Development and application of BOUT++ for large scale turbulence simulation

J. Leddy, B. Dudson, P. Hill, B. Shanahan, N. Walkden

PPPL Theory seminar
28 February 2017
Outline

Numerical developments

New coordinate system
Flux-coordinate independent method

A new plasma model (Hermes)

2-fluid cold ion model in divergence form
Including neutral interactions

Turbulence and Neutral Simulations

Linear device
MAST-U
DIII-D
What is BOUT++

• Framework for solving systems of PDE’s

• Flexible numerical methods and geometries
 • Pvode, PETSc, grids from EFIT

• Easy to implement physics models
 • $\frac{ddt(N_i)}{} = - \text{Div}(N_i \times V_i)$

• Designed with tokamaks in mind
 • Axisymmetry
 • Parallelization

• Open source at:
 https://github.com/boutproject/BOUT-dev
Standard field-aligned coordinates

- Coordinate system should be **field-aligned**:
- Ease of parallel operations
- Perturbations tend to have low k_{\parallel}

Coordinates:

\[x = \psi \]
\[y = \theta \]
\[z = \phi - \int_{\theta_0}^{\theta} \nu \, d\theta \]
Why new coordinates?

- Still desire field-aligned system
- But poloidal projection of x and y are constrained to be orthogonal
- With new coordinate system we can:
 - Match divertor geometry
 - Approach X-point more closely and evenly
Flexible field-aligned coordinates

\[x = \psi \]
\[y = \theta - \int_{\psi_0}^{\psi} \eta \, d\psi \]
\[z = \phi - \int_{y_0}^{y} \nu \left(1 + \int_{\psi_0}^{\psi} \eta \, d\psi \right) \, dy \]

Can now calculate metric tensors for spatial operators
Numerical accuracy

- Tested via the method of manufactured solutions\(^1\)
- Nine combination of orthogonalities tested
- Implementation in BOUT++ is 2\(^{nd}\) order accurate

J Leddy *et al* (2017) *Computer Physics Communications*
Numerical accuracy

- Tested via the method of manufactured solutions\(^1\)
- Nine combination of orthogonalities tested
- Implementation in BOUT++ is 2\(^{nd}\) order accurate

<table>
<thead>
<tr>
<th>Orthogonal ((\eta = 0))</th>
<th>Poloidal pitch ((\eta = \text{const}))</th>
<th>Poloidal shear ((\eta \neq \text{const}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>No pitch ((\nu = 0))</td>
<td>2.00</td>
<td>2.14</td>
</tr>
<tr>
<td>Constant pitch ((\nu = \text{const}))</td>
<td>2.02</td>
<td>2.04</td>
</tr>
<tr>
<td>Shear ((\nu \neq \text{const}))</td>
<td>2.14</td>
<td>2.14</td>
</tr>
</tbody>
</table>

J Leddy *et al* (2017) *Computer Physics Communications*
FCI method

- In irregular and stochastic magnetic fields, having a flux coordinate independent (FCI) system can be preferable
- Cartesian planes – follow field lines and interpolate to perform parallel derivatives
- Benefits:
 - No assumption of flux surfaces
 - Parallel derivative entirely in parallel direction so no singularities in metric
Straight stellarator test

- As a test of the FCI Method, a straight stellarator was constructed.

- Solved parallel diffusion equation to trace flux surfaces.

- Inherent perpendicular diffusion reduced to tolerable levels ($<10^{-8}$) for ~1mm resolution.

\[d_t (f) = \nabla^2_\parallel f \]

P Hill et al (2017) *Computer Physics Communications*
B Shanahan et al (2016) Accepted by *JP;CS*
Straight stellarator test

- As a test of the FCI Method, a straight stellarator was constructed.

- Solved parallel diffusion equation to trace flux surfaces.

