Stochastic modeling of scrape-off layer fluctuations

R. Kube1 O. E. Garcia1 A. Theodorsen 1 D. Brunner2
A. Kuang2 B. LaBombard2 J. Terry2

1Department of Physics and Technology, UiT - The Arctic University of Norway and 2MIT Plasma Science and Fusion Center

August 24, 2017
Bursts in single point measurements correspond to traversing blobs.
1. Stochastic model of data time series

2. Comparison to experimental measurements

3. Conclusions
Superpose uncorrelated pulses to model data time series

Superposition of K pulses in a time interval $[0 : T]$

$$
\Phi_K(t) = \sum_{k=1}^{K(T)} A_k \phi \left(\frac{t - t_k}{\tau_d} \right)
$$

where k labels a pulse and

- A_k denotes the pulse amplitude
- t_k denotes pulse arrival time
- ϕ denotes a pulse shape
- τ_d denotes pulse duration time

Intermittency parameter: $\gamma = \tau_d / \tau_w$
Pulses arrive uncorrelated and form a Poisson process

Choose distribution for all random variables
- \(P_K(K|T) \) gives the number of bursts in time interval \([0; T]\)
- \(P_A(A_k) \rightarrow \) distribution of pulse Amplitudes.
- \(P_t(t_k) \rightarrow \) distribution of pulse arrival times.

Consider a Poisson process:

1. Pulses arrive uncorrelated: \(P_t(t_k) = 1/T \)
2. Avg. rate of pulse arrival is \(1/\tau_w \)

\[
P_K(K|T) = \exp \left(\frac{-T}{\tau_w} \right) \left(\frac{T}{\tau_w} \right)^K \frac{1}{K!}
\]

Exponentially distributed pulse amplitudes: \(\langle A \rangle P_A(A_k) = \exp \left(A_k / \langle A \rangle \right) \)

We often normalize the process as

\[
\tilde{\Phi} = \frac{\Phi - \langle \Phi \rangle}{\Phi_{\text{rms}}}
\]
Intermittency parameter governs pulse overlap

\[\Phi(t) = \begin{cases} \gamma & t \geq 0 \\ 0 & t < 0 \end{cases} \]

\[\Phi(t) = \begin{cases} \gamma & t \geq 0 \\ 0 & t < 0 \end{cases} \]

\[\Phi(t) = \begin{cases} \gamma & t \geq 0 \\ 0 & t < 0 \end{cases} \]
Model experimental data with double-exponential pulses

Experimental data is approximated by a double-exponential pulse shape

\[
\phi(\theta) = \Theta(-\theta) \exp\left(\frac{\theta}{\lambda}\right) + \Theta(\theta) \exp\left(-\frac{\theta}{1-\lambda}\right)
\]

In physical units: \(\theta = (t - t_k)/\tau_d, \tau_d \approx 10\mu s. \)

\(\lambda \) defines pulse asymmetry:

\[
\tau_r = \lambda \tau_d \\
\tau_f = (1 - \lambda) \tau_d
\]

Notation: \(I_n = \int_{-\infty}^{\infty} d\theta [\phi(\theta)]^n \)

Normalization: \(I_1 = 1 \)
Stochastic model of data time series

Correlation and power spectral density depend on pulse asymmetry

Correlation function of the pulse shape is given by

\[
\rho_\phi(\theta) = \frac{1}{l^2} \int_{-\infty}^{\infty} d\chi \phi(\chi) \phi(\chi + \theta)
\]

\[
= \frac{1}{1 - 2\lambda} \left[(1 - \lambda) \exp \left(-\frac{|\theta|}{1 - \lambda} \right) - \lambda \exp \left(-\frac{|\theta|}{\lambda} \right) \right]
\]

Wiener-Khinchin theorem states that the power spectral density is the Fourier-transform of the autocorrelation function

\[
\sigma_\phi(\omega) = \int_{-\infty}^{\infty} d\theta \rho_\phi(\theta) \exp(-i\omega \theta)
\]

\[
= \frac{2}{[1 + (1 - \lambda)^2 \omega^2][1 + \lambda^2 \omega^2]}
\]

R. Kube et al. (UiT)
The mean of the process can be computed analytically

Averaging the process over all random variables and neglect finite box effects by extending time integration to the entire real axis:

\[
\langle \Phi_K \rangle = \int_{-\infty}^{\infty} dA_1 P_A(A_1) \int_{-\infty}^{\infty} \frac{dt_1}{T} \cdots \int_{-\infty}^{\infty} dA_K P_A(A_K) \int_{-\infty}^{\infty} \frac{dt_K}{T} \sum_{k=1}^{K} A_k \phi \left(\frac{t - t_k}{\tau_d} \right)
\]

\[= \frac{K}{T} \tau_d \langle A \rangle\]

Average over number of pulses \(K \):

\[\langle \Phi \rangle = \frac{\tau_d}{\tau_w} \langle A \rangle\]

