Opportunities highlighted by the 2015 FES PMI workshop report

Workshop Leaders: R. Maingi, S. Zinkle

Cross-cutting advisors: D. Hill, D. Hillis, J. Menard, H. Neilson, D. Whyte

FES contact: M. Foster

2015 FES PMI Workshop report
Princeton, NJ
May 6, 2016
Outline

• Process and broad leadership team

• Priority Research Directions - 5
 – These overlap the existing domestic research in PMI, but suggestions are made to extend the research in certain areas

• Cross-cutting research opportunities - 4
 – Elements that cut across the Priority Research Directions, offering the opportunity to leverage particular areas
Goal: evaluate leading scientific challenges and options in area of plasma-materials interactions (10 year outlook)

• ReNeW community activity (2009) as a starting point, and examined reports from follow-on FESAC studies
 – 4 thrusts in PMI theme at ReNeW, used to organize a sub-panel of ~ 10 experts per thrust for this activity

• Guidance: consider enhancements in
 – Existing facility capabilities
 – Theory, computation and validation
 – International collaborations
 – New starts

➢ Challenges are forward-looking
 – PMI harder for reactors!
 – ITER important element, but no ITER data expected in next ten years
Process modeled after Basic Research Needs Workshops used in Basic Energy Sciences

- Call for white papers: 77 submissions
- Face-to-face workshop: May 4-7, 2015 @ PPPL – 55 talks
 - Many sub-group and executive committee conference calls before and after the workshop
- Community feedback webinar 6/30/15

- Final report submitted 8/21/15
 - Identified 5 (separable) Priority Research Directions (PRDs)
 - Identified 4 Cross-Cutting Research Opportunities across PRDs
 - No prioritization across PRDs and cross-cutting research opportunities
Multi-institutional team from Industry, ITER, National Labs, & Universities

SOL & divertor physics (ReNeW Thrust #9):
- Leader/Deputy: H.Y. Guo (GA), B. LaBombard (MIT)
- Panelists: R. Goldston (PPPL), I. Hutchinson (MIT), S. Krashenninikov (UCSD), J. Myra (Lodestar), V. Soukhanovskii (LLNL), P. Stangeby (U. Toronto), P. Valanju (U. Texas), X. Xu (LLNL)

Advancing PMI science and innovation (ReNeW Thrust #10 and part of #14):
- Leader/Deputy: J.P. Allain (UIUC), R. Doerner (UCSD)
- Panelists: M. Jaworski (PPPL), R. Kolasinski (SNLL), R. Kurtz (PNNL), J. Rapp (ORNL), G. de Temmerman (ITER Organization), B. Wirth (UT-K), G. Wright (MIT)

Engineering innovations for plasma exhaust challenges (ReNeW Thrust #11)
- Leader/Deputy: C. Kessel (PPPL), D. Youchison (SNLA)
- Panelists: J. Blanchard (UW-M), R. Callis (GA), R. Ellis (PPPL), R. Majeski (PPPL), N. Morley (UCLA), D. Ruzic (UI-UC), M. Tillack (UCSD), S. Wukitch (MIT), M. Yoda (GIT)

Compatibility of boundary solutions with attractive core scenarios (ReNeW Thrust #12)
- Leader/Deputy: A. Hubbard (MIT), T. Leonard (GA)
- Panelists: J. Canik (ORNL), M. Kotschenreuther (UT-A), R. Majeski (PPPL), P. Snyder (GA), J. Terry (MIT), Z. Unterberg (ORNL), R. Wilson (PPPL)

Cross-cutting group to facilitate discussions, identify high leverage opportunities
- S. Zinkle (UT-K), D. Hill (LLNL), D. Hillis (ORNL), R. Maingi (PPPL), J. Menard (PPPL), H. Neilson (PPPL), D. Whyte (MIT)
Five Priority Research Directions were identified

1. Understand, develop and demonstrate innovative dissipative/detached **divertor solutions for power exhaust & particle control**

2. Understand, develop and demonstrate innovative boundary plasma solutions for **main chamber wall components**

3. Understand the **science of evolving materials** at reactor-relevant plasma conditions and how **novel materials and manufacturing methods** enable improved plasma performance

4. Identify the **present limits on power and particle handling, and tritium control**, for solid and liquid PFCs

5. Understand how boundary solutions and plasma-facing materials influence **pedestal and core performance**
PRD #1: Main Scientific Questions

• What are the physics mechanisms of divertor dissipation, detachment, stability and control?

