Landau Collision Operator:
Conservative Discontinuous Galerkin Discretization

Alexander Frank*†
June 21, 2018

* Technical University of Munich
† Max Planck Institute for Plasma Physics
Table of contents

1. Properties of the Landau Collision Operator
2. Analytic Conservation
3. Discontinuous Galerkin Discretization
4. Conservation of Fully Discrete System
5. Numerical Test Problem
Properties of the Landau Collision Operator
The Landau Collision Operator

- The Landau (or Fokker-Planck-Landau) collision kernel is given by

\[
L(f)(v, t) = \frac{\partial}{\partial v} \cdot \int_{\mathbb{R}^3} Q(v - v') \left(f(v', t) \frac{\partial f(v, t)}{\partial v} - f(v, t) \frac{\partial f(v', t)}{\partial v'} \right) dv',
\]

with a particle distribution function

\[f(v, t) : \mathbb{R}^3 \times \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \]

and the inversely scaled projection matrix

\[
Q(v) = \frac{1}{|v|^3} \left(|v|^2 \mathbb{1} - v \otimes v \right).
\]

- It describes binary collisions of (single species) charged particles with long-range Coulomb interactions.

- Hence, the time evolution (spatially homogeneous Landau equation)

\[
\frac{\partial f(v, t)}{\partial t} = L(f)(v, t)
\]

describes the collisional relaxation of a plasma.
Properties of the Landau Equation

- Mass, momentum and energy are conserved
 \[
 \frac{d}{dt} \begin{pmatrix}
 m \\
 p \\
 E
 \end{pmatrix} \sim \frac{d}{dt} \int_{\mathbb{R}^3} f(v, t) \begin{pmatrix}
 1 \\
 v \\
 |v|^2
 \end{pmatrix} dv = \int_{\mathbb{R}^3} L(f)(v, t) \begin{pmatrix}
 1 \\
 v \\
 |v|^2
 \end{pmatrix} dv = \begin{pmatrix}
 0 \\
 0 \\
 0
 \end{pmatrix}
 \]

- Dissipation of Entropy is non-negative
 \[
 \frac{d}{dt} S = - \frac{d}{dt} \int_{\mathbb{R}^3} f(v, t) \ln(f(v, t)) dv = - \int_{\mathbb{R}^3} L(f)(v, t) \ln f dv \geq 0
 \]

- Distribution function satisfying the equilibrium condition \(L(f)(v, t) = 0 \) is a Maxwellian.

- The positivity of \(f \) is preserved.
Analytic Conservation
Multiplying the Landau equation with a time-independent test function $g(v)$ and integrating over the whole space gives a weak formulation. Assuming f is compactly supported on a finite domain in velocity space a partition with elements Ω_k and edges e_{ij} is introduced

$$\Omega = \bigcup_k \Omega_k, \quad e_{ij} = \Omega_i \cap \Omega_j = \partial \Omega_i \cap \partial \Omega_j, i \neq j.$$

Integrating by parts then yields

$$\sum_k \int_{\Omega_k} g(v) \frac{\partial f(v, t)}{\partial t} \, dv = - \sum_k \int_\Omega \int_{\Omega_k} \frac{\partial g(v)}{\partial v} \cdot Q(v - v') \Gamma(f)(v, v', t) \, dv' \, dv$$

$$+ \sum_k \int_{\partial \Omega_k} \int_\Omega g(v) Q(v - v') \Gamma(f)(v, v', t) \, dv' \cdot n_k \, d\sigma.$$

with symmetric matrix $Q(v - v') = Q(v' - v)$ and antisymmetric vector

$$\Gamma(f)(v, v', t) = -\Gamma(f)(v', v, t) = f(v', t) \frac{\partial f(v, t)}{\partial v} - f(v, t) \frac{\partial f(v', t)}{\partial v'}.$$
Analytic Conservation: Symmetrization of Volume Term

Looking at the volume term, also split the inner integral and divide into a same element part and a mixed element part

\[
\text{volume part} = - \sum_k \int_{\Omega_k} \int_{\Omega_k} \frac{\partial g(v)}{\partial v} \cdot Q(v - v') \Gamma(f)(v, v', t) dv' dv \\
- \sum_k \sum_{l \neq k} \int_{\Omega_k} \int_{\Omega_l} \frac{\partial g(v)}{\partial v} \cdot Q(v - v') \Gamma(f)(v, v', t) dv' dv
\]

