Hot Particle Equilibrium code (HPE) with plasma anisotropy and toroidal rotation

Leonid E. Zakharov1, Nikolai Gorelenkov2

1 LiWFusion, P.O. Box 2391, Princeton NJ, 08543, USA
2 Princeton Plasma Physics Laboratory Princeton, P.O. Box 451, Princeton NJ, 08543, USA

PPPL Theory Department Research Review Seminar

May 26, 2017, Princeton NJ

*This work is partially supported by US DoE contract No. DE-AC02-09-CH11466 and by PPPL subcontract S015041-H
The development of HPE code addresses the needs for accurate evaluation of the effects of plasma toroidal rotation and anisotropic pressure generated by NBI on tokamak equilibrium. These effects are becoming increasingly important after the upgrades of DIII-D and NSTX machines in the US where the hot particle pressure can become comparable with the core plasma pressure and toroidal rotation can routinely exceed the poloidal Mach number 1.

The HPE code represents the upgrade of the Equilibrium and Stability Code (ESC). One of specifics of HPE is its prescribed safety factor \(q(\alpha) \) regime, where \(\alpha \) is a normalized radial flux coordinate. The isotropic pressure \(p(\alpha) \) profile is another input function to HPE. Other combinations of input profiles are also possible, similarly to ESC.

The hot particle pressure is specified by the parallel pressure \(p_{\parallel}(\bar{\Psi}, B) \) as function of poloidal flux and module of the magnetic field. In the present version of HPE \(p_{\parallel} \) is generated using a mono-energetic distribution function of hot particles with multiple pitch angles. The extension to the general case would only modify the input of the code. Its equilibrium solver is already designed for the general case. The kinetic parallel pressure \(p_{\parallel} \) contributes to both isotropic pressure \(p_{\parallel}(\alpha) \) and to oscillatory part \(\tilde{p}_{\parallel}(\alpha, \theta) \), where \(\theta \) is poloidal angle.

The important novel elements of HPE is the inclusion to hot particle pressure of the finite width of the drift orbits of fast ions, both passing and trapped.

The plasma toroidal rotation is specified by the poloidal Mach number profile \(M^2(\alpha) \) under assumption that the plasma temperature (energy) is constant along the magnetic surface.

For the case of powerful NBI injection in tokamaks the HPE code is capable to provide the equilibrium calculations for theory needs as well as for interpretation of experiments with the use of experimental (or kinetic simulations) data.

Also the free-boundary version of HPE was created for non-tokamak geometry as a separate development.
Contents

1 Equilibrium with plasma anisotropy & toroidal rotation
 1.1 Parallel and perpendicular pressures
 1.2 Toroidal rotation in HPE
2 Modified Grad-Shafranov (GSh) equation
 2.1 The algorithm of q-solver in HPE
3 Mono-energetic model of hot particles
 3.1 Hot particle pressure with finite orbit corrections
 3.2 Numerical evaluation of parallel pressure
4 Simulation examples
5 Summary
Equilibrium with plasma anisotropy & toroidal rotation

Scalar pressure equilibrium \((r, \phi, z\) are cylindrical coordinates) \(\mu_0 j \equiv (\nabla \times B),\)
\[
B = \frac{1}{r}(\nabla \bar{\Psi} \times e_\phi) + \frac{1}{r} \bar{F} e_\phi, \quad \bar{F} \equiv rB_\phi, \tag{1.1}
\]
\[
\nabla \bar{p}_{pl} - \bar{\rho} \Omega^2 r e_r = (\mu_0 j \times B),
\]
\[
\bar{p}_{pl} \equiv \mu_0 p_{pl}, \quad \bar{p}_\parallel \equiv \mu_0 p_\parallel, \quad \bar{\rho} \equiv \mu_0 \rho.
\]

Here, \(p_{pl}\) is the core plasma pressure, \(\rho\) is the plasma density, \(\Omega = \Omega(\bar{\Psi})\) is toroidal rotation frequency.