- Inherent perpendicular diffusion reduced to tolerable levels ($<10^{-8}$) for ~1mm resolution.

\[d_t (f) = \nabla^2 f \]
Limiter boundary condition

- Recently implemented:
 - Grid generator which takes input from analytic functions, VMEC equilibria, etc.
 - Parallel boundary conditions/poloidal limiters
Outline

Numerical developments

- New coordinate system
- Flux-coordinate independent method

A new plasma model (Hermes)

- 2-fluid cold ion model in divergence form
- Including neutral interactions

Turbulence and Neutral Simulations

- Linear device
- MAST-U
- DIII-D
Multi-fluid codes

The workhorse of plasma boundary studies (e.g. SOLPS, EDGE2D, UEDGE, SONIC, ...)

Include detailed physics of plasma-wall interaction
- Parallel transport of heat and particles
- Sheath physics
- Neutral gas recycling
- Impurities
- Divertor plates, baffles, ducts, slots, pumps, ...

But
- Simplified cross-field transport

\[\frac{D}{r - r_{\text{sep}}} \sim 3.6 \text{ mm} \]

\[D_\perp = 0.3 \text{ m}^2\text{s}^{-1}, \ \chi_{\perp,i,e} = 1.0 \text{ m}^2\text{s}^{-1} \]

\[\lambda_q (\text{omp}) = 3 - 4 \text{ mm} \]

R. Schneider et al. (2006) *Contributions to Plasma Physics*
S. Wiesen et al. (2015) *Journal of Nuclear Materials*
X. Bonnin et al. (2016) *Plasma Fusion Research*
Turbulence codes

Calculating the turbulent transport requires solving for the time-varying plasma currents and electric fields

- Drift waves, ballooning/interchange instabilities, small-scale structure
- Computationally demanding, timesteps < ion cyclotron time
- Several codes under development (e.g. GBS, TOKAM-X, HESEL, BOUT++)
- Have not previously included detailed geometry, impurities, neutrals, ...

F D Halpern et al. (2016) *Journal of Computational Physics*
P Tamain et al. (2016) *Journal of Computational Physics*
Combining models

- Several attempts to combine transport models with turbulence codes
- Difficulties include
 - Consistency of underlying models
 - Separation of scales
 - Nonlinearity of atomic processes with density, temperature

Here the aim is to combine everything into one simulation, modelling “transport” and turbulence together

F. Guzman et al. (2015) PPCF
The Hermes model

Current status

- Cold ion drift-fluid model
- Fluid neutrals: Diffusive, full Navier-Stokes, and hybrid models
- New differential operators for particle and energy conservation
- New electric field solver for n=0 mode

Flux-driven edge fluid simulations in X-point geometry

Under development

- Hot ion model
- EIRENE coupling for kinetic neutrals
- Pre-conditioners for faster simulation

Based on BOUT++

https://github.com/boutproject/hermes

Dudson and Leddy (2017) Submitted to PPCF
Model equations (1/2)

Evolving (electron) density \(n\), electron pressure \(p\)

\[
\frac{\partial n_e}{\partial t} = -\nabla \cdot \left[n_e \left(\mathbf{V}_{E \times B} + \mathbf{V}_{mag} + b v_{||e} \right) \right] \\
+ \nabla \cdot (D_\perp \nabla_\perp n_e) + S_n
\]

\[
\frac{3}{2} \frac{\partial p_e}{\partial t} = -\nabla \cdot \left(\frac{3}{2} p_e \mathbf{V}_{E \times B} + \frac{5}{2} p_e b v_{||e} + p_e \frac{5}{2} \mathbf{V}_{mag} \right) \\
- p_e \nabla \cdot \mathbf{V}_{E \times B} + v_{||e} \partial_{||} p_e + \nabla_{||} \left(\kappa_e \partial_{||} T_e \right) \\
+ 0.71 \nabla_{||} (T_e j_{||}) - 0.71 j_{||} \partial_{||} T_e + \frac{\nu}{n} j_{||}^2 \\
+ \nabla \cdot (D_\perp T_e \nabla_\perp n_e) + \nabla \cdot (\chi_\perp n_e \nabla_\perp T_e) + S_p
\]