Symmetrize first term by using the symmetry of \(Q \), antisymmetry of \(\Gamma \) and relabeling of primed and unprimed \(v \) since integration domains are the same.

\[
- \frac{1}{2} \sum_k \int_{\Omega_k} \int_{\Omega_k} \left(\frac{\partial g(v')}{\partial v'} - \frac{\partial g(v)}{\partial v} \right) \cdot Q(v - v') \Gamma(f)(v, v', t) dv' dv
\]

Symmetrize second term since for all \((k, l)\) there exits an \((l, k)\) for which using the symmetry of \(Q \), antisymmetry of \(\Gamma \), relabeling and switching integrals to \((k, l)\)

\[
- \sum_k \sum_{l > k} \int_{\Omega_k} \int_{\Omega_l} \left(\frac{\partial g(v')}{\partial v'} - \frac{\partial g(v)}{\partial v} \right) \cdot Q(v - v') \Gamma(f)(v, v', t) dv' dv
\]
For boundary part change sum to sum over edges, split into inner and outer edges and use that on \(e_{ij} \mathbf{n}_i = -\mathbf{n}_j \).

All terms combined read

\[
\frac{d}{dt} \sum_k \int_{\Omega_k} g(\mathbf{v}) f(\mathbf{v}, t) \, d\mathbf{v}
\]

\[
= -\frac{1}{2} \sum_k \int_{\Omega_k} \int_{\Omega_k} \left(\frac{\partial g(\mathbf{v}')}{\partial \mathbf{v}'} - \frac{\partial g(\mathbf{v})}{\partial \mathbf{v}} \right) \cdot Q(\mathbf{v} - \mathbf{v}') \Gamma(f)(\mathbf{v}, \mathbf{v}', t) \, d\mathbf{v}' \, d\mathbf{v}
\]

\[
- \sum_k \sum_{l > k} \int_{\Omega_k} \int_{\Omega_l} \left(\frac{\partial g(\mathbf{v}')}{\partial \mathbf{v}'} - \frac{\partial g(\mathbf{v})}{\partial \mathbf{v}} \right) \cdot Q(\mathbf{v} - \mathbf{v}') \Gamma(f)(\mathbf{v}, \mathbf{v}', t) \, d\mathbf{v}' \, d\mathbf{v}
\]

\[
+ \sum_{e_{ij} \in \mathcal{E}_{\text{inner}}} \int_{e_{ij}} (g(\mathbf{v})|_{\Omega_i} - g(\mathbf{v})|_{\Omega_j}) \int_{\Omega} Q(\mathbf{v} - \mathbf{v}') \Gamma(\hat{f}(f|_{\Omega_i}, f|_{\Omega_j}))(\mathbf{v}, \mathbf{v}', t) \, d\mathbf{v}' \cdot \mathbf{n}_i
\]

Choosing \(g(\mathbf{v}) \in \{1, \mathbf{v}, |\mathbf{v}|^2\} \) gives conservation of mass-, momentum- and energy since 1 and \(\mathbf{v} \) give trivially zero, \(|\mathbf{v}|^2 \) generates an eigenvector of \(Q \) with zero eigenvalue and all three are continuous across elements. This is also true if \(f(\mathbf{v}, t) \) is discontinuous.
Discontinuous Galerkin Discretization
DG: Properties of the Method

- Combination of finite element and finite volume method
- In contrast to the standard finite element method the approximation space is chosen to consist of only element-wise continuous functions
- High order accuracy and able to handle complicated geometries, while good locality of data makes it easy to parallelize
- Mass matrix block diagonal
- Increased amount of degrees of freedom (dof), can not share dof on element interface
Choose a tensor product mesh with elements Ω_n and basis functions $\varphi_m^n(v)$ on each element spanning global DG space ∇_h.