Following Grad (the 1950s), the equilibrium with hot particles is described by

\[
\begin{align*}
K & \equiv (\nabla \times \sigma B), \\
B & = \frac{1}{r}(\nabla \bar{\Psi} \times e_\phi) + \frac{1}{r} \bar{F} e_\phi, \quad \bar{F} \equiv rB_\phi, \\
\sigma & \equiv 1 - \tau, \quad \tau \equiv \frac{\bar{p}_\parallel - \bar{p}_\perp}{B^2}, \quad B \equiv |B|,
\end{align*}
\tag{1.2}
\]
\[
\nabla \bar{p}_{pl} + \nabla \bar{p}_\parallel - \bar{\rho} \Omega^2 r e_r = \bar{B} \tau \nabla B + (K \times B),
\]
\[
\bar{p}_{pl} \equiv \mu_0 p_{pl}, \quad \bar{p}_\parallel \equiv \mu_0 p_\parallel, \quad \bar{\rho} \equiv \mu_0 \rho.
\]

where \(r \ p_\parallel\) is the hot particle parallel pressure.
1.1 Parallel and perpendicular pressures

The perpendicular pressure \bar{p}_\perp does not enter the equilibrium equations (1.2). Instead, it can be determined from anisotropy function τ

$$\bar{p}_\perp = \bar{p}_\parallel - B^2 \tau. \quad (1.3)$$

In HPE the parallel pressure of hot particles is split in two terms

$$\bar{p}_\parallel (a, \theta) \equiv \bar{p}_\parallel^{\text{hot}} (a) + \bar{p}_\parallel (a, \theta), \quad \int_{-\pi}^{\pi} \bar{p}_\parallel (a, \theta) d\theta = 0, \quad (1.4)$$

thus, composing the input function $\bar{p}(a)$ of isotropic pressure for HPE

$$\bar{p}(a) \equiv \bar{p}_\parallel^{\text{pl}} (a) + \bar{p}_\parallel^{\text{hot}} (a), \quad (1.5)$$

which is considered as the isotropic part of the pressure.

Here a, θ are flux coordinates, $\bar{\Psi} = \bar{\Psi} (a)$. In HPE there are 6 choices of radial coordinate a.
Toroidal rotation is considered under assumption that plasma temperatures and rotation frequency are uniform along the magnetic surface and

\[
T_{e,i} = T_{e,i}(a), \quad \Omega = \Omega(a),
\]
\[
n_e = n_e(a, r),
\]
\[
\bar{p} = \mu_0 n_e(a, r)[T_e(a) + T_i(a)].
\]
(1.6)

For \(\mathbf{B} \cdot \nabla T_{e,i} = 0 \) the rotation term can be written as

\[
\bar{p}\Omega^2 r = \bar{p} \frac{m_i \Omega^2 R^2}{T_e(a) + T_i(a)} \frac{r}{R^2} = \bar{p} \mathcal{M}^2 \frac{r}{R^2},
\]
(1.7)

where \(R \) is the major radius of the magnetic axis, and

\[
\mathcal{M}^2(a) \equiv \frac{m_i \Omega^2 R^2}{T_e(a) + T_i(a)},
\]
(1.8)

the square of the poloidal Mach number.
The isotropic plasma pressure $\bar{p}(a, r)$ is determined by compensation of the centrifugal force

$$\frac{\partial \bar{p}(a, r)}{\partial r} e_r = \bar{p} \Omega^2 r e_r = \bar{p} \mathcal{M}^2 \frac{r}{R^2} e_r,$$

$$\bar{p}(a, r) = \hat{p}(a) e^{\mathcal{M}^2 \frac{r^2 - R^2}{2R^2}}.$$ \hspace{1cm} (1.9)

With plasma rotation $\hat{p}(a)$ serves as the input function. It has the meaning of the isotropic plasma pressure along the vertical line $r = R$,

$$\hat{p}(a) \equiv \bar{p}(a, R).$$ \hspace{1cm} (1.10)

With \bar{p} in the form of Eq. (1.9) the force along e_r is eliminated from equilibrium equation

$$\nabla \bar{p} - \bar{p} \Omega^2 r e_r = \left(\hat{p}(a) e^{\mathcal{M}^2 \frac{r^2 - R^2}{2R^2}} \right)'_a \nabla a.$$ \hspace{1cm} (1.11)

In HPE the contribution of asymmetric part hot particles pressure \hat{p}_\parallel to rotation force is neglected.
In the GSh form, the equilibrium equations with rotation and hot particles can be written as

\[
\Delta^* \bar{\Psi} \equiv r \nabla \cdot \left(\frac{\sigma \nabla \bar{\Psi}}{r} \right) = -r^2 \left(\hat{p}(\bar{\Psi}) e^{M^2 \frac{r^2 - R^2}{2r^2}} + \bar{p}_\parallel \right)' - \frac{1}{\sigma} T,
\]

\[
T(a) \equiv \sigma \frac{d(\sigma \bar{F})}{d\bar{\Psi}}, \quad (B \cdot \nabla (\sigma \bar{F})) = 0,
\]

\[
B \tau = \frac{\partial \bar{p}_\parallel}{\partial B}.
\]

Here the first term \(\propto \hat{p} \) represents the total isotropic pressure, \(\hat{p}_\parallel (\bar{\Psi}, B) \) is the oscillatory part of the parallel pressure. The plasma density is consumed by the poloidal Mach number \(1.8 \).

