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Review of hybrid modeling

Physical picture

plasma consists of two populations

cold, fluid-like bulk hot, kinetic minority



Review of hybrid modeling

Basic mathematical approach

MHD models cold bulk, kinetic theory models hot minority

ρ
∂U
∂t

= . . .
∂F

∂t
= . . .



GK-MHD hybrid models can be derived as follows:

Step 1: Couple two-fluid model to gyrokinetic equation via
Maxwell’s equations.

mσnσ(∂tuσ + uσ · ∇uσ) = −∇pσ + qσnσ(E + uσ × B)

∂tnσ +∇ · (nσuσ) = 0

∂tF +∇ · (Fugy) + ∂v‖(Fa‖gy) = 0

∇× B = µo
(∑

σ

qσnσuσ + Jh
)

+ µoεo∂tE

∇× E = −∂tB

εo∇ · E =
∑
σ

qσnσ + qhnh

∇ · B = 0



GK-MHD hybrid models can be derived as follows:

Step 2: Set displacement current and total charge to zero.

mσnσ(∂tuσ + uσ · ∇uσ) = −∇pσ + qσnσ(E + uσ × B)

∂tnσ +∇ · (nσuσ) = 0

∂tF +∇ · (Fugy) + ∂v‖(Fa‖gy) = 0

∇× B = µo
(∑

σ

qσnσuσ + Jh
)
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µoεo∂tE

∇× E = −∂tB
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εo∇ · E =
∑
σ

qσnσ + qhnh

∇ · B = 0



GK-MHD hybrid models can be derived as follows:

Step 2: Set displacement current and total charge to zero.

mσnσ(∂tuσ + uσ · ∇uσ) = −∇pσ + qσnσ(E + uσ × B)

∂tnσ +∇ · (nσuσ) = 0

∂tF +∇ · (Fugy) + ∂v‖(Fa‖gy) = 0

∇× B = µo
(∑

σ

qσnσuσ + Jh
)

∇× E = −∂tB

0 =
∑
σ

qσnσ + qhnh

∇ · B = 0



GK-MHD hybrid models can be derived as follows:

Step 3: Sum fluid momentum equations, assume ideal Ohm’s
law.

ρ(∂tU + U · ∇U) = −∇p− qhnhE + (µ−1o ∇× B − Jh)× B
E + U × B = 0

∂tρ+∇ · (ρU) = 0

∂tF +∇ · (Fugy) + ∂v‖(Fa‖gy) = 0

∇× E = −∂tB
∇ · B = 0



GK-MHD hybrid models can be derived as follows:

Step 4: Choose current coupling or pressure coupling closure.

I Current coupling: System is closed by expressing nh and Jh
in terms of moments of F

I Pressure coupling: Perpendicular component of hot
momentum equation is added to cold momentum equation.
Hot perpendicular momentum density is neglected. System is
closed by expressing the hot pressure tensor Ph in terms of
moments of F



GK-MHD hybrid models can be derived as follows:

Step 4: Choose current coupling or pressure coupling closure.

I Current coupling: System is closed by expressing nh and Jh
in terms of moments of F

I Pressure coupling: Perpendicular component of hot
momentum equation is added to cold momentum equation.
Hot perpendicular momentum density is neglected. System is
closed by expressing the hot pressure tensor Ph in terms of
moments of F

In this talk I will only discuss current coupling



Why current coupling?

I. Fewer approximations, not much additional complexity

II. Second-order moments noisier than first-order

xi independent and same distribution as x

〈x〉 − 1

N

∑
i

xi =
1

N

∑
i

δxi

〈x2〉 − 1

N

∑
i

x2i =
1

N

∑
i

(δxi )
2 − σ2x + 2〈x〉 1

N

∑
i

δxi



An important GK-MHD model is the BDC model

The current-coupling model of Belova, Denton, and Chan
(J. Comput. Phys. 1997):

I Current-coupling system:

ρ(∂tU + U · ∇U) = −∇p− qhnhE + (µ−1o ∇× B − Jh)× B
E + U × B = 0

∂tρ+∇ · (ρU) = 0

∂tF +∇ · (Fugy) + ∂v‖(Fa‖gy) = 0

∇× E = −∂tB
∇ · B = 0



An important GK-MHD model is the BDC model

The current-coupling model of Belova, Denton, and Chan
(J. Comput. Phys. 1997):

I Hot charge and current densities:

qhnh(x) = qh

∫∫
µ
〈δ(X + ρ− x)〉F d4z

Jh(x) = qh

∫∫
µ
〈(ugy + v⊥)δ(X + ρ− x)〉F d4z,



An important GK-MHD model is the BDC model

The current-coupling model of Belova, Denton, and Chan
(J. Comput. Phys. 1997):

