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Plasma devices in ExB configuration
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 Issue : Instabilities  appearance of coherent
rotating structures  turbulent transport.

 Investigation of instabilities, coherent rotating
structures in laboratory experiments.
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Magnetic field (B) 100 – 360 Gauss

Column Length 1 m

Column radius 10 cm

Source type Hot electron beam

Eprimary electrons  40 eV

Pressure 10-5 – 10-3 mbar

Electron density (ne) 1014 – 1016 m-3

Electron temperature (Te) 2 – 6 eV

Ion temperature (Ti) 0.2 eV

Neutral temperature (Tn) Approx. 300 K

Typical MISTRAL parameters 

MISTRAL experiment
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Source

Study chamber
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 Plasma is created by the injection of primary electrons from source towards the study chamber.

MISTRAL experiment
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Magnetic field (B) 100 – 360 mT

Column Length 1 m

Column radius 10 cm

Source type Hot electron beam

Eprimary electrons  40 eV

Pressure 10-5 – 10-3 mbar

Electron density (ne) 1014 – 1016 m-3

Electron temperature (Te) 2 – 6 eV

Ion temperature (Ti) 0.2 eV

Neutral temperature (Tn) Approx. 300 K

Typical MISTRAL parameters 

MISTRAL experiment
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 Plasma is created by the injection of primary electrons from source towards the study chamber.

 Existence of coherent rotating spoke in MISTRAL plasma.

rb
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Probe 1 Probe 2

Rotating spoke in MISTRAL plasma
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Fast camera

1st harmonic

2nd harmonic

3rd harmonic

m = 1

B = 160 G, P = 10-4 mbar
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E

Experimental 
configuration

 ne  Gaussian profile
 p  parabolic profile
 p  Deviation from parabolic profile at high pressure

Time averaged plasma profiles at B = 160 Gauss
(Argon plasma)
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Diaphragm

 Time averaged over a few periods of rotating spoke ( 5-6).

E

P = 7.2 X 10-5 mbar

P = 3.5 X 10-4 mbar

P = 2.6 X 10-4 mbar

P = 1.5 X 10-4 mbar

0
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r0

rb
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 ExB flow frequency

 Ion diamagnetic flow 
frequency

Parameterization of density and potential 
profiles

0
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Characteristic frequencies in MISTRAL

ωci

ωE0

νspoke

ω*0

νin

ωci

ωE0

νin

ω*0

νspoke

At P = 1.04 X 10-4 mbar At B = 160 Gauss

 ωci  as B 
 νspoke  as B 

 νin  as P 
 νspoke  as P 

 Ion – neutral collisions (νin) are important  should be taken into account.
 ωE0 , νspoke , νin  ωci
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 Experimental evidence on existence of rotating structures*/instabilities.

 Existing models** to study instabilities are based on:
 Low frequency approximation (LFA)  characteristic frequencies << ωci

 No collisionality, If considered then based on LFA
 Local analysis, if global analysis is present then it’s based on LFA

Model development to investigate instabilities in weakly magnetized plasma devices
like MISTRAL:

 Valid at arbitrary frequency values
 Accounts for ion neutral collisionality
 Radially global model

Objective

*[Escarguel EPJD 2010]
**[Rosenbluth et al., Nucl.Fusion Suppl. (1962)]

**[Chen, PoF (1966)]

What’s the goal ?

10

 These assumptions are not compatible with parameters relevant to MISTRAL.

 Experimental evidence on existence of rotating structures*/instabilities.

What’s the goal ?
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Possible instabilities in MISTRAL
Centrifugal instability Neutral drag instability

S. Oldenburger thesis, 2010.

F. C. Hoh, Phys. Fluids , 1963

 Instability arises due to difference in flow of ions and 
electrons.

