclusions

• Diffusive effects suppress chirping structures while slowing down enhances them
• Proper modeling needs to account for (multiple) resonance surfaces and mode structures
Conclusions

• Diffusive effects suppress chirping structures while slowing down enhances them
• Proper modeling needs to account for (multiple) resonance surfaces and mode structures
• If microturbulence is included, the generalized Berk-Breizman model reproduces well experimental observation
Conclusions

• Diffusive effects suppress chirping structures while slowing down enhances them.
• Proper modeling needs to account for (multiple) resonance surfaces and mode structures.
• If microturbulence is included, the generalized Berk-Breizman model reproduces well experimental observation.
• Other stochastic contributions may be due to ripples and mode overlap.
Conclusions

• Diffusive effects suppress chirping structures while slowing down enhances them
• Proper modeling needs to account for (multiple) resonance surfaces and mode structures
• If microturbulence is included, the generalized Berk-Breizman model reproduces well experimental observation
• Other stochastic contributions may be due to ripples and mode overlap
• In DIII-D, chirping has been identified to be linked with L->H mode transition. Possibility of chirping control via rotation shear
Conclusions

- Diffusive effects suppress chirping structures while slowing down enhances them.
- Proper modeling needs to account for (multiple) resonance surfaces and mode structures.
- If microturbulence is included, the generalized Berk-Breizman model reproduces well experimental observation.
- Other stochastic contributions may be due to ripples and mode overlap.
- In DIII-D, chirping has been identified to be linked with L->H mode transition. Possibility of chirping control via rotation shear.

Ongoing work
Conclusions

• Diffusive effects suppress chirping structures while slowing down enhances them
• Proper modeling needs to account for (multiple) resonance surfaces and mode structures
• If microturbulence is included, the generalized Berk-Breizman model reproduces well experimental observation
• Other stochastic contributions may be due to ripples and mode overlap
• In DIII-D, chirping has been identified to be linked with L->H mode transition. Possibility of chirping control via rotation shear

Ongoing work

• Refinement of turbulence contribution using Beam Emission Spectroscopy
Conclusions

• Diffusive effects suppress chirping structures while slowing down enhances them
• Proper modeling needs to account for (multiple) resonance surfaces and mode structures
• If microturbulence is included, the generalized Berk-Breizman model reproduces well experimental observation
• Other stochastic contributions may be due to ripples and mode overlap
• In DIII-D, chirping has been identified to be linked with L->H mode transition. Possibility of chirping control via rotation shear

Ongoing work

• Refinement of turbulence contribution using Beam Emission Spectroscopy
• Development of a line-broadened quasilinear diffusion solver coupled with NOVA and NOVA-K: chirping criterion is important for identification of parameter space for quasilinear validity
Thank you