Magnetic Reconnection during Turbulence and the Role it Plays in Dissipation and Heating

Michael Shay
Bartol Research Institute
University of Delaware

C. Haggerty, T. Parashar, W. Matthaeus, R. Bandyopadyay
T. D. Phan, J. F. Drake, Y. Yang, M. Wan, S. Servidio,
P. Wu

Motivation

• Focus: Turbulence
 – Not reconnection generated turbulence

• Significant advances recently on the nature of plasma heating during magnetic reconnection
 – e.g., Phan et al., 2013, 2104; Yamada et al., 2014, Shay et al., 2014; Haggerty et al., 2015; Wang et al., and many more

• Kinetic simulations of turbulence: some inertial range to electron scales
 – e.g., Howes et al., Tenbarge et al., Karimabadi et al., Parashar et al, Gary et al., and many more.

• Can we apply our understanding of “simple” magnetic reconnection to turbulent heating?
 – Short Answer: Yes But
Overview

• Background
• Laminar Reconnection Studies
 – Heating in Reconnection Exhausts
• Framework: Apply Heating Predictions to Turbulence
• Kinetic PIC Turbulence Simulations
 – Test Framework
• Statistics of Reconnection: Kinetic PIC Simulations
Overview

• Background
• Laminar Reconnection Studies
 – Heating in Reconnection Exhausts
• Framework: Apply Heating Predictions to Turbulence
• Kinetic PIC Turbulence Simulations
 – Test Framework
• Statistics of Reconnection: Kinetic PIC Simulations
Solar Wind Turbulence

Notice the Comet!
“Powerlaws everywhere”

Broadband self-similar spectra are a signature of cascade

- Solar wind
- Corona
- Diffuse ISM
- Geophysical flows

Interstellar medium: Armstrong et al

SW at 2.8 AU: Matthaeus and Goldstein

Coronal scintillation results (Harmon and Coles)

Tidal channel: Grant, Stewart and Moilliet
Heating by turbulence cascade

Energy spectrum $E(k)$

- Heat the plasma,
- Increasing the pressure gradient
- Adding momentum → Producing the solar wind

Where the heating occurs is important!
Plasma Heating - Magnetic Dissipation?

- Something is heating the solar corona
- Something is heating the solar wind

Model of Photosphere/Corona Transition

Wang et al., JGR, 106, 29401, 2001
Physical Dissipation Mechanisms for Kinetic Turbulence

From SHINE conference, 2014

Howes/Shay Session Description

Three mechanisms have been proposed:

(1) Collisionless Wave-Particle Interactions (Landau damping)

(2) Stochastic Heating
 (Johnson & Cheng, 2001; Chen et al. 2001; White et al., 2002; Voitenko & Goosens, 2004; Bourouaine et al., 2008; Chandran et al. 2010; Chandran 2010)

(3) Dissipation in Current Sheets
 (Dmitruk et al. 2004; Markovskii & Vasquez 2011; Matthaeus & Velli 2011; Osman et al. 2012; Servidio 2011)

Key Goal:
- To compare and contrast the different turbulence theories
- To identify observational and numerical tests to distinguish these distinct models
Phan et al., Nature, 2018

- Reconnection in Turbulent Magnetosheath
 - “Electron-Only” Reconnection
MMS 1 and MMS 3 on opposite sides of the X-line: smoking gun evidence for reconnection

Magnetic-to-electron energy conversion
Overview

- Background
- **Laminar Reconnection Studies**
 - Heating in Reconnection Exhausts
- Framework: Apply Heating Predictions to Turbulence
- Kinetic PIC Turbulence Simulations
 - Test Framework
- Statistics of Reconnection: Kinetic PIC Simulations
Character of Reconnection Heating

- Heating Tends to Occur as beams
 - Especially: Ion Heating

Simulations

Solar Wind Observations

Gosling et al., 2005

Lottermoser et al., 1998
“Simple” Problem: Heating in Reconnection Exhausts

- Focus on Understanding Heating in Reconnection Exhausts

Heating Definition:

\[T = \frac{1}{n} \int d^3v f(x, v)(v - u)(v - u) \]

\[T = \frac{1}{3} \text{Tr}[T] \]

- Counter-streaming beams are considered “heating”.