• What are the effects of divertor magnetic topology, geometry and materials, including solid & liquid?

• What are the physics mechanisms underlying near SOL heat flux width and its scaling?

• How can we extrapolate to reactor regimes?
What sets the SOL heat flux width and will the same physics apply in ITER and reactors? How much broadening with detachment?

- Low recycling attached plasmas

\[\lambda_q [\text{mm}] \ (\text{exp.}) \]

\[R^2 = 0.86 \]

Magnetic configuration (SFD, XD/SXD, XPT)

- Impact on divertor detachment and pedestal/core confinement
- Onset of new instabilities (e.g., churning modes) that can enhance power spreading, especially during ELMs

Physical structure

- Target inclination: directs recycling fluxes toward the separatrix, thereby increasing dissipation
- Slot geometry, enhanced neutral baffling, long divertor leg – further performance benefit?

Liquid metal divertor target

- Compatibility with high-performance pedestal/core
- Establish physics, operational window of steady-state regimes
- Interaction with transients
Much interest in optimizing divertor topology for exhaust

- Developed promising innovative divertor concepts: shown

- Physics elements:
 - Enhanced turbulence & new instabilities
 - Stabilization of ‘detachment front’ via magnetic shaping
 - Interaction with high density vapor...
PRD #1: Action plans

• **Validation**: Make high resolution 2-D measurements of plasma & turbulence properties, and dissipation processes in divertor and near SOL
 - Develop fully predictive models of dissipation/detachment

• **Enhancements to existing facilities**: Explore current power handling/performance limits & upgrade divertor configurations and materials (solid & liquid)

• **International collaborations, including ITPA**:
 - Advanced divertors & materials: MAST, TCV, HL-2M
 - Long pulse material migration: EAST, KSTAR, JT60-SA
 - High-Z PMI: JET, AUG, WEST, EAST

• **New starts**: develop a Divertor Test Tokamak
 - Flexible magnetic configuration, chamber geometry, and PFCs
 - Dissipative divertor solutions at reactor-level parameters
Advance Physics Understanding
(Diagnostics, Theory & Modeling)

- Make high resolution measurements of plasma properties and dissipation processes in divertor and in near SOL, e.g.,
 - 2D measurements of plasma parameters including turbulence dynamics

- Develop fully predictive models of divertor dissipation/detachment and near SOL physics
 - Theory, interpretive models and comprehensive numerical models
 - Validation and verification
Five Priority Research Directions were identified

1. Understand, develop and demonstrate innovative dissipative/detached divertor solutions for power exhaust & particle control

2. Understand, develop and demonstrate innovative boundary plasma solutions for main chamber wall components

3. Understand the science of evolving materials at reactor-relevant plasma conditions and how novel materials and manufacturing methods enable improved plasma performance

4. Identify the present limits on power and particle handling, and tritium control, for solid and liquid PFCs

5. Understand how boundary solutions and plasma-facing materials influence pedestal and core performance
PMI on main-chamber walls, e.g. RF antennas and control actuators, are serious issues for a fusion reactor

- Transport in far SOL (blobs, ELMs)
 - localized plasma impact, recycling, neutral build up
 - CX erosion of first wall components (impurity production, lifetime)
 - Inward transport of impurities

- RF antennas/launchers, control actuators, mirrors vulnerable
 - ICRF, LHCD, RF for control (sawteeth, NTMs, turbulence)
 - RF-enhanced sputtering, parasitic losses, damage to actuators

- Impurity contamination of core

- Long range impurity migration and redeposition (‘slag’)
 - flakes => disruptions, dust

- **Critical issues for long-pulse devices**
PRD #2: Main Scientific Questions

What governs the processes below, and can we predict these quantitatively:

• Far SOL transport, including blobs and transients, and main chamber recycling?