I Gyrocenter dynamics:

a‖gy =
qh
mh

B∗∗

B∗∗‖
· E ∗∗

ugy =
1

B∗∗‖

[
B∗∗v‖ + E ∗∗ × beq

]

E ∗∗ = 〈Ẽ (X + ρ)〉 − q−1h ∇([µ+ δµ]Beq)

B∗∗ = Beq + 〈B̃(X + ρ)〉
B∗∗‖ = B∗∗ · beq

δµ = −qhB−1eq 〈v⊥ · Ã(X + ρ)〉 =
q2h

2πmh

∫
D(X )

B̃ · dS



Why would anyone want a new GK-MHD model?

Previous models have broken conservation laws when
Beq 6= const.

I Momentum conservation in BDC model:

N =

∫∫
µ
mhv‖beq F d4z +

∫
ρU d3x

satisfies

dN

dt
=

∫∫
µ

(
mhv‖ugy ·∇beq−qhugy×〈∆B〉−qh〈v⊥×∆B〉

− ∇([µ+ δµ]Beq)− qh〈v⊥ × B̃(X + ρ)〉
)
F d4z,

where ∆B = Beq(X + ρ)− Beq(X ).

Only zero when Beq = const.



Why would anyone want a new GK-MHD model?

Previous models have broken conservation laws when
Beq 6= const.

I Hot charge conservation in BDC model:

∂tqhnh +∇ · Jh =∫∫
µ
qh〈(ugy + v⊥) · ∇ρ · (∇δ)(X + ρ− x)〉F d4z

Only zero when Beq = const.



Why would anyone want a new GK-MHD model?

Previous models have broken conservation laws when
Beq 6= const.

I Phase space volume conservation in BDC model:

∂tB
∗∗
‖ +∇ · (B∗∗‖ ugy) + ∂v‖(B

∗∗
‖ a‖gy) =

beq · [∇× 〈Ẽ (X + ρ)〉 − 〈(∇× Ẽ )(X + ρ)〉]
+ v‖∇ · 〈B̃(X + ρ)〉 − E ∗∗ · ∇ × beq,

Only zero when Beq = const.



What is our new model?

Our model is a slight modification of the BDC model

I We change the hot current:

Jh(x) =

∫
µ

∫
qh〈(ugy + v⊥)δ(X + ρ− x)〉F d4z

+

∫
µ

∫
qh〈〈ugy · (∇X +∇x)[δ(X + λρ− x)ρ]〉〉F d4z

“gyrodisk average”:

〈〈Q〉〉 =
1

2π

∫ 1

0

∫ 2π

0
Q dθ dλ



What is our new model?

Our model is a slight modification of the BDC model

I And the gyrocenter dynamics:

a‖gy =
qh
mh

B∗

B∗‖
· E ∗

ugy =
v‖B∗

B∗‖
+

E ∗ × beq

B‖∗

E ∗ = Ẽ (X )− q−1h ∇([µ+ δµ]Beq) + 〈〈(∇× Ẽ )(X + λρ)× ρ〉〉
+∇〈〈Ẽ (X + λρ) · ρ〉〉

B∗ = B(X ) + mhq
−1
h v‖∇× beq +∇× 〈〈B̃(X + λρ)× ρ〉〉

B∗‖ = B∗ · beq



What are our model’s conservation laws?

Energy is conserved:

E =

∫∫
µ

(
1

2
mhv

2
‖ + [µ+ δµ]Beq

)
F d4z

+

∫ (
1

2
ρ|U |2 + ρU(ρ) +

1

2µ0
|B|2

)
d3x ,

Note: This same energy is conserved in the BDC model.



What are our model’s conservation laws?

Momentum is conserved assuming symmetry:

Nφ =

∫∫
µ
mhv‖beq · ez × X F d4z +

∫
ρU · ez × x d3x

+

∫
µ

∫
qh〈〈[ρ× Beq(X + λρ)] · [ez × X ]〉〉F d4z

+

∫∫
µ
qh〈〈λez · ρρ · B(X + λρ)− λ|ρ|2ez · B(X + λρ)〉〉F d4z

Note: This the toroidal momentum conserved assuming an axisym-
metric background. When the background is uniform, this model
and the BDC model conserve the same linear momentum.



What are our model’s conservation laws?

Hot charge is conserved:

∂t(qhnh) +∇ · Jh = 0.



What are our model’s conservation laws?

Phase space volume is conserved:

∂tB
∗
‖ +∇ · (B∗‖ugy) + ∂v‖(B

∗
‖a‖gy) = 0



How is our model derived?