The differential operator \(\Delta^* \sigma \) represents the modification by the presence of the hot particles of the conventional GSh operator \(\Delta^* \) and implemented in HPE in the self-conjugate form.

The input profiles for the HPE code are \(\hat{p}(a), \bar{p}_\parallel(a, B), M^2(a) \) and \(q(a) \). By convention, \(\hat{p}(a) \) takes into account the contributions from both core plasma and hot particles.

Note, that the “q-solver” regime of HPE is taken from the ESC code and is described later.
2.1 The algorithm of q-solver in HPE

In flux coordinates a, ϕ, θ (with $a = 1$ at the plasma boundary), the GSh equation for standard input profiles has the form

\[
(K \tilde{\Psi}_a' - N \tilde{\Psi}_\theta')_a + (M \tilde{\Psi}_\theta' - N \tilde{\Psi}_a')_\theta = -V \left(\tilde{p}(\tilde{\Psi}) e^{M^2(\tilde{\Psi})^2 R^2 - 2 R^2} + \tilde{p}_{||} \right)'_{\tilde{\Psi}} - LT,
\]

\[
K \equiv \sigma \frac{g_{\theta \theta}}{r D}, \quad N \equiv \sigma \frac{g_{a \theta}}{r D}, \quad M \equiv \sigma \frac{g_{a a}}{r D}, \quad D \equiv \frac{D(z, r)}{D(a, \theta)}, \quad V \equiv r D, \quad L \equiv \frac{D}{\sigma r}.
\]

In HPE as in ESC the second order differential equation is written as a system of the first order equations

\[
Y' = -(M \tilde{\Psi}_\theta' - N \tilde{\Psi}_a')_\theta - V (\ldots)'_{\tilde{\Psi}} - LT, \quad K \tilde{\Psi}_a' = Y + N \tilde{\Psi}_\theta'.
\]

The zeroth harmonics of the first equation gives T in terms of Y_0'

\[
Y_0' = -(V (\ldots)'_{\tilde{\Psi}})_0 - L_0 T,
\]

and allows for elimination of unknown T

\[
\left(Y' - \frac{L}{L_0} Y_0 \right)' = -(M \tilde{\Psi}_\theta' - N \tilde{\Psi}_a')_\theta - V (\ldots)'_{\tilde{\Psi}} + \frac{L}{L_0} (V (\ldots)'_{\tilde{\Psi}})_0 - \left(\frac{L}{L_0} \right)'_{\tilde{\Psi}_a} Y_0.
\]

The second equation (2.3), determines Y_0 for Eq. (2.5) in terms of $\bar{\Psi}_0'$, which is determined by q-profile.

For given $q(a)$-profile this algorithm results in fast convergence with the same, 3-5 iteration speed, as for given current density profile.
3 Mono-energetic model of hot particles

At present, the mono-energetic $E = E_h$ distribution function of hot particles is used in HPE

$$f = f(\Psi, E, \mu) = f(a)\delta(E - E_h)s(\tau),$$

$$\mu \equiv \frac{mv^2}{2B}, \quad \lambda \equiv \frac{\mu B_{\text{min}}}{E} = \frac{v^2}{v^2_{B=B_{\text{min}}}}, \quad \tau = \frac{v^||}{v_{B=B_{\text{min}}}}. \quad (3.1)$$

The pitch angle dependence is specified by factor $s(\tau)$ as a function of the pitch angle τ.

$$s(\tau)d\tau = \frac{sd\lambda}{2\sqrt{1 - \lambda}}. \quad (3.2)$$

This specification leads to the space distribution of the hot particle density

$$n(a, B) = \int f d^3v = n(a)\frac{B}{B_{\text{min}}} \cdot \frac{1}{2} \int_0^t \frac{sd\lambda}{\sqrt{1 - \lambda}B_{\text{min}}},$$

$$n(a) \equiv n(a, B_{\text{min}}),$$

$$t \equiv \frac{B_{\text{min}}}{B}, \quad \epsilon \equiv \frac{1}{R_m} = \frac{B_{\text{min}}}{B_{\text{max}}}. \quad (3.3)$$

The integral over λ is taken within the accessibility region $0 \leq \lambda \leq t$ at each magnetic surface.
3.1 Hot particle pressure with finite orbit corrections

Parallel pressure

\[p_{\parallel}(a, B) = p_E(a) \frac{B}{B_{\text{min}}} \int_0^t \sqrt{1 - \frac{\lambda B}{B_{\text{min}}}} s d\lambda + \delta p_{\text{pass}} + \delta p_{\text{tr}}, \] (3.4)

\[p_E(a) \equiv n(a, B_{\text{min}}) E. \]

Two 1-D functions \(p_E(a) \) and \(s(\tau) \) specify the hot particle parallel pressure \(p_{\parallel}(a, B) \).