• SOL interactions with RF and other active components? What techniques can be applied to optimize active component effectiveness while mitigating PMI?

• Impurity erosion, transport into core plasma and long-range migration? What are mitigation/control schemes?

A reactor environment introduces new challenges not experienced in current experiments:

• Do our understandings and ‘solutions’ extrapolate to reactor regimes?
PRD #2: Action plans

- **Validation**: Make high resolution 2-D measurements of plasma & turbulence properties in far SOL
 - Develop divertor/SOL/RF theory and computational tools

- **Enhancements to existing facilities**: enhanced diagnostics and runtime, more people
 - PMI with inner wall launchers (C-Mod), RF compatibility with a range of wall materials (NSTX-U), PFCs/single tiles at high temperature and testing advanced materials (DIII-D)

- **International collaborations**:
 - Long pulse: EAST, KSTAR, JT60-SA, W7-X
 - Mix of first-wall materials: JET, ITER, EAST

- **New starts**: develop a Divertor Test Tokamak
 - Explore innovative RF heating and current drive techniques compatible with power density and SOL conditions prototypical of a reactor
Advance physics understanding (diagnostics, theory & modeling)

• Make high spatial and temporal resolution upstream measurements in the far SOL
 - \(n, T_e, T_i \), electrostatic and EM fluctuations throughout SOL
 - Impurity content, impurity fluxes, neutral species

• Perform global characterization of potential & flow (intrinsic and RF-induced)
 - Plasma potential 3D structure near wall structures and active components

• Develop divertor/SOL/RF theory and next-generation computational tools
 - New models for coupled SOL transport, neutral/atomic and PMI
 - Conceptual and reduced models, multi-physics comprehensive models
 - RF effect-specific and integrated self-consistent models with RF-modified SOL parameters.
 - 3D studies with realistic antenna/wall geometry, core-edge coupling
Five Priority Research Directions were identified

1. Understand, develop and demonstrate innovative dissipative/detached *divertor solutions for power exhaust & particle control*

2. Understand, develop and demonstrate innovative boundary plasma solutions for *main chamber wall components*

3. Understand the *science of evolving materials* at reactor-relevant plasma conditions and how *novel materials and manufacturing methods* enable improved plasma performance

4. Identify the *present limits on power and particle handling, and tritium control*, for solid and liquid PFCs

5. Understand how boundary solutions and plasma-facing materials influence *pedestal and core performance*
PRD #3: Key Challenges

- **Grand Challenge**: Establish predictive modeling capability of multi-scale PMI: length (0.1nm to m) and time (femtoseconds to years) scales
- Complication: erosion and recycling from a material surface that is reconstituted 10^6 times or more with plasma exposure
PRD #3: Main Scientific Questions and Action Plans

• What are the processes that dominate the spatial formation and destruction of reconstituted surfaces over time?
 - US devices: Measure charge exchange fluxes to wall, and diagnostics for migration during or between discharges
 - International: material migration in long pulse devices
 - New starts: for droplet emission, coupled to linear device

• How can we simulate the complex experimental conditions and measure the in-situ evolution of reactor relevant reconstituted surfaces?
 - Increased portfolio of in-situ and in-vacuo diagnostics, including sample transfer stations
 - Upgrade existing accelerator capability, e.g. SNS, MTS
 - Collaborate on long pulse international devices with refractory walls, and on MAGNUM-PSI linear device
 - Develop new domestic linear device with high particle and parallel heat flux, inclined targets, steady-state
PRD #3: Main Scientific Questions and Action Plans

• How can we characterize and predict surface composition, morphology, and microstructure evolution of the reconstituted surfaces under reactor-relevant conditions?
 – Existing facilities: advanced surface analysis tools, laser-based techniques, microscopy for bubble formation
 – JET: collaborate on Be codeposit science
 – New start: combine high energy ion beam or X-ray analysis with high power plasma device

• What are the key neutron irradiation synergies with PMI and can advanced materials address these?
 – Expand irradiation effects program and develop ductile phase reinforced composite tungsten