- Systematic Kinetic PIC Simulations
\[\frac{B^2}{4\pi} V_{in} D = \left[\frac{1}{2} m_i n V^2_{out} + \frac{\gamma}{\gamma - 1} \Delta T_e n + \frac{\gamma}{\gamma - 1} \Delta T_i n \right] V_{out} \delta + Q_{ix} + Q_{ex} \]

- Magnetic Energy In:
- Flow Energy, Thermal Energy, Heat Flux out
Energy Budget: Heating

• Energy Conservation

\[
\frac{B^2}{4\pi} V_{inD} = \left[\frac{1}{2} m_i n_{out} V_{out}^3 + \frac{\gamma}{\gamma - 1} \Delta T_e n_{out} V_{out} + \frac{\gamma}{\gamma - 1} \Delta T_i n_{out} V_{out} \right] \delta + Q_{ix} + Q_{ex}
\]

Divide eqn by left hand side

• \(1 = \alpha_{flow} + \alpha_{Te} + \alpha_{Ti} + \alpha_{Qi} + \alpha_{Qe} \)

• \(\alpha_T = \% \) of released energy that heats a species.

• Important Questions
 – Is \(\alpha_T \) a constant? What does it depend on?
 – What is the value of \(\alpha_T \)?
 – What is \(\gamma/(\gamma - 1) \)? (5/2 for adiabatic)

\[
\alpha_T \approx \frac{\gamma}{\gamma - 1} \frac{\Delta T}{B^2 / (4\pi n)}
\]

Review in: Shay et al., 2014
Laminar Reconnection Simulations

- Reconnection heating depends strongly on parameters upstream of x-line.
 - c_{Ar}: Alfvén speed based on reconnection field
 - B_r: reconnection field
 - B: Total Field

\[
\Delta T_i = M_{Ti} \ c_{Ar}^2 \frac{B_r^2}{B^2}
\]

\[
\Delta T_e = M_{Te} \ c_{Ar}^2 \frac{B_r}{B}
\]

- M_{Ti}, M_{Te} are constants
- ΔT_i consistent with Drake et al., 2009
- Relative heating is:

\[
\frac{\Delta T_i}{\Delta T_e} \propto \frac{B_r}{B}
\]

Dataset limited to:

- $B_{guide} > 0.2$
- $T_e/T_i < 1.25$
- $\beta_i < 2$
Question

• Can we take this knowledge about laminar reconnection and apply it to reconnection during turbulence?
Overview

• Background
• Laminar Reconnection Studies
 – Heating in Reconnection Exhausts
• Framework: Apply Heating Predictions to Turbulence
• Kinetic PIC Turbulence Simulations
 – Test Framework
• Statistics of Reconnection: Kinetic PIC Simulations
Heating in Turbulence Due to Reconnection?

- **Multifaceted problem**
 - Magnitude and Character of Heating due to Reconnection?
 - What parameters does the heating depend on?
 - Properties of Magnetic Reconnection in Turbulence?
 - How many x-lines? How many reconnecting x-lines?
 - Relative role of heating due to magnetic reconnection versus other sources of heating

- **Kinetic PIC Simulation Study**
 - Can we apply our understanding of “simple” magnetic reconnection to turbulent heating?
 - What are the statistics of X-lines in kinetic turbulence simulations?

Magnetic Flux Contours with X-lines

Haggerty et al., 2017
Kinetic PIC Turbulence Simulation
Flux Bundles Reconnecting

- Energy released into ions:
 - Single Flux Bundle:
 \[\varepsilon_x = 2\pi \Delta T \ell^< \ell^> n_r \]
 \[\varepsilon_x = \frac{M_T}{2} \ell^< \ell^> B_r^2 \frac{B_{ir}^2}{B^2} \]

- Sum Over All Bundles:
 \[\varepsilon = \frac{M_T}{2} \sum_{x\text{-line } i} \ell_i^< \ell_i^> B_{ir}^2 \frac{B_{ir}^2}{B^2} \]
 \[\varepsilon = \left(\frac{M_T}{2} \sum_{x\text{-line } i} \ell_i^< \ell_i^> \right) \frac{B_{ir}^2}{B^2} \]
Determine B_{ir}?

- Assume mean field is constant and $B_0 \gg B_{ir}$
- First estimate: Width of reconnection sites typically $\sim d_i$
 - What are magnetic fluctuations at scale size d_i?
- Assume δZ at d_i scales like reconnection Alfven speed: $\delta Z_{di} \propto C_{ar}$

$$\frac{c_{Ar}}{c_A} = \frac{B_r}{B} = \frac{\delta Z_{di}}{c_A} \frac{d_i}{d_i} = \frac{\tau_{ci}}{\tau_{nl}(d_i)} \equiv \alpha_{nl}$$

- Where c_A is Alfven speed based on global RMS B
- $\tau_{nl}(d_i)$ is nonlinear time at ion inertial scale
- τ_c is cyclotron time based on global RMS $B \approx B_0$

Protons: $$\varepsilon_p = \frac{\delta Z_{di}^4}{c_A^4} \left(\frac{M_T}{2B^2} \sum_{x\text{-line } i} \ell_i^< \ell_i^> \right) = \alpha_{nl}^4 \text{ (Flux Bundle Details)}$$