With \(E\times B\) and magnetic drifts given by:

\[
\mathbf{V}_{E \times B} = \frac{\mathbf{b} \times \nabla \phi}{B} \\
\mathbf{V}_{mag} = -T_e \nabla \times \frac{\mathbf{b}}{B}
\]

Dudson and Leddy (2017) Submitted to PPCF
Model equations (2/2)

Flows and currents are evolved through the vorticity, ion parallel momentum, and vector potential

\[
\frac{\partial \omega}{\partial t} = -\nabla \cdot (\omega \mathbf{V}_{E \times B}) + \nabla || \mathbf{j}|| - \nabla \cdot (n \mathbf{V}_{mag}) + \nabla \cdot (\mu_\perp \nabla \perp \omega)
\]

\[
\frac{\partial}{\partial t} \left(n_e v_{||i} \right) = -\nabla \cdot \left[n_e v_{||i} (\mathbf{V}_{E \times B} + b v_{||i}) \right] - \partial || p_e + \nabla \cdot (D_\perp v_{||i} \nabla \perp n) - F
\]

\[
\frac{\partial}{\partial t} \left[\frac{1}{2} \beta_e \psi - \frac{m_e}{m_i} \frac{\mathbf{j}_{||}}{n_e} \right] = \nu \frac{\mathbf{j}_{||}}{n_e} + \partial || \phi - \frac{1}{n_e} \partial || p_e - 0.71 \partial || T_e + \frac{m_e}{m_i} (\mathbf{V}_{E \times B} + b v_{||i}) \cdot \nabla \frac{\mathbf{j}_{||}}{n_e}
\]

Finite electron mass, electromagnetic

Boussinesq approximation

\[
\omega = \nabla \cdot \left(\frac{n_0}{B^2} \nabla \perp \phi \right)
\]
Conservation properties

- Movement of particles and thermal energy done using finite volumes (fluxes through cell faces), so particles conserved to high precision

Conserved energy

\[E = \int dv \left[\frac{m_i n_0}{2B^2} |\nabla \perp \phi|^2 + \frac{1}{2} m_i n V_{||}^2 + \frac{3}{2} p_e + \frac{1}{4} \beta_e |\nabla \perp \psi|^2 + \frac{m_e}{m_i} \frac{1}{2} \frac{j_{||}^2}{n} \right] \]
Boundary conditions

Interaction with plasma sheath a complex problem. Here relatively simple boundary conditions are used (multiple options in code for boundary conditions)

Ion velocity goes to the sound speed

\[v_{||i} \geq c_s \]
\[c_s = \sqrt{eT_e/m_i} \]

Conducting wall

\[\dot{j}_{||} = e n_e \left[v_{||i} - \frac{c_s}{\sqrt{4\pi}} \exp\left(-\{\phi/T_e\}\right) \right] \]

Sheath heat flux transmission

\[q = v_{||i} \left(\frac{1}{2} m_i n_e v_{||i}^2 + \frac{5}{2} p_e \right) - \kappa_{||e} \partial_{||} T_e = \gamma_s n_e T_e c_s \]

with \(\gamma_s = 6.5 \)

M U Siddiqui et al. (2016) Physics of Plasmas
New solver for electric potential

To calculate electrostatic potential we invert the vorticity:

$$\nabla \cdot \left(\frac{m_i n}{B^2} \nabla_\perp \phi \right) = \frac{1}{J} \frac{\partial}{\partial u^i} \left(\frac{J m_i n}{B^2} g^{ij} \left(\nabla_\perp \phi \right)_j \right)$$

For low-n modes the poloidal terms become important.

Around the X-point unphysical oscillations occur if poloidal terms are neglected.