• How can we accelerate development of multi-scale models to predict the evolution of reconstituted surfaces during plasma exposure?
 – Closely coordinate fundamental modeling, e.g. via SciDAC, to measurements for in-depth validation
Five Priority Research Directions were identified

1. Understand, develop and demonstrate innovative dissipative/detached divertor solutions for power exhaust & particle control
2. Understand, develop and demonstrate innovative boundary plasma solutions for main chamber wall components
3. Understand the science of evolving materials at reactor-relevant plasma conditions and how novel materials and manufacturing methods enable improved plasma performance
4. Identify the present limits on power and particle handling, and tritium control, for solid and liquid PFCs
5. Understand how boundary solutions and plasma-facing materials influence pedestal and core performance
The armor will be composed of brush steel and some results given in [ref.10]. The reference divertor concept: combined plate and finger elements featuring the requested load resilience for operation in Elmy plasmas. Four quadrature hybrids are used for obtaining voltages in the eight feeding lines and this with the power strap triplets by means of appropriate decouplers is presently studied [ref.6] aiming at a precise adjustment of the radiating junction point of the 4PJ is at the first voltage anti-node and the service stub insertion point is near the next voltage node. Please note in [ref.13] that the complete array of four pairs of triplets covered the requested load resilience for operation in Elmy plasmas.

Therefore, in section III.E we detail the TOPICA coupling of undesirable coaxial antenna plug, leading through eight line stretchers (allowing space saving). This is shown in figure 13 May 2016.

An important element of our divertor design concept is the interface between steel inl

Each strap has its own strap box and the mean electrical length of coaxial

Its length also corresponds to 2/3 of the melting point.

2/3 of the melting point.

During normal operation and up to 2 MW/m of heat flux of 1.0 MW/m of peak surface heat flux of the ARIES ST.

However, there are indications that transient peak heat fluxes up to ~ 2 MW/m peak surface heat flux of the ARIES ST. Therefore, in section III.E we detail the TOPICA coupling of undesirable coaxial antenna plug, leading through eight line stretchers (allowing space saving).

Therefore, in section III.E we detail the TOPICA coupling of undesirable coaxial antenna plug, leading through eight line stretchers (allowing space saving).

Therefore, in section III.E we detail the TOPICA coupling of undesirable coaxial antenna plug, leading through eight line stretchers (allowing space saving).

Therefore, in section III.E we detail the TOPICA coupling of undesirable coaxial antenna plug, leading through eight line stretchers (allowing space saving).

Therefore, in section III.E we detail the TOPICA coupling of undesirable coaxial antenna plug, leading through eight line stretchers (allowing space saving).
PRD #4: Main Scientific Questions and Action Plans

- What are the maximum steady state heat fluxes and operating temperatures for actively cooled solid and liquid PFCs?
 - New high heat flux facility, high duty cycle & availability, coupled with theory and validation for solid and free surface liquid PFCs
 - Capability for pulsed loads to simulate plasma transients

- What are the tolerable peak heat and particle loads, and transient durations for solid and liquid actively cooled PFCs?

- What are the effects of tritium implantation and permeation, and tritium retention in liquid and solid PFCs?
 - Linear, probably new plasma facilities for implantation and permeation assessments
 - Dedicated test stand and toroidal facilities for liquid PFCs
PRD #4: Main Scientific Questions and Action Plans

- How will the neutron induced transmutation and He production affect the PFC’s function, bulk and surface?
 - Fusion-like neutron damage of PFCs via SNS, IFMIF, MTS, and then evaluate those materials in linear devices
- What processes will limit the lifetime of PFCs, including fusion neutrons, erosion, thermo-mechanical cycling, or surface modification?
 - Erosion and morphology evolution in linear plasma and toroidal confinement facilities
 - Thermo-mechanical and fluid accessed in high heat flux facilities
 - Liquid metal interactions with substrate in MHD flow loops
- How can advanced manufacturing be utilized to extend PFC performance and lifetime limits?
 - Develop new alloys and structural materials, incorporating state-of-the-art multi-scale, multi-physics modeling
Theory and modeling critical to progress