Mean value of the process increases with pulse overlap and average pulse amplitude.
The variance can be computed analytically

\[\langle \Phi_K^2 \rangle = \int_{-\infty}^{\infty} dA_1 P_A(A_1) \int_{-\infty}^{\infty} \frac{dt_1}{T} \cdots \int_{-\infty}^{\infty} dA_K P_A(A_K) \int_{-\infty}^{\infty} \frac{dt_K}{T} \]

\[\sum_{k=1}^{K} A_k \phi \left(\frac{t - t_k}{\tau_d} \right) \sum_{l=1}^{K} A_l \phi \left(\frac{t - t_l}{\tau_d} \right) \]

This results in \(K(K - 1) \) terms with \(k \neq l \), \(K \) terms with \(k = l \).

\[\langle \Phi_K^2 \rangle = \tau_d l_2 \langle A^2 \rangle \frac{K}{T} + \tau_d^2 l_1^2 \langle A \rangle^2 \frac{K(K - 1)}{T^2} \]

\[\Rightarrow \langle \Phi^2 \rangle = \frac{\tau_d}{\tau_w} l_2 \langle A^2 \rangle + \langle \Phi \rangle^2 \]

where \(\langle K(K - 1) \rangle = \langle K \rangle^2 \) has been used.
Auto-correlation function is computed from $\langle \Phi(t)\Phi(t+k) \rangle$

$$R_\Phi(r) = \langle \Phi \rangle^2 + \Phi_{\text{rms}}^2 \rho_\phi \left(\frac{r}{\tau_d} \right)$$

$$= \langle \Phi \rangle^2 + \frac{\Phi_{\text{rms}}^2}{1 - 2\lambda} \left[(1 - \lambda) \exp \left(-\frac{|r|}{(1 - \lambda)\tau_d} \right) - \lambda \exp \left(-\frac{|r|}{\tau_d} \right) \right]$$
Power spectral density

\[\Omega_\Phi(\omega) = 2\pi \langle \Phi \rangle^2 \delta(\omega) + \Phi^2_{\text{rms}} \tau_d \sigma_\Phi(\tau_d \omega) \]

\[= 2\pi \langle \Phi \rangle^2 \delta(\omega) + 2\Phi^2_{\text{rms}} \frac{\tau_d}{1 + (1 - \lambda)^2 \tau^2_d \omega^2} \left[1 + \lambda^2 \tau^2_d \omega^2 \right] \]

- \(\lambda = 0 \): Power law tail, \(\sim \omega^{-2} \)
- \(\lambda = 1/2 \): Power law tail, \(\sim \omega^{-4} \)
- Else: broken power law, curved spectrum.

For exponentially distributed amplitudes and exponential wave forms is the process Gamma distributed:

\[
\langle \Phi \rangle P_\Phi(\Phi) = \frac{\gamma}{\Gamma(\gamma)} \left(\frac{\gamma \Phi}{\langle \Phi \rangle} \right)^{\gamma - 1} \exp \left(- \frac{\gamma \Phi}{\langle \Phi \rangle} \right)
\]

SOL fluctuations measured in a density scan

- Ohmic L-mode plasma
- Lower single-null magnetic geometry
- Density varied from $\bar{n}_e/n_G = 0.12..0.62$
- Probe head dwelled at the limiter radius
- 4 electrodes with Mirror Langmuir probes
- Approximately 1s long data time series in steady state
Mirror Langmuir Probe allows fast I_s, T_e, and V_f sampling

- MLP biases electrode to 3 voltages per microsecond.
- Voltage range is dynamically adjusted
- Probe current measured in each voltage state
- Fit input voltage and current is subject to 12pt smoothing (running average)
- Fit U-I characteristic on (U,I) samples
- Largest error on T_e.
- Resolves fluctuations on μs time scale
Low density discharge, $\bar{n}_e/n_G = 0.12$

- Intermittent, large amplitude bursts in I_s.
- Bursts in n_e and T_e appear correlated
- Timescale approximately 25μs
- Irregular potential waveform
High density discharge, $\bar{n}_e/n_G = 0.62$

- Bursts appear more isolated
- Average density larger by factor of 10
- Average electron temperature approx. 8 eV
Ion saturation current histograms are well described by a Gamma distribution.

Electron temperature histograms are well described by a Gamma distribution.
PSD of I_S shows broken power law

![Graph showing PSD of I_S with broken power law]

Comparison to experimental measurements

\[\text{PSD}(I_S) \]

$\nu/e/n_G = 0.12 : \tau_d = 15.91 \mu s \lambda = 0.0$

$\nu/e/n_G = 0.28 : \tau_d = 12.14 \mu s \lambda = 0.0$

$\nu/e/n_G = 0.59 : \tau_d = 15.64 \mu s \lambda = 0.0$
PSD of T_e shows broken power law
I_s shows exponential autocorrelation function.
T_e shows exponential autocorrelation function
Bursts in I_S are approximated by double-exponential waveform.