I. Construct system Lagrangian L by summing the net
gyrocenter Lagrangian Lp and the MHD fluid Lagrangian
LMHD,

L = Lp + LMHD.

II. Express all quantities in L in terms of the Lagrangian
configuration maps q(xo) and z(zo) associated with the MHD
fluid and phase space fluid, respectively

III. Vary the action S =
∫
L dt by varying q and z to find

Euler-Lagrange equations.



I. The MHD fluid Lagrangian is the standard one.

The MHD Lagrangian:

LMHD =
1

2

∫
ρ |U |2 d3x −

∫
ρU(ρ) d3x

− 1

2µo

∫
|Beq + B̃|2 d3x



I. The net gyrocenter Lagrangian is more subtle.

The relationship between Lp and the single-gyrocenter Lagrangian
`gy is clear:

Lp =

∫∫
µ
`gy F d4z



I. The net gyrocenter Lagrangian is more subtle.

But what is the `gy that brings us closest to the BDC model?

`gy =???



I. This `gy reproduces the BDC model’s gyrocenter
dynamics when Beq = const.

If `gy = `Br, where

`Br =
(
qhAeq + mhv‖beq

)
· Ẋ + qh〈Ã(X + ρ)〉 · Ẋ

−
(

1

2
mhv

2
‖ + µBeq + qh〈ϕ̃(X + ρ)〉 − qh〈v⊥ · Ã(X + ρ)〉

)
BDC gyrocenter dynamics are recovered when Beq = const..

Note: This Lagrangian was given originally by Brizard
(J. Plasma Phys. 1989)



I. No `gy in literature gives BDC gyrocenter dynamics when
Beq 6= const.

The BDC gyrocenter equations of motion can be expressed entirely
in terms of E and B. Reminder:

a‖gy =
qh
mh

B∗∗

B∗∗‖
· E ∗∗

ugy =
1

B∗∗‖

[
B∗∗v‖ + E ∗∗ × beq

]

E ∗∗ = 〈Ẽ (X + ρ)〉 − q−1h ∇([µ+ δµ]Beq)

B∗∗ = Beq + 〈B̃(X + ρ)〉
B∗∗‖ = B∗∗ · beq

δµ = −qhB−1eq 〈v⊥ · Ã(X + ρ)〉 =
q2h

2πmh

∫
D(X )

B̃ · dS



I. No `gy in literature gives BDC gyrocenter dynamics when
Beq 6= const.

In contrast, all `gy in literature give gyrocenter dynamics that require
evaluating the potentials ϕ̃, Ã. In particular,

Ã→ Ã +∇ψ

⇒`Br → `Br +
qh
c
〈(∇ψ)(X + ρ)〉 · Ẋ

⇒ Gauge invariance is spoiled by `Br



I. Why not just use `Br anyway?

Choosing `gy = `Br spoils gauge invariance of the whole theory.
There are two negative consequences.

I. Hot charge is not conserved.

II. Spurious momentum transfer terms appear in the fluid
momentum equation.



I. If `gy were gauge invariant, problems disappear!

Fact: Noether’s theorem guarantees that gauge-invariant La-
grangian systems conserve charge.

Consequence: Because we are deriving our model from a La-
grangian, finding a gauge-invariant `gy would ensure charge con-
servation. Spurious momentum transfer terms would disappear
too!



I. With a small modification, `Br can be made gauge
invariant.

First, add a special total time derivative to `Br:

`Br → `Br −
d

dt
qh〈〈Ã(X + λρ) · ρ〉〉.



I. With a small modification, `Br can be made gauge
invariant.

Next, replace the total time derivative with the approximation:

d

dt
qh〈〈Ã(X + λρ) · ρ〉〉 ≈

qh〈〈Ẋ · ∇Ã(X + λρ) · ρ + ∂tÃ(X + λρ) · ρ〉〉

Neglected terms are proportional to products of the
fluctuating fields and gradients of Beq.



I. With a small modification, `Br can be made gauge
invariant.

The single-gyrocenter Lagrangian:

`gy ≡
(
qhAeq + mhv‖beq

)
· Ẋ −

(
1

2
mhv

2
‖ + [µ+ δµ]Beq

)
+qhÃ(X ) · Ẋ − qhϕ̃(X )

+qh〈〈[Ẽ (X + λρ) + Ẋ × B̃(X + λρ)] · ρ〉〉.

This Lagrangian is manifestly gauge-invariant!



I. We now have our system Lagrangian!

The system Lagrangian:

L = Lp + LMHD

=

∫∫
µ
`gy F d4z +

1

2

∫
ρ |U |2 d3x

−
∫
ρU(ρ) d3x − 1

2

∫
|Beq + B̃|2 d3x

Note: We must set Ẋ = ugy(z) in `gy because we are integrating
over the Eulerian phase space coordinates z and not the

Lagrangian labels zo .