The questions imply experimental activities, but in fact, we will also rely heavily on simulations to integrate experimental results, and project to greater integration and prototypical features

- Use multi-physics computations to address the multi-loading/multi-feature environment seen by PFCs in their design
- Develop computational tools to accurately describe free-surface liquid metal MHD
- Model tritium implantation, co-deposition, entrainment in dust and debris, and transport processes in PFCs and overall reactor systems
- Develop the multi-scale modeling of PFCs to develop advanced materials/components using advanced manufacturing (close the materials-design-manufacturing aspects into one)
- Develop the qualification program to provide reliable and robust PFCs to a fusion reactor
Five Priority Research Directions were identified

1. Understand, develop and demonstrate innovative dissipative/detached divertor solutions for power exhaust & particle control

2. Understand, develop and demonstrate innovative boundary plasma solutions for main chamber wall components

3. Understand the science of evolving materials at reactor-relevant plasma conditions and how novel materials and manufacturing methods enable improved plasma performance

4. Identify the present limits on power and particle handling, and tritium control, for solid and liquid PFCs

5. Understand how boundary solutions and plasma-facing materials influence pedestal and core performance
PFC material affects pedestal and confinement: JET with bare Tungsten compared to NSTX with Lithium PFCs

- T_{e}^{ped} dropped significantly
- H_{98y2} increased from 0.8 -> 1.4

M. Beurskens, PPCF 55 (2013) 124013

PRD #5: Main Scientific Questions

1. What physics sets the profiles of plasma temperature and density in the edge transport barrier or ‘pedestal’?
 - How do low vs high recycling and retention of fuel influence the pedestal region?
 - How are impurities transported in the pedestal and what is their effect?

2. How is pedestal transport modified by edge transient (ELM) control techniques and in regimes without large transients?

3. What are the limits to robust pedestal operation, and how do they constrain divertor solutions?

4. How can the pedestal and divertor be integrated to optimize performance of burning plasmas?
PRD #5: Action plans

• Validation: new diagnostics and coordinated experiments
 – E.g. 2-D ionization profiles, main ion temperature, and fluctuations in pedestal region for model validation
 – Coordinated density, collisionality, impurity seeding scans

• Enhancements to existing facilities: enhanced diagnostics and runtime, more people
 – PFC material options including solid and liquid, high-Z and low-Z, and advanced designs of RF launchers
 – Explore innovative RF heating and current drive techniques compatible with the SOL

• International collaborations:
 – Emphasize near term JET, ASDEX-U, MAST-U, longer term EAST, KSTAR, JT-60SA (once edge diagnostics improve)

• New starts: develop a Divertor Test Tokamak
 – Low fueling within pedestal, high heat flux, high radiated power fraction, high confinement without large ELMs
 – Improved actuators for sustainment and optimization
Four crosscutting research opportunities identified

- **Enhanced exploitation of existing machines for PMI issues**
 - Leverage existing investments with new PMI diagnostics, targeted upgrades, enhanced PMI dedicated run time; new staff expertise, enhanced modeling and simulation (SOL, etc.)
 - Opportunity to integrate boundary plasma and plasma materials R&D

- **Examine long pulse PMI science issues under reactor-relevant conditions of high accumulated plasma and neutron fluxes**
 - Long pulse toroidal (international collaboration) and linear plasma devices (upgrades/new build)

- **Understand the science of liquid surfaces at reactor-relevant plasma conditions and examine the feasibility of liquid PFC solutions**

- **Develop integrated plasma-material solutions in a purpose-built Divertor Test Tokamak**
 - Provide experimental test bed to develop and test models and divertor + PFC solutions for reactor-relevant conditions
Science and feasibility of liquid PFCs

• Heat and particle flux limits (steady state, transient)
• Compatibility with high-performance pedestal and high core confinement
 – Temperature and vapor pressure limits
 – Particle recycling
 – MHD and SOL current effects
• Material migration mechanisms (droplet formation, etc.)
• Tritium transport and retention mechanisms
 – Tritium inventory and potential release to public (normal and accident scenarios)
• Engineering considerations
 – Uniform wall coverage; transport of flowing conductive liquids, etc.
Divertor test tokamak