Choose basis that is able to represent $1, v, |v|^2$ exactly to maintain conservation. Approximate solution on element k as

$$f_h(v, t) = \sum_{k, i} f^k_i(t) \varphi^k_i(v)$$

Choose test function from same space and insert both in weak form, find $f_h \in \nabla_h$ such that $\forall n, m$

$$\int_{\Omega_n} \varphi^n_m(v) \frac{\partial f_h(v, t)}{\partial t} \, dv = - \int_{\Omega_n} \int_{\Omega} \frac{\partial \varphi^n_m(v)}{\partial v} \cdot Q(v - v') \Gamma[f_h](v, v') \, dv' \, dv$$

$$+ \int_{\partial \Omega_n} \int_{\Omega} \varphi^n_m(v) Q(v - v') \tilde{\Gamma}[\tilde{f}_h, \tilde{f}_h, f_h](v, v') \, dv' \cdot n^n \, ds$$

with

$$\tilde{\Gamma}[\tilde{f}_h, \tilde{f}_h, f_h](v, v') = f_h(v') \frac{\partial \tilde{f}_h(v)}{\partial v} - \tilde{f}_h(v) \frac{\partial f_h(v')}{\partial v'}$$

Note: This is only one possible weak form others exist by integrating by parts differently.
First look at

\[\Gamma_l[f_h](v, v') = \sum_{k, p, i, j} f^k_i(t) f^p_j(t) \Gamma_l[\varphi^k_i, \varphi^p_j](v, v') \]

which has still the symmetry \(\Gamma_l[\varphi^k_i, \varphi^p_j](v, v') = -\Gamma_l[\varphi^k_i, \varphi^p_j](v', v) \).

The whole volume term can be written as

\[
- \int_{\Omega_n} \int_{\Omega} \frac{\partial \varphi^n_m(v)}{\partial v} \cdot Q(v - v') \Gamma[f_h](v, v') \, dv' \, dv
\]

\[= - \sum_{k, p, i, j} f^k_i(t) f^p_j(t) D^{nkp}_{mij} \]

with the constant tensor

\[
D^{nkp}_{mij} = \int_{\Omega_n} \int_{\Omega} \sum_{q, l} \frac{\partial \varphi^q_m(v)}{\partial v_q} Q_{ql}(v - v') \left(\varphi^k_i(v') \frac{\partial \varphi^p_j(v)}{\partial v_l} - \varphi^k_i(v) \frac{\partial \varphi^p_j(v')}{\partial v'_l} \right) \, dv' \, dv
\]
Problem: What is the value of f at the interface of two elements? What is the value of $\partial_v f$?

For the convective term introduce the numerical flux \hat{f}_h. There is no unique definition, here choose centered flux, i.e.

$$\hat{f}_h(v, t) \equiv \{f_h(v, t)\} = \frac{1}{2}(f_h^+(v, t) + f_h^-(v, t)),$$

where f^- and f^+ are the limits of f approaching the boundary from the current element and the next element, respectively, i.e. for $v \in \partial \Omega_k$

$$f^\pm(v) = \lim_{\epsilon \to \infty} (v \pm \epsilon n_k).$$

For the diffusive part a first derivative of numerical flux is obtained by a recovery method.
DG: Recovery Method

Idea: Project the solution on $\Omega_n \cup \Omega_{n+}$ which is discontinuous at the interface onto a new space that is continuous in this domain.

Denote recovery solution on $\Omega_n \cup \Omega_{n+}$ by

$$\tilde{f}^{n\cup n+}(v) = \sum_i \tilde{f}^{n\cup n+}_i \psi_i^{n\cup n+}(v)$$

Global DG solution is $f_h(v) = \sum_{n,m} f^n_m \varphi^n_m(v)$

Recovery basis can be of max degree $2p - 1$ for p degree of DG basis.

The L_2 projection reads

$$\int_{\Omega_n \cup \Omega_{n+}} \left(\tilde{f}^{n\cup n+}_h(v) - f_h(v) \right) \psi_j^{n\cup n+}(v) \, dv = 0 \quad \forall j$$

$$\Leftrightarrow \sum_i \tilde{f}^{n\cup n+}_i \int_{\Omega_n \cup \Omega_{n+}} \psi_i^{n\cup n+}(v) \psi_j^{n\cup n+}(v) \, dv$$

$$- \sum_l f^n_l \int_{\Omega_n} \varphi^n_l(v) \psi_j^{n\cup n+}(v) \, dv - \sum_l f^{n+}_l \int_{\Omega_{n+}} \varphi^{n+}_l(v) \psi_j^{n\cup n+}(v) \, dv = 0 \quad \forall j$$
The coefficients can thus be written as

$$\tilde{f}_j^{n \cup n^+} = \sum_l f_l^n P_{jl}^n + \sum_l f_l^{n^+} P_{jl}^{n^+}$$

with the constant tensors

$$\tilde{M}_{ji} = \int_{\Omega_n \cup \Omega_{n^+}} \psi_i^{n \cup n^+}(v) \psi_j^{n \cup n^+}(v) \, dv,$$

$$P_{jl}^n = \sum_i \tilde{M}^{-1}_{ji} \int_{\Omega_n} \varphi_i^n(v) \psi_i^{n \cup n^+}(v) \, dv,$$

$$P_{jl}^{n^+} = \sum_i \tilde{M}^{-1}_{ji} \int_{\Omega_{n^+}} \varphi_i^{n^+}(v) \psi_i^{n \cup n^+}(v) \, dv.$$