II. Now we must express L in terms of q(xo) and z(zo)

Expressing the Eulerian fluid velocities in terms of Lagrangian con-
figuration maps is standard.

Eulerian fluid velocities:

U(q(xo)) =
dq(xo)

dt

X (z(zo)) =
dz(zo)

dt

where X = (ugy, a‖gy).



II. Now we must express L in terms of q(xo) and z(zo)

Expressing ρ and F in terms of Lagrangian configuration maps is
also standard.

Eulerian mass density and distribution function:

ρ(q(xo)) d3q = ρ0(xo) d3xo
F (z(zo)) d4z = F0(zo) d4zo

where ρ0 and F0 are the initial ρ and F .



II. Expressing ϕ̃ and Ã in terms of q(xo) is tricky

In order to express ϕ̃ and Ã in terms of q(xo), we must invoke
Ohm’s law

E + U × B = 0



II. Expressing ϕ̃ and Ã in terms of q(xo) is tricky

As usual, the curl of Ohm’s law, together with Faraday’s law, implies
that the total magnetic field is frozen into the bulk flow

∂tB = ∇× (U × B)



II. Expressing ϕ̃ and Ã in terms of q(xo) is tricky

The curl of Ohm’s law will be satisfied automatically if we freeze
the total vector potential into the bulk flow.

The vector potential:(
Aeq(q(xo)) + Ã(q(xo))

)
· dq =

(
Aeq(xo) + Ão(xo)

)
· dxo



II. Expressing ϕ̃ and Ã in terms of q(xo) is tricky

In order to satisfy Ohm’s law completely, the potential ϕ̃ must there-
fore be expressed in the so-called hydrodynamic gauge.

The scalar potential:

ϕ = (Aeq + Ã) ·U



III. We can now vary the action!

Our GK-MHD hybrid follows from the variational principle

δ

∫
L dt = 0

where the quantities being varied are q(xo) and z(zo).



III. The variations of all Eulerian quantities can be
calculated first

Eulerian variations implied by Lagrangian variations

δF = −∇ · (FΞX )− ∂v‖(FΞv‖) = −∇z · (FΞ)

δρ = −∇ · (ρξ)

δX gy = ∂tΞ + X gy · ∇zΞ−Ξ · ∇zX gy

δU = ∂tξ + U · ∇ξ − ξ · ∇U

δÃ = ξ × B −∇(ξ · A)

δϕ̃ = −ξ · ∇ϕ̃+ ∂tξ · A
δB̃ = ∇× (ξ × B)

δẼ = ξ × (∇× Ẽ )−∇(ξ · Ẽ )− (∂tξ)× B



III. The Euler-Lagrange equations are then given by:

qhE ∗ − qhB∗ × ugy −mha‖gybeq = 0

mhugy · beq −mhv‖ = 0

ρ(∂tU + U · ∇U) = −∇p− qhnhE + (µ−1o ∇× B − Jh)× B.

qhnh = qh

∫∫
µ
F (x , v‖) dv‖ −∇ · Pgy

Jh = qh

∫∫
µ

ugy(x , v‖)F (x , v‖) dv‖ +∇×Mgy + ∂tPgy

Note: These equations must be supplemented by the evolution
laws implicitly built into the variational principle.

∂tF +∇ · (Fugy) + ∂v‖(Fa‖gy) = 0

∂tρ+∇ · (ρU) = 0

E + U × B = 0.



III. The gyrocenter polarization and magnetization
densities are given by:

Polarization and Magnetization densities:

Pgy =
δLp

δẼ
, Mgy =

δLp

δB̃
.



III. The earlier expression of our model is straightforward
to recover

The functional derivatives can be evaluated explicitly giving:

Pgy(x) = qh

∫∫
µ
〈〈δ(X + λρ− x)ρ〉〉F d4z

Mgy(x) = qh

∫∫
µ
〈〈δ(X + λρ− x)ρ× [ugy + λv⊥]〉〉F d4z.

The hot charge and current densities calculated using these Pgy

and Mgy agree with our earlier expressions.



Conclusion

We have identified a variational GK-MHD hybrid model in the
current-coupling scheme with the following properties.

I It recovers the BDC model when the background
magnetic field is uniform.

I It is the first GK-MHD model to simultaneously conserve
energy, momentum, hot charge, and phase space volume
in a general background magnetic field.

I By using a new gauge-invariant gyrocenter Lagrangian, it
is expressed entirely in terms of E and B.

Using the same approach, we have also formulated a new drift-
kinetic-MHD model with similar strengths.

I Cesare will present the DK-MHD model at PPPL in
October!


	Background