Electrons: $$\varepsilon_e = \frac{\delta Z_{di}^3}{c_A^3} \left(\frac{M_T}{2B^2} \sum_{x\text{-line } i} \ell_i^< \ell_i^> \right) = \alpha_{nl}^3 \text{ (Flux Bundle Details)}$$
Key Points

- Turbulent heating due to reconnection estimated to be:
 \[\varepsilon_p = \alpha_{nl}^4 \text{ (Flux Bundle Details)} \]
 \[\varepsilon_e = \alpha_{nl}^3 \text{ (Flux Bundle Details)} \]
 \[\frac{\varepsilon_p}{\varepsilon_e} \propto \alpha_{nl} \]

- Will (Flux Bundle Details) remain invariant as we change turbulence properties?

- Proton to electron heating scaling expected to be more accurate.
Overview

• Background

• Laminar Reconnection Studies
 – Heating in Reconnection Exhausts

• Framework: Apply Heating Predictions to Turbulence

• **Kinetic PIC Turbulence Simulations**
 – Test Framework

• Statistics of Reconnection: Kinetic PIC Simulations
Kinetic PIC Turbulence Simulations

- Wu et al, 2013, Parashar et al., 2016.
- 2 1/2 Dimensions
- Initial uniform Bz = 5
- Initial Perturbation:

\[Z_0^2 \equiv \langle v^2 \rangle + \langle \frac{B^2}{4\pi m_i n} \rangle \]
Turbulence Simulations

- Constant Mean field $B_0 = 5$, $B \gg B_r$

<table>
<thead>
<tr>
<th>run</th>
<th>family</th>
<th>β_i</th>
<th>β_e</th>
<th>Z_0</th>
<th>B_0</th>
<th>λ_c</th>
<th>L</th>
<th>$N_x = N_y$</th>
<th>Q_i/Q_e</th>
<th>τ_c/τ_{ni}</th>
<th>ppg</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>run805.1</td>
<td>PAPJ15</td>
<td>0.08</td>
<td>0.08</td>
<td>1.1</td>
<td>5.0</td>
<td>0.445</td>
<td>1.28</td>
<td>64</td>
<td>0.584</td>
<td>0.534</td>
<td>200</td>
<td>{1,2}</td>
</tr>
<tr>
<td>run805.2</td>
<td>PAPJ15</td>
<td>0.08</td>
<td>0.08</td>
<td>0.825</td>
<td>5.0</td>
<td>0.445</td>
<td>2.56</td>
<td>128</td>
<td>0.887</td>
<td>0.340</td>
<td>200</td>
<td>{1,2}</td>
</tr>
<tr>
<td>run805.3</td>
<td>PAPJ15</td>
<td>0.08</td>
<td>0.08</td>
<td>0.737</td>
<td>5.0</td>
<td>0.445</td>
<td>5.12</td>
<td>256</td>
<td>0.435</td>
<td>0.260</td>
<td>200</td>
<td>{1,2}</td>
</tr>
<tr>
<td>run805.4</td>
<td>PAPJ15</td>
<td>0.08</td>
<td>0.08</td>
<td>0.713</td>
<td>5.0</td>
<td>0.445</td>
<td>10.24</td>
<td>512</td>
<td>0.331</td>
<td>0.209</td>
<td>200</td>
<td>{1,2}</td>
</tr>
<tr>
<td>run805.5</td>
<td>PAPJ15</td>
<td>0.08</td>
<td>0.08</td>
<td>0.707</td>
<td>5.0</td>
<td>0.445</td>
<td>20.48</td>
<td>1024</td>
<td>0.343</td>
<td>0.169</td>
<td>200</td>
<td>{1,2}</td>
</tr>
<tr>
<td>run809.1</td>
<td>OTVdB</td>
<td>0.08</td>
<td>0.08</td>
<td>0.718</td>
<td>5.0</td>
<td>3.820</td>
<td>20.48</td>
<td>1024</td>
<td>0.551</td>
<td>0.169</td>
<td>200</td>
<td>{1,2}</td>
</tr>
<tr>
<td>run810.1</td>
<td>OTVdB</td>
<td>0.08</td>
<td>0.08</td>
<td>1.075</td>
<td>5.0</td>
<td>3.928</td>
<td>20.48</td>
<td>1024</td>
<td>0.588</td>
<td>0.251</td>
<td>200</td>
<td>{1,2}</td>
</tr>
<tr>
<td>run811.1</td>
<td>OTVdB</td>
<td>0.08</td>
<td>0.08</td>
<td>1.433</td>
<td>5.0</td>
<td>4.286</td>
<td>20.48</td>
<td>1024</td>
<td>0.754</td>
<td>0.325</td>
<td>200</td>
<td>{1,2}</td>
</tr>
<tr>
<td>run812.1</td>
<td>OTVdB</td>
<td>0.08</td>
<td>0.08</td>
<td>1.790</td>
<td>5.0</td>
<td>4.608</td>
<td>20.48</td>
<td>1024</td>
<td>0.945</td>
<td>0.397</td>
<td>200</td>
<td>{1,2}</td>
</tr>
<tr>
<td>Turb808</td>
<td>k13</td>
<td>0.25</td>
<td>0.25</td>
<td>1.0</td>
<td>5.0</td>
<td>0.349</td>
<td>25.6</td>
<td>2048</td>
<td>0.404</td>
<td>0.173</td>
<td>400</td>
<td>{1,3}</td>
</tr>
<tr>
<td>Turb812</td>
<td>k13</td>
<td>0.25</td>
<td>0.25</td>
<td>2.5</td>
<td>5.0</td>
<td>0.871</td>
<td>25.6</td>
<td>2048</td>
<td>0.542</td>
<td>0.404</td>
<td>400</td>
<td>{1,3}</td>
</tr>
<tr>
<td>Turb813</td>
<td>k13</td>
<td>0.25</td>
<td>0.25</td>
<td>4.0</td>
<td>5.0</td>
<td>1.394</td>
<td>25.6</td>
<td>2048</td>
<td>0.857</td>
<td>0.606</td>
<td>400</td>
<td>{1,3}</td>
</tr>
<tr>
<td>Turb814</td>
<td>k24lb</td>
<td>0.25</td>
<td>0.25</td>
<td>2.5</td>
<td>5.0</td>
<td>0.868</td>
<td>25.6</td>
<td>2048</td>
<td>0.697</td>
<td>0.419</td>
<td>400</td>
<td>{2,4}</td>
</tr>
<tr>
<td>Turb815</td>
<td>k24lb</td>
<td>0.25</td>
<td>0.25</td>
<td>4.0</td>
<td>5.0</td>
<td>1.389</td>
<td>25.6</td>
<td>2048</td>
<td>1.159</td>
<td>0.646</td>
<td>400</td>
<td>{2,4}</td>
</tr>
<tr>
<td>Turb816</td>
<td>k24sb</td>
<td>0.10</td>
<td>0.10</td>
<td>2.5</td>
<td>5.0</td>
<td>0.868</td>
<td>25.6</td>
<td>2048</td>
<td>0.546</td>
<td>0.427</td>
<td>400</td>
<td>{2,4}</td>
</tr>
<tr>
<td>Turb817</td>
<td>k24sb</td>
<td>0.10</td>
<td>0.10</td>
<td>4.0</td>
<td>5.0</td>
<td>1.389</td>
<td>25.6</td>
<td>2048</td>
<td>1.010</td>
<td>0.664</td>
<td>400</td>
<td>{2,4}</td>
</tr>
</tbody>
</table>
Determining Nonlinear Time