• Purpose-built tokamak: Enhanced divertor volume/flexibility with access to higher heat/particle flux densities than existing facilities

• Primary mission: Develop and demonstrate divertor and main-chamber PMI solutions, compatible with pedestal/core at conditions approaching reactor level
 – Explore optimization of magnetic configuration, chamber geometry, target materials (solid and liquid), etc.
 – Develop/validate heat and particle handling solutions (steady state, transient) relevant for fusion power systems
 – Explore main-chamber PFC material options and actuators compatible with the SOL and core plasma
 – Examine PFM erosion and deposition mechanisms under well-controlled reactor-relevant conditions

• National working group would establish a range of options for a DTT
 – A short-pulse DTT could become operational in ~5 years
Summary

- Community-led panel identified leading challenges and options to address those challenges
 - Five PRDs with Four Cross-Cutting Research Opportunities
 - Considerable enthusiasm amongst participants to follow up

- Follow-on activities: specific action plans for each PRD; possible cross-cutting steps suggested below
 - Existing experiments: identify high value actions with facility leaders
 - Long-pulse science: (i) use coming international re-competition to target specific science and technology areas in PRDs, and (ii) hold national workshop or form working group on US-led linear divertor simulator
 - Liquid surfaces: conduct national workshop to identify most important questions to be tackled first
 - Divertor test tokamak: initiate community-wide working group, assessing model extrapolation issues and evaluating the European DTT proposal(s)
Backup
SOL interactions with RF and other active components

- SOL affects wave propagation and absorption in core plasma. Recent experiments highlight strong sensitivities to SOL conditions. **Understanding for optimization and control is needed.**
- SOL properties are directly altered by RF – electric potentials, convection cells – which in turn affect impurity transport/screening. **Understanding/control is the challenge.**

Innovative solutions to minimize plasma-RF-material interactions:
- High-field side launch (quiescent SOL, favorable drift orbits,...)
- Field-aligned antenna (minimizes deleterious field components)
- Helicon traveling-wave launcher (can locate in far SOL?)

PMI on other active components
- ECH Mirrors
- ‘Lobes’ associated with ELM control coils
- 3D magnetic perturbations in general
Enhanced exploitation of existing machines for PMI issues

- Relevant for all PRDs
- Leverage existing investments with new diagnostics, targeted upgrades, enhanced dedicated run time
 - Opportunity to integrate boundary and pedestal plasma and plasma-facing materials R&D (multidisciplinary teams with plasma physics, diagnostics, materials science expertise)
 - Enhanced measurement tools for boundary plasma and surfaces
 - Modifications to divertor, plasma-facing materials.
- Increase R&D focus in existing machines on PMI science topics
 - Conditions and control methods for detachment and dissipation, core-edge plasma compatibility, plasma-surface interactions, etc.
 - Increased run time allocation for this research
- Provide foundation for improved theory and modeling
 - Develop robust divertor/SOL and pedestal models; investigate physics of detachment including compatibility with high confinement core plasmas
 - Examine impact of different PFMs and divertor configurations on plasma
 - Will require increased personnel for data analysis, interpretation and modeling.
Examine long pulse PMI science issues

- Steady state heat and particle flux limits and operating temperature windows for PFCs (solid and liquid)
 - Impact on pedestal and core performance (e.g., impurity transport in the pedestal)
- In-situ monitoring of surface morphology and composition evolution during plasma exposure
 - Roles of temperature, particle energy, etc.
 - Evolution of surface composition, including effects of trapped He and tritium
- Understand erosion, material migration and redeposition phenomena
 - Develop predictive understanding of net erosion/deposition rates, dust production and migration, droplet/aerosol creation
 - Effect of edge plasma conditions on ionization/redeposition of eroded material
- Synergistic effects of neutron irradiation and tritium implantation/permeation in PFCs
- Investigate radiation-tolerant, self-healing and adaptive PFC materials
 - Including advanced manufacturing methods, liquid walls, etc.