The derivative at the interface $\Omega_n \cap \Omega_{n^+}$ is now definable as

$$\frac{\partial}{\partial v} \tilde{f}_h^{n \cup n^+}(v) = \sum_i \tilde{f}_i^{n \cup n^+} \frac{\partial}{\partial v} \psi_i^{n \cup n^+}(v).$$

Note: The recovery coefficients are obtained by a linear combination of the solution coefficients, the corresponding matrix can be precomputed.
Inserting the central numeric flux and the recovered distribution function in the boundary term yields

\[
\begin{aligned}
&\int_{\partial \Omega} \int_{\Omega} \varphi_m^n(v) Q(v - v') \tilde{\Gamma}[\tilde{f}_h, \tilde{f}_h, f_h](v, v') \, dv' \cdot n^n \, d\sigma_n \\
&= \sum_{k,p,i,j} \left(f_i^k(t) f_j^p(t) G_{mij}^{nkp-} + f_i^k(t) f_j^p(t) G_{mij}^{nkp+} \\
&\quad - f_i^{k+}(t) f_j^p(t) B_{mij}^{nk+p} - f_i^{k-}(t) f_j^p(t) B_{mij}^{nk-p} \right)
\end{aligned}
\]

with

\[
G_{mij}^{nkp\pm} = \int_{\partial \Omega} \int_{\Omega} \sum_{q,l} \varphi_m^n(v) Q_{ql}(v - v') \varphi_i^k(v') \sum_s P_{sj}^{p\pm} \frac{\partial}{\partial v_l} \psi_{s}^{p&p'}(v) n_q^n \, dv' \, d\sigma_n
\]

\[
B_{mij}^{nk+p} = \frac{1}{2} \int_{\partial \Omega} \int_{\Omega} \sum_{q,l} \varphi_m^n(v) Q_{ql}(v - v') \varphi_i^{k\pm}(v) \frac{\partial}{\partial v_l} \varphi_j^p(v') n_q^n \, dv' \, d\sigma_n
\]
Combining the previous results to obtain the final semi-discrete form

\[
\sum_{k,i} M_{mi}^{nk} \frac{\partial f_i^k(t)}{\partial t} = - \sum_{k,p,i,j} f_i^k(t) f_j^p(t) D_{mij}^{nkp} + \sum_{k,p,i,j} \left(f_i^k(t) f_j^p-(t) G_{mij}^{nkp-} + f_i^k(t) f_j^p+(t) G_{mij}^{nkp+} - f_i^{k+}(t) f_j^p(t) B_{mij}^{nk+p} - f_i^{k-}(t) f_j^p(t) B_{mij}^{nk-p} \right)
\]

\[
= \sum_{k,p,i,j} f_i^k(t) f_j^p(t) A_{mij}^{nkp}, \quad \forall n, m
\]

Note that the tensors are sparse with regards to two of the element indices \(n, k, p \), since basis functions have only support on their respective element.
Conservation of Fully Discrete System
Conservation for Explicit Time Stepping

The problem can be stated as an initial value problem

\[\partial_t f_s^r(t) = G_s^r[f](t), \quad f_s^r(t_0) = (f_0)_s \]

with \(G_s^r[f] = \sum_{n,m,k,p,i,j} f^k_i(t) f^p_j(t) (M^{-1})_{sm}^n \alpha_{np} \).