 This difference is either brought about by inertia or by 
collisions or by combination of both.
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Continuity Equation :

Ion momentum :

Electron momentum :

Inertia Pressure
gradient

Electromagnetic 
force

Collisional 
friction
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Closure :

15Two-fluid model

12

,     

Quasi – neutrality :

Source 
term

Gyro-
viscosity
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• Electrostatic approximation

• No axial variations (k||= 0) and uniform magnetic field i.e. 𝑩 = 𝐵 Ƹ𝑒𝑧

• No neutral flow (vn = 0)

• Rigid body rotation → Gaussian density + parabolic potential profiles (deviation at high 

pressure)  
Gyro-viscosity is neglected 

i.e. 𝛻 ⋅ 𝜋𝑖 = 0

𝜕𝑩

𝜕𝑡
= 0

Assumptions

13



System of equations: ion and electron 
momentum and continuity equations

Perturbed part 
(first order part)

Linearization

Equilibrium 
(zero order part)

Dispersion relation in ω

1. mode frequency ωr and  growth rate γ
2. Amplitude of density and potential fluctuations 
3. Phase difference between density and potential 

fluctuations ……..
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Normal mode analysis

14
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Equilibrium description

𝐵 Ƹ𝑧

Normalizations used 

radial flow azimuthal flow

In absence of collisions, no radial flow

Ion-neutral
collision frequency

Ion diamagnetic 
flow frequency ExB flow frequency
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Experimental observation: ϵ ≪ 1

 Verification of the assumption ϵ ≪ 1 for MISTRAL plasma motivates this choice.

ҧ𝑣i𝑟0 = − ҧ𝑟 ∈

Radial ion equilibrium flow
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Inertia
Inertia + collisional friction

Inertia + collisional friction + ionization source

Dispersion relation
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Centrifugal instability

Non-singular solution 

20

For a given m number  find N for which Ф1 𝑟𝑏 = 0

F. F. Chen, Phys. Fluids 9, 965–981 (1966)

S. Aggarwal et al., J. Plasma Phys. (2023), vol. 89, 905890310

Once N is known, ഥ𝜔𝑝ℎ can be computed.

Confluent Hypergeometric function
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Centrifugal instability

21

S. Aggarwal et al., J. Plasma Phys. (2023), vol. 89, 905890310

 Impact of low-frequency approximation.

 Characteristics of Centrifugal instability.

eigenvalue obtained 
using Whittaker equation 

Contribution due to magnetic force and inertial 
effects in the ion-momentum equation

Azimuthal mode number, 
m=1,2,3,….

Due to inertial effects only

 Instability mechanism.



Surabhi Aggarwal | 07 December 2023 | PPPL Seminar

Instability mechanism

22

ഥ𝝎𝟎 = ഥ𝝎𝑬𝟎+ ഥ𝝎*0

(no inertia + no collisions)
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Instability mechanism

23

ഥ𝝎𝟎 = ഥ𝝎𝑬𝟎+ ഥ𝝎*0

(inertia  + no collisions)

ഥ𝜔0 = −0.5 + 0.5(1 + 4(ഥ𝜔𝐸0 +
ഥ𝜔*0))

1/2

F. F. Chen, Phys. Fluids 9, 965–981 (1966)

(no inertia + no collisions)
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(inertia  + no collisions)

ഥ𝝎𝟎 = ഥ𝝎𝑬𝟎+ ഥ𝝎*0

(no inertia + no collisions)

ҧ𝜈𝑖𝑛 = 0.8

ഥ𝜔0 = −0.5 + 0.5(1 + 4(ഥ𝜔𝐸0 +
ഥ𝜔*0))

1/2

Instability mechanism

(inertia + collisions)
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Instability mechanism

No instability when 
𝛿 ഥ𝜔0 ≥ 0

25

Instability arises mainly from the difference between the ion and electron azimuthal flow.

In absence of inertia or collisions, 𝛿 ഥ𝜔0 = 0  no instability

Contribution from electron 
momentum equation
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Invalidity of LFA
Cubic term due to removal of 

low-frequency assumption

26

S. Aggarwal et al., J. Plasma Phys. (2023), vol. 89, 905890310

Without LFA

With LFA m = 1

Dispersion relation without LFA    

Dispersion relation with LFA       

F. F. Chen, Phys. Fluids 9, 965–981 (1966)

m = 2

Without LFA

With LFA



rb = 10 cm radial boundary or radius of cylinder
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Radially global Eigen-modes

Normalized density 
perturbation

Normalized potential 
perturbation

Eigen-function corresponding to n=0 for different 
azimuthal mode numbers m

Mode localization towards outer radial boundary.

m = 1

m = 2
m = 5
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m=1

m=2

m=10

m=4

m=1

m=2
m=4

m=10

For ω0/ωci = 0.4

 Deviation from the analytical solution at small Τ𝑟𝑏
2 𝑟0

2
m=1 gets destabilized 

Effect of radial boundary on growth rate and 
frequency

28

S. Aggarwal et al., J. Plasma Phys. (2023), vol. 89, 905890310

 Analytical solution at large Τ𝑟𝑏
2 𝑟0

2 and n=0 



Dispersion relation :
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Background flow :

