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ps2 THE SITUATION

¢ = 10% crgs/gram = .1Mc?
L = 10*"ergs /second
M, = 10 grams/s = 10~ Mgper year

A = (100meters)? = 3 x 10%m?

Mg = 3 x 10%rams/cm 2seconds > h = .3cm /s

AB = 2.5h at 10%em
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Figure 1: The mound equilibrium

The mound equilibrium
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Figure 2: The infalling mass mound equilibrium
Now, for a magnetostatic equilibrium we have
JxB=pg=Vp.

The radial component is

—— 1, 0y [(0p
JoB: = _47rr2A @ba = (E)Za




The vertical component is from hydrostatic equilib-
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p(z,h) = 6.5 x 10(z + h(1)))* %ergs cm >
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h(1)) is given on each line to get a unique solution

It is related to the mass by

m(1) = po(Zerust) R (V) = 5.4 x 108 x h(2)) g / cm? (3)
How is h(¢) found?
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Figure 3: The place occupied by the cascade

THE INSTABILITY
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Figure 4: The buoyancy of a rising bubble



Solar convection zone (Schwarzchild instability )

Neutron star (Our instability )

B2 B2
Py, = (p + —) = po(l — e+ —(1 —¢)°
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The upward force on the bubble is

P/ p/
/
Fy = —g(pin—pout) = —g(—€p—0zp’) = —gp (ﬁ - ;) 0z.
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The upward force on the bubble reduces to

gp A A

F, == 0z = gp—,
/ Y4 (1 +v48/2) e
where
p/ B/ d p
A = — — _— = —1 -
P AR T4z B
and

C =va(l+v45/2).
For instability A must be positive.

Vin(p/B™) > 0
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The force acts over a mixing length £ and the resulting
non linear velocities are essentially harmonic vibrations
between s = —& and s = &.

They tend not to be damped by ideal motions. There
are many such modes and they lead to a statistically
steady state.

< Vi Vi >= J(k,w)dind(w’ — w)(I — kk).

vy = 70\/z
where 79 = /¢
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The TURBULENT CASCADE

B|=By+b
b is evolved passively by the velocities
0b
V. (vb
=V (vh).
or in Fouriler space

0b
8—;{ — Zk//k : (Vk//bk/),
k =k +k".
Essentially this equation was solved
by Kulsrud and Anderson 1992
I copy their procedure with the proper
modifications
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The spectrum of b is given by M (k)

/M Vdk = /\b|2

The equation for M is in our case is

OM v [ 50°M  OM
=Lkt —-M
ot 16 (k N )

v =kovg ko=2m/¢

A Green’s function solution of this equa-
tion 1s

Mk 1) = ———L__=t/16

o—4(n(k/ko)*/ 7t In(k /kq5)
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Figure 5: The place occupied by the cascade

CASCADE

SIDE VIEW

Figure 6: The eddies represented by rigid rods
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Figure 7: The rate of damping of eddies
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When two tubes with different densities and pressures
come close together than there is a surface current j and

an nJ
There is a critical wave length

R(k) = k;n' = kovg

Equalizing the densities damps out the fluctuations
and the mode.
The accumulative relative damping up to a time ¢ is

3 R(k) M (k, t)dkdt
B [ Mdk

Ry(t)
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At a time tp when Ry = 1 the mode is damped.

Ry = > o /tD dte_Vt/16 /x77 4t g oy
VT(L+2/7v48) Jo  (01)32 Jy o

where
k
- ()
T, = In (I;—Z) (7)
Ry ~ constante®ie
SO

tp =162/~
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Figure 8: The relation between the flow rate F' and A’

What is A?
Introduce the flow
The local mass flow F' at the site of the instability is,

o 107
F pr— p— _2 pu—
2mrle € /s am poer

vp =10 cm/s

F changes p" and therefore
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10(p')
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4013/2 163
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A=23x10°
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SUMMARY

Our goal is to determine the equilibrium for different
values of M,
The standard approach is to solve the Grad Shafranov
equation
A%

A2

3/2dh
dy
The problem is to determine h(1)) Instead of invoking

= 1.62 x 10"°(z + h(¢))

flux freezing we propose that one finds the solution in
which 9 is very slightly positive on a region of every line
and negative outside this region.

The stability condition is roughly

—27Td—h > 1

dyp

With this prescription there is only one parameter, the
total accumulated mass M,,.
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Figure 9: The piece occupied by the cascade
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