→ New solver implemented using PETSc for axisymmetric (n=0) component.
Successfully evolve n=0 potential

- Initial Alfvénic oscillations f~500 kHz damp on ~20 μs timescale

→ First time this has been possible with BOUT / BOUT++ in X-point geometry
Radial electric field

- Quasi-steady state has large radial electric field in SOL, driven by sheath and parallel electron force balance
- Reversing toroidal field modifies E_r near separatrix
- Poloidal rotation sensitive to subtle effects, missing e.g. ion pressure
Neutral gas model (1/2)

Neutral gas is modelled as a fluid

\[
\frac{\partial n_n}{\partial t} = -\nabla \cdot [\mathbf{V}_n n_n] + S
\]

\[
\frac{\partial}{\partial t} \left(\frac{3}{2} p_n \right) = -\nabla \cdot \mathbf{q}_n + \mathbf{V}_n \cdot \nabla p_n + E
\]

\[
\mathbf{q}_n = \frac{5}{2} p_n \mathbf{V}_n - \kappa_n \nabla T_n
\]

Where \(S \) and \(E \) represent transfer of particles and energy between plasma and neutrals.

- Long mean free path of neutrals means Monte-Carlo treatment necessary in many cases
- Molecules not included. Can be important in high density regions
- Fluid model allows qualitative analysis and interpretation
Neutral gas model (2/2)

Model follows approach used in UEDGE

- Parallel to the magnetic field the neutral momentum equation is:

\[
\frac{\partial}{\partial t} \left(m_i n_n V_{\parallel n} \right) = -\nabla \cdot \left[m_i n_n V_{\parallel n} \mathbf{b} V_{\parallel n} \right] - \partial_{\parallel} p_n + F
\]

- Perpendicular to the magnetic field, neglect neutral inertia, and balance neutral pressure against friction:

\[
F_{\perp} \simeq -\nu V_{n\perp}
\]

\[
V_{n\perp} = -\frac{1}{\nu} \nabla_{\perp} p_n
\]

\[
\nu = \nu_{cx} + \nu_{iz} + \nu_{nn}
\]

Collision rate = Charge exchange, ionisation, neutral-neutral

M.Umansky et al. (2003) *Journal of Nuclear Materials*
Atomic physics

- No molecular processes, only atoms evolved
- Simple semi-analytic fits used for atomic processes: Ionisation, recombination and charge exchange
- Provide source/sinks of particles, momentum and energy

- Carbon impurity included using fixed ion fraction (1% typically)
- Analytic radiation curve from Hutchinson thermal fronts paper

I.H.Hutchinson, (1994) *Nuclear Fusion*
Outline

Numerical developments
 New coordinate system
 Flux-coordinate independent method

A new plasma model (Hermes)
 2-fluid cold ion model in divergence form
 Including neutral interactions

Turbulence and Neutral Simulations
 Linear device
 MAST-U
 DIII-D
Combining turbulence + neutrals

- Linear devices have simple geometries, making them a nice test-bed for plasma-neutral interaction.

- We have simulated a small Magnum-PSI sized device with the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic field</td>
<td>0.15 T</td>
</tr>
<tr>
<td>Length</td>
<td>1.2 m</td>
</tr>
<tr>
<td>Radius</td>
<td>10 cm</td>
</tr>
</tbody>
</table>
Combining turbulence + neutrals

- Strong turbulence leads to significant modification of profiles (aided by insulating sheath boundary condition)
- Peak density off-axis at times
- Affects interaction with neutrals: only sources of neutrals are recycling at the target, and volume recombination

J. Leddy et al. (2016) In Press *Journal of Nuclear Materials & Energy*
Particle source/sinks

- Ionisation mainly occurs in highest density and temperature regions of the plasma (centre of eddies)
- Recombination is localised to the high density but low temperature regions (edge of the eddies)
Charge-exchange

- Significant energy is only removed where the temperature difference is greatest ($T_e - T_n$)
- Energy removed from plasma in centre (hottest region)
- Energy transferred to plasma in the edge, where $T_n > T_e$

- Note: cold ion model, so electron temperature used for atomic processes
Effect of fluctuations

Averaged over $8000 \omega_{ci}^{-1}$ (~0.17ms)
• Consistently higher neutral source with turbulence than without
• Difference in source/sinks peaks off-axis
• $\sim10\%$ max difference in ionisation, $\sim50\%$ max difference in recombination

Local profiles
\[n_e n_n \langle \sigma v \rangle (T_e) \]