![Graph showing double-exponential waveform with different parameters for \bar{n}_e/n_G and τ_d, λ.]
Comparison to experimental measurements

Bursts in T_e are approximated by double-exponential waveform

$$\bar{T}_e(t)/I_s(0) > 2.5$$

$\bar{n}_e/n_G = 0.12 : \tau_d = 17.31\mu s, \lambda = 0.4$

$\bar{n}_e/n_G = 0.28 : \tau_d = 14.16\mu s, \lambda = 0.4$

$\bar{n}_e/n_G = 0.59 : \tau_d = 12.24\mu s, \lambda = 0.4$
Time between bursts in I_S signal is exponentially distributed

Exponential distribution describes the time between events in a Poisson process.

PDF(ω)

\[\frac{\bar{n}_e}{n_G} = 0.12 : \omega = 233.7 \mu s \]
\[\frac{\bar{n}_e}{n_G} = 0.28 : \omega = 169.4 \mu s \]
\[\frac{\bar{n}_e}{n_G} = 0.59 : \omega = 171.3 \mu s \]
Time between bursts in T_e signal is exponentially distributed

\begin{figure}
\centering
\includegraphics[width=\textwidth]{pdf_t_w.png}
\caption{PDF of τ_w for different \bar{n}_e/n_G values.}
\end{figure}

- $\bar{n}_e/n_G = 0.12 : \tau_w = 279.6 \mu s$
- $\bar{n}_e/n_G = 0.28 : \tau_w = 240.7 \mu s$
- $\bar{n}_e/n_G = 0.59 : \tau_w = 198.1 \mu s$
Comparison to experimental measurements

Burst amplitude distribution - Isat

![Graph showing burst amplitude distribution]

- $\bar{n}_e/n_G = 0.12 : A = 1.0$
- $\bar{n}_e/n_G = 0.28 : A = 1.1$
- $\bar{n}_e/n_G = 0.59 : A = 2.1$
Comparison to experimental measurements

Burst amplitude distribution - Te

![Graph showing burst amplitude distribution with lines for different ne/nG values: ne/nG = 0.12, ne/nG = 0.28, ne/nG = 0.59 with corresponding A values of 0.8 and 1.8.]

\[P_A(A) \]

\[n_e/n_G = 0.12 : A = 0.8 \]
\[n_e/n_G = 0.28 : A = 0.8 \]
\[n_e/n_G = 0.59 : A = 1.8 \]
Conclusions
Overview of estimated parameters

<table>
<thead>
<tr>
<th></th>
<th>\bar{n}_e/n_G</th>
<th>γ (PDF)</th>
<th>$\gamma\left(\Phi_{\text{rms}}/\langle\Phi\rangle\right)$</th>
<th>τ_d (PSD)</th>
<th>τ_d, \mathcal{R}</th>
<th>τ_d (CA)</th>
<th>τ_w</th>
<th>$\langle A \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_s</td>
<td>0.12</td>
<td>2.68</td>
<td>8.0</td>
<td>15.0 μs</td>
<td>15.0 μs</td>
<td>13.2 μs</td>
<td>234 μs</td>
<td>1.0</td>
</tr>
<tr>
<td>I_s</td>
<td>0.28</td>
<td>1.60</td>
<td>5.7</td>
<td>12.1 μs</td>
<td>11.3 μs</td>
<td>10.3 μs</td>
<td>169 μs</td>
<td>1.1</td>
</tr>
<tr>
<td>I_s</td>
<td>0.59</td>
<td>0.68</td>
<td>4.4</td>
<td>15.6 μs</td>
<td>12.8 μs</td>
<td>8.24 μs</td>
<td>171 μs</td>
<td>2.1</td>
</tr>
<tr>
<td>T_e</td>
<td>0.12</td>
<td>11.82</td>
<td>25</td>
<td>15.4 μs</td>
<td>14.9 μs</td>
<td>17.3 μs</td>
<td>280 μs</td>
<td>0.8</td>
</tr>
<tr>
<td>T_e</td>
<td>0.28</td>
<td>6.07</td>
<td>13</td>
<td>13.2 μs</td>
<td>12.6 μs</td>
<td>14.2 μs</td>
<td>241 μs</td>
<td>0.8</td>
</tr>
<tr>
<td>T_e</td>
<td>0.59</td>
<td>0.75</td>
<td>4.6</td>
<td>23.4 μs</td>
<td>16.7 μs</td>
<td>12.2 μs</td>
<td>198 μs</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Conclusions

<table>
<thead>
<tr>
<th>Theory</th>
<th>Experimental data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process is Gamma distributed</td>
<td>I_s and T_e time series are Gamma distributed</td>
</tr>
<tr>
<td>Pulses arrive uncorrelated</td>
<td>Waiting time between bursts in I_s and T_e is exponential distributed</td>
</tr>
<tr>
<td>Exponential distributed pulse amplitude</td>
<td>Burst amplitudes in I_s and T_e are expon. distributed</td>
</tr>
<tr>
<td>Double-exponential pulse shape</td>
<td>PSD, autocorrelation function and cond. avg. of I_s and T_e time series agree</td>
</tr>
</tbody>
</table>

- Less burst overlap at high densities
- Burst duration time changes little with $\bar{n}_\text{e}/n_\text{G}$.
- Burst amplitude increases with $\bar{n}_\text{e}/n_\text{G}$
Thank you for your attention.