A general form for explicit Runge-Kutta methods is

\[f_s^r(t_{n+1}) = f_s^r(t_n) + \Delta t \sum_{i=1}^{I} w_i k_i, \quad k_i = G_s^r[f(t_n) + \sum_{j=1}^{i-1} \alpha_{ij} k_j] \]

Because of linearity of \(G \) recursively simplifies to one case

\[f_s^r(t_{n+1}) - f_s^r(t_n) = \Delta t G_s^r[f(t_n)] \]

Multiply with \(M \) and contract with dofs for 1, \(\nu, |\nu|^2 \)

\[\text{lhs} = \sum_{a,b,r,s} \begin{pmatrix} 1^a_b \\ v^a_b \\ e^a_b \end{pmatrix} M_{bs}^{ar} \left(f_s^r(t_{n+1}) - f_s^r(t_n) \right) = \begin{pmatrix} m(t_{n+1}) - m(t_n) \\ p(t_{n+1}) - p(t_n) \\ E(t_{n+1}) - E(t_n) \end{pmatrix} \]

\[= \text{rhs} = \Delta t \sum_{a,b,k,p,i,j} (1^a_b, v^a_b, e^a_b) \top \left(f^k_i(t_n) f^p_j(t_n) A_{bij}^{akp} \right) = 0 \]
Numerical Test Problem
Two dimensional relaxation problem
Initial condition given by Bi-Gaussian with $\sigma = 0.25$, $\mathbf{v}_{\text{in}} = (0.4, 0)^{\top}$

$$f(\mathbf{v}, t = 0) = \frac{1}{\sigma \sqrt{2\pi}} \left(e^{-|\mathbf{v} - \mathbf{v}_{\text{in}}|^2/(2\sigma^2)} + e^{-|\mathbf{v} + \mathbf{v}_{\text{in}}|^2/(2\sigma^2)} \right).$$
Two dimensional relaxation problem
Initial condition given by Bi-Gaussian with $\sigma = 0.25$, $\mathbf{v}_{\text{in}} = (0.4, 0)^\top$

$$f(\mathbf{v}, t = 0) = \frac{1}{\sigma \sqrt{2\pi}} \left(e^{-|\mathbf{v} - \mathbf{v}_{\text{in}}|^2/(2\sigma^2)} + e^{-|\mathbf{v} + \mathbf{v}_{\text{in}}|^2/(2\sigma^2)} \right).$$
Two-dimensional relaxation problem

Initial condition given by Bi-Gaussian with $\sigma = 0.25$, $\mathbf{v}_{\text{in}} = (0.4, 0)^T$

$$f(\mathbf{v}, t = 0) = \frac{1}{\sigma \sqrt{2\pi}} \left(e^{-|\mathbf{v} - \mathbf{v}_{\text{in}}|^2/(2\sigma^2)} + e^{-|\mathbf{v} + \mathbf{v}_{\text{in}}|^2/(2\sigma^2)} \right).$$
2D Test Problem

Initial condition given by anisotropic distribution with discontinuity, i.e. Gaussian with cutout, e.g. due to loss cone in a magnetic mirror.
Initial condition given by anisotropic distribution with discontinuity, i.e. Gaussian with cutout, e.g. due to loss cone in a magnetic mirror.
• With \(m \) the order of the basis, \(n \) the number of elements per dimension and \(d \) the number of dimensions the storage complexity of the system tensor is \(O((mn)^{3d}) \).

\[\Rightarrow \text{For 2d, 5 elements per dimension, quadratic basis, double precision: } A \text{ has 686 MB.} \]

• Further investigations making use of tensor decompositions/approximations might be interesting. E.g. for rank \(r \), dimensions \(d \), mode length \(n \):

<table>
<thead>
<tr>
<th></th>
<th>CP</th>
<th>Tucker</th>
<th>Hierarchical Tucker</th>
<th>Tensor Train</th>
</tr>
</thead>
<tbody>
<tr>
<td>complexity</td>
<td>(O(ndr))</td>
<td>(O(r^d + ndr))</td>
<td>(O(ndr + (d-2)r^3 + r^2))</td>
<td>(O((d-2)nr^2 + 2nr))</td>
</tr>
<tr>
<td>closedness</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

• Method has many degrees of freedom which are worth investigating, e.g. choice of: flux, projection for recovery, basis functions and order, time stepping scheme, tensor format, ...
Summary

We . . .

- Introduced the nonlinear Landau collision operator for binary Coulomb interactions
- Showed that even for a discontinuous space mass, momentum and energy are conserved if the basis can represent $1, v, |v|^2$ globally exactly.
- Discretized the space homogeneous Landau equation using a discontinuous Galerkin ansatz and a central numerical flux as well as a recovery method.
- Showed that for an explicit time stepping scheme the conservation properties are also true for the fully discrete system.
- Gave two numerical test cases that confirmed conservation up to machine precision and the capability to handle discontinuities in the solution.