Axially-averaged profiles
\[\bar{n}_e \bar{n}_n \langle \sigma v \rangle (\bar{T}_e) \]
Including drifts is challenging

- Balance of diamagnetic, parallel and polarisation currents
- Sheath currents at divertor
- Electric fields modify flows, edge asymmetries

Introduces rapid timescales: Alfven waves, electron parallel dynamics
 - Typically reduces timestep by factor of ~ 10
 - Can lead to numerical instabilities

R. Pitts (2015) IAEA TM on Divertor Concepts

T D Rognlien, et al. (1999) *Physics of Plasmas*
MAST-Upgrade simulations

Axisymmetric fluid simulation: No electric fields, no turbulence

- **Recycling fraction**: 80%
- **Carbon fraction**: 1%
- **$n_{e,sep}$**: $1.3 \times 10^{19} \, \text{m}^{-3}$
- **$T_{e,sep}$**: 63 eV
- **D**: 0.2 m2/s
- **X**: 0.5 m2/s

E. Havlicova, et al. (2014) *Contributions to Plasma Physics*
MAST-Upgrade simulations

Axisymmetric fluid simulation: No electric fields, no turbulence

- Recycling fraction: 80%
- Carbon fraction: 1%
- $n_{e,\text{sep}}$: 1.3×10^{19} m$^{-3}$
- $T_{e,\text{sep}}$: 63 eV
- D: 0.2 m2/s
- X: 0.5 m2/s
MAST-Upgrade simulations

- Obtained stable solutions in Super-X geometry
- Net volume recombination near target plates

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Input power</td>
<td>497 kW (thermal)</td>
</tr>
<tr>
<td></td>
<td>510 kW (total)</td>
</tr>
<tr>
<td>Input particles</td>
<td>$5.7 \times 10^{21}/s$</td>
</tr>
<tr>
<td>Carbon radiation</td>
<td>340 kW (67%)</td>
</tr>
<tr>
<td>Volumetric loss</td>
<td>56 kW (11%)</td>
</tr>
</tbody>
</table>

Future work

- Evolving axisymmetric electric field
- Simulate turbulent transport in Super-X geometry
Turbulence in X-point geometry

Extending the mesh in the toroidal direction, turn off anomalous cross-field transport, and add random noise to vorticity.
Turbulence in X-point geometry

Extending the mesh in the toroidal direction, turn off anomalous cross-field transport, and add random noise to vorticity.

Inboard midplane

Density at separatrix

Outboard midplane

Inner target

Outer target
Turbulence in X-point geometry

Extending the mesh in the toroidal direction, turn off anomalous cross-field transport, and add random noise to vorticity

- Fluctuations extended poloidally
- Observed in divertor region, including inner leg PF region
- Large n=0 oscillation in potential

![Graph showing radial electric field and potential over time](image_url)
Turbulence in X-point geometry

Extending the mesh in the toroidal direction, turn off anomalous cross-field transport, and add random noise to vorticity

- Fluctuations extended poloidally
- Observed in divertor region, including inner leg PF region
- Large n=0 oscillation in potential
Conclusions

- Numerical methods improved for tokamak and non-axisymmetric geometries
- Hermes model being developed (using BOUT++) to study the interaction of transport and turbulence
- Improvements made to model equations and numerical methods allow stable evolution of n=0 electric fields and currents in X-point geometry for the first time in BOUT++
- Fluid neutral model allows study of high recycling regimes. Simulations in linear device demonstrate interaction between plasma turbulence and neutral gas
Extra slides
Example equilibrium (DIII-D like)

Hermes can be run as an axisymmetric transport code (e.g. SOLPS, EDGE2D, UEDGE, ...)

- Specify anomalous diffusion coefficients for cross-field transport
- Includes (optional) flux limiters as used in SOLPS
- Start a simulation without electric fields or drifts

Resolution: 48 x 128 (x 128)

Midplane profiles

$n = 9.2 \times 10^{18} \text{ m}^{-3}$

$T_{e,\text{sep}} = 58 \text{ eV}$

e,sep
Evolving axisymmetric profiles

Hermes can be run as an axisymmetric transport code (e.g. SOLPS, EDGE2D, UEDGE, ...)