- Estimate of $\tau_{nl}(d_i)$ based on von Karman-Kolmogorov phenomenology

\[\delta Z_\ell = Z \left(\frac{\ell}{\lambda} \right)^{1/3} \]

\[\tau_{nl}(\ell) = \frac{\ell}{\delta Z_\ell} = \tau_{nl} \left(\frac{\ell}{\lambda} \right)^{2/3} \]

- λ is correlation or energy containing scale

- Is this estimate applicable to our system?
Turbulence Simulations: Scaling of Heating

Approximate Best Fit Not Consistent

\[\varepsilon_p \propto \alpha_{nl}^3 \]
\[\varepsilon_e \propto \alpha_{nl}^2 \]

Ratio of Heating Matches Well

\[\frac{\varepsilon_p}{\varepsilon_e} \propto \alpha_{nl} \]
Conclusions: Heating

• Turbulence Simulations:
 \[\frac{\varepsilon_p}{\varepsilon_e} \propto \alpha_{nl} \]
 \[\varepsilon_p \propto \alpha_{nl}^3 \]
 \[\varepsilon_e \propto \alpha_{nl}^{2/3} \]

• Theory Predictions:
 \[\frac{\varepsilon_p}{\varepsilon_e} \propto \alpha_{nl} \]
 \[\varepsilon_p \propto \alpha_{nl}^{4/3} \]
 \[\varepsilon_e \propto \alpha_{nl}^{3/2} \]

• Why the difference?
 • Is \(\Delta B \) at \(d_i \) scale best measure of magnetic fields upstream of current sheets?
 • \(\tau_{nl}(d_i) \) determined ignoring intermittency. Justified?
 • Are the number of x-lines changing with changing parameters?
 • Filling factor of reconnection exhausts?
 • \(\varepsilon_p/\varepsilon_e \) matches reconnection prediction quite well.
 – Even if some details of scaling of reconnection parameters wrong, taking the ratio removes the discrepancy.