Finite width corrections \(\delta p_{\text{pass}}, \delta p_{\text{tr}} \) are given in the linear approximation as

\[\delta p_{\parallel}^{\text{pass}}(a, B) = \pm \frac{2}{3} \rho_L \tilde{F} \frac{d p_E}{d\Psi} \frac{B}{B_{\text{min}}} \left(1 - \frac{B}{B_{\text{min}}} \right) \int_0^\epsilon \sqrt{1 - \frac{\lambda B}{B_{\text{min}}}} s d\lambda, \] (3.5)

\[\delta p_{\parallel}^{\text{tr}}(a, B) = -\frac{2}{3} \rho_L \tilde{F} \frac{d p_E}{d\Psi} \int_\epsilon^t \left(1 - \frac{B}{B_{\text{min}}} \right) s d\lambda, \]

where \(\rho_\perp \) is the perpendicular Larmor radius of hot particles. In HPE

\[\rho_\perp = \frac{v_\perp mc}{eB_{a=0}}. \] (3.6)

The integration is taken within the regions of passing \(0 \leq \lambda \leq \epsilon \) and trapped particles \(\epsilon \leq \lambda \leq t \).
Six following integral functions are sufficient for calculation of $p_{\parallel}(\alpha, B)$ and its derivative $\frac{\partial p_{\parallel}}{\partial B}$

\[I_{-1}(t) \equiv \int_0^t \frac{s(\tau)d\lambda}{\sqrt{1 - \frac{\lambda}{t}}}, \quad I_1(t) \equiv \int_0^t \sqrt{1 - \frac{\lambda}{t}} s(\tau)d\lambda, \]

\[I_{-1}^{\text{pass}}(t) \equiv \int_0^{\frac{1}{\tau_m}} \frac{\lambda s(\tau)d\lambda}{\sqrt{1 - \frac{\lambda}{t}}}, \quad I_1^{\text{pass}}(t) \equiv \int_0^{\frac{1}{\tau_m}} \sqrt{1 - \frac{\lambda}{t}} s(\tau)d\lambda, \quad (3.7) \]

\[J_0(t) = \int_0^t s(\tau)d\lambda, \quad J_1(t) = \int_0^t \lambda s(\tau)d\lambda. \]

Given the $s(\tau)$ as a spline function, the integrals are evaluated numerically.

The argument space for I_1, I_{-1}

\[\tau = \sqrt{1 - \lambda}, \]

\[t \equiv \frac{B_{\min}}{B}, \quad \epsilon \leq t \leq 1 \quad (3.8) \]
DIII-D experimental $\bar{p}(\alpha), \, q(\alpha)$ profiles are taken for illustration of HPE functionality.

DIII-D plasma cross section q-profile, $\beta = 1.4\%$
Equilibrium with anisotropic pressure

Plasma cross section

$p_{\parallel}(r, z)$ 2-D profile (green). Shadowed surface is $\hat{p}(\alpha)$

Input $\hat{p}_{\parallel}(\psi), s(\lambda)$ profiles
Plasma cross section

Rotation contribution to plasma pressure

Input profiles $\mathcal{M}(\psi), \bar{p}_\parallel(\psi)$
Equilibrium with anisotropic pressure and toroidal rotation

Plasma cross section

Rotation contribution to plasma pressure

Input profiles $\mathcal{M}(\psi), \bar{p}_\parallel(\psi)$
The fast equilibrium code HPE for plasma equilibrium with hot particle and toroidal rotation is created and functional.

Working in both modes with

(a) specified current density, and
(b) given q-profile,

the HPE provides for fast (3-5 iterations) convergence in flux coordinates, suitable for transport and stability analysis.

For the first time, the corrections due to finite width of hot ion orbits are included in the parallel hot ion pressure as the input for the flux coordinate equilibrium q-solver.

The present version of the parallel pressure specification corresponds to mono-energetic distribution function of hot ions, which in turn is specified by the 1-D radial profile and the 1-D distribution of pitch angle.

At the same time the HPE equilibrium solver itself is general and can use any $\vec{p}_\parallel (\vec{\Psi}, B)$ as the input.

In particular, the realistic $\vec{p}_\parallel (\vec{\Psi}, B)$ profiles can be provided by kinetic NBI codes working together with HPE. Because of coupling through the magnetic geometry, such an interface might be a challenge.