- Specify anomalous diffusion coefficients for cross-field transport
- Includes (optional) flux limiters as used in SOLPS
- Start a simulation without electric fields or drifts
Evolving axisymmetric potential

Initial Alfvenic oscillations f\sim 500 \ kHz damp on \sim 20 \ \mu s timescale

Followed by slower oscillation with f \sim 6.7 \ kHz

Shear Alfven wave
\[f_A = \frac{v_A}{(2\pi R q)} \]
\[\approx 550 - 1100 \text{kHz} \]

Geodesic Acoustic Mode
\[f_{GAM} = \frac{c_s}{2\pi R} \sqrt{2 + \frac{1}{q^2}} \]
\[\approx 3 - 11 \text{kHz} \]

Parallel sound wave
\[f_s = \frac{c_s}{(2\pi R q)} \]
\[\approx 0.5 - 2.3 \text{kHz} \]
Model includes Alfven waves

Initial Alfvenic oscillations $f \sim 500$ kHz damp on ~ 20 μs timescale

Shear Alfven wave

$$f_A = \frac{v_A}{2\pi R q}$$

$$\simeq 550 - 1100$$ kHz

Geodesic Acoustic Mode

$$f_{GAM} = \frac{c_s}{2\pi R} \sqrt{2 + 1/q^2}$$

$$\simeq 3 - 11$$ kHz

Parallel sound wave

$$f_s = \frac{c_s}{2\pi R q}$$

$$\simeq 0.5 - 2.3$$ kHz
Model includes GAM oscillations

Initial Alfvenic oscillations $f \sim 500$ kHz damp on ~ 20 μs timescale

Followed by slower oscillation with $f \sim 6.7$ kHz

Shear Alfven wave

$$f_A = \frac{v_A}{2\pi Rq} \approx 550 - 1100 \text{kHz}$$

Geodesic Acoustic Mode

$$f_{GAM} = \frac{c_s}{2\pi R} \sqrt{2 + \frac{1}{q^2}} \approx 3 - 11 \text{kHz}$$

Parallel sound wave

$$f_s = \frac{c_s}{2\pi Rq} \approx 0.5 - 2.3 \text{kHz}$$
Poloidal flows

A common way to represent the ExB flow is

\[\nabla \cdot \left(n \frac{\mathbf{b} \times \nabla \phi}{B} \right) = \frac{\mathbf{b} \times \nabla \phi}{B} \cdot \nabla n + n \left[\nabla \times \left(\frac{\mathbf{b}}{B} \right) \right] \cdot \nabla \phi \]

Particles added to some cells, removed from others

- In general does not conserve particle number
- Geometry (curvature) need to be restricted

Instead, poloidal flows treated in divergence form → Ensures conservation of particles

\[\nabla \cdot \left(n \frac{\mathbf{b} \times \nabla \phi}{B} \right) \]

Drift-plane motion

\[= \frac{1}{J} \frac{\partial}{\partial \psi} \left(J n \frac{\partial \phi}{\partial z} \right) - \frac{1}{J} \frac{\partial}{\partial z} \left(J n \frac{\partial \phi}{\partial \psi} \right) \]

\[+ \frac{1}{J} \frac{\partial}{\partial \psi} \left(J n \frac{g^{\psi \phi} g^{yz} \frac{\partial \phi}{\partial y}}{B^2} \right) - \frac{1}{J} \frac{\partial}{\partial y} \left(J n \frac{g^{\psi \phi} g^{yz} \frac{\partial \phi}{\partial \psi}}{B^2} \right) \]

Radial flow due to poloidal electric fields
Poloidal flow due to radial electric fields
Tokamaks: Particle conservation

- Conservation of particle number is important in high recycling regimes
- Since total density, pressure is evolved, numerical sources/sinks could affect fidelity of small-scale fluctuations

100% recycling test case

![Diagram showing particle density over time and height in a tokamak](image-url)