Local  R. Gueroult et al., Phys. Plasmas 24, 082102 (2017)

Global  S. Aggarwal et al., J. Plasma Phys. 89, 905890310 (2023)

Growth rate from global 
solution at rb = 10 cm 

Growth rate from local solution

Max. growth rate obtained from local solution

At ω0/ωci = 0.6

Local solution not applicable for MISTRAL plasma
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eigenvalue obtained 
using Whittaker equation 

Contribution due to magnetic force and inertial 
effects in the ion-momentum equation

Azimuthal mode number, 
m=1,2,3,….

Due to inertial effects only

Reminder !

Dispersion relation with collisionality and inertia in 
the limit ∈ =0
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Dual effect of collisions (m=1)

C=1

C=1
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Dual effect of collisions (m=1)

 Parameters used: rb = 10ρi , ഥ𝜔E0 = 0.4, ഥ𝜔∗0 = −0.18, r0 = 3ρi

C=1

C=1

C=1, ҧ𝜈𝑖𝑛 = 0
Destabilization 

due to 𝛿 ഥ𝜔0
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Dual effect of collisions (m=1)

 Parameters used: rb = 10ρi , ഥ𝜔E0 = 0.4, ഥ𝜔∗0 = −0.18, r0 = 3ρi

C=1

C=1

C=1, ҧ𝜈𝑖𝑛 = 0

C=1, ҧ𝜈𝑖𝑛 = ҧ𝜈𝑖𝑛0

Stabilization due 
to ion-neutral 

friction

Destabilization 
due to 𝛿 ഥ𝜔0
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Comparison of experimental data and theoretical 
predictions (m=1)

ωr/ωci (theory)

2𝜋νmode/ωci (exp.)

Qualitative agreement found between the theoretical description and 
experimental data.

Normalized Growth rate Normalized mode frequency
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Summary & conclusions

 Two – fluid model developed for MISTRAL plasma:
 Without low-frequency approximation Valid at arbitrary frequency values
 Radially global model
 Linear analysis in the limit ∈ 0

 Instability can be driven by:
 Inertia
 Ion – neutral collisions
 Or combination of both

 For centrifugal instability, the mode's growth rate and frequency are significantly affected by the radial
boundary position and background flow.

 Dual effect of ion-neutral collisions:
 Destabilization as |𝛿 ഥ𝜔0|   contribution due to ഥ𝜔0

 Stabilization due to ion-neutral friction contribution due to perturbed ion velocity
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Work in progress & Future perspectives  

 Accounting for FLR effects is essential for achieving the stabilization of higher mode numbers.

 Performing a comprehensive linear analysis with arbitrary radial equilibrium flow i.e. without ϵ ≪ 1.

 Non – linear simulations.

 Linear analysis with finite ∈ and ionization source  work in progress



Surabhi Aggarwal | 07 December 2023 | PPPL Seminar

Thank you for your attention……
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k|| measurement
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Maximum growth rate for radial mode number n

m = 1 m = 2

n = 0 doesn’t necessarily yield the largest growth rate.

n = 0

n = 2

n = 1

n = 0

n = 2

n = 1



Perturbed Doppler shifted frequency opposes the direction of equilibrium flow 
frequency  consistent with the analytical result.
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Azimuthal mode spectra for growth rate and 
frequency

S. Aggarwal et al., J. Plasma Phys. (2023), vol. 89, 905890310

At Τ𝑟𝑏
2 𝑟0

2 11 and n=0

ω0 /ωci = -0.4 

ω0/ωci= 0.4 

ω0/ωci = 0

Growth rate increases as 

ω0 /ωci = -0.4 

ω0/ωci= 0.4 

ω0/ωci = 0
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No stabilization observed at large m numbers

S. Aggarwal et al., J. Plasma Phys. (2023), vol. 89, 905890310

At Τ𝑟𝑏
2 𝑟0

2 11 and n=0

 No stabilization at high m numbers due to absence of 
Finite Larmor radius effects (kθρi  1).

ω0 /ωci = -0.4 

ω0/ωci= 0.4 

ω0/ωci = 0

kθρi  1 m  5


