Linear Stability of a weakly magnetized rotating plasma column

Surabhi Aggarwal | 07/12/2023 | PPPL Seminar PIIM Laboratory, Aix-Marseille University

Collaborators: Yann Camenen, Alexandre Poye, Alexandre Escarguel

About me!

Outline

- Background and Motivation
- □ Experimental results
- □ Theory
 - I. Two-fluid formalism
 - II. Linear Stability Analysis
- Results and Discussion
- Summary and Conclusions
- Outlook and Future Perspectives

Plasma devices in ExB configuration

(b). Cross section of planar circular magnetron

(c). Configuration for rotating plasma separation in a uniform magnetic field

- ➢ Issue : Instabilities → appearance of coherent rotating structures → turbulent transport.
- Investigation of instabilities, coherent rotating structures in laboratory experiments.

MISTRAL experiment

Study chamber

Typical MISTRAL parameters

Magnetic field (B)	100 – 360 Gauss
Column Length	1 m
Column radius	10 cm
Source type	Hot electron beam
E _{primary electrons}	$\approx 40 \text{ eV}$
Pressure	10 ⁻⁵ – 10 ⁻³ mbar
Electron density (n _e)	$10^{14} - 10^{16} \text{ m}^{-3}$
Electron temperature (T_e)	2 – 6 eV
Ion temperature (T _i)	0.2 eV
Neutral temperature (T _n)	Approx. 300 K

MISTRAL experiment

Typical MISTRAL parameters

Magnetic field (B)	100 – 360 Gauss
Column Length	1 m
Column radius	10 cm
Source type	Hot electron beam
Eprimary electrons	$\approx 40 \text{ eV}$
Pressure	10 ⁻⁵ – 10 ⁻³ mbar
Electron density (n _e)	$10^{14} - 10^{16} \text{m}^{-3}$
Electron temperature (T_e)	2-6 eV
Ion temperature (T _i)	0.2 eV
Neutral temperature (T _n)	Approx. 300 K

> Plasma is created by the injection of primary electrons from source towards the study chamber.

MISTRAL experiment

Typical MISTRAL parameters

Magnetic field (B)	100 – 360 mT
Column Length	1 m
Column radius	10 cm
Source type	Hot electron beam
Eprimary electrons	$\approx 40 \text{ eV}$
Pressure	10 ⁻⁵ – 10 ⁻³ mbar
Electron density (n _e)	$10^{14} - 10^{16} \text{ m}^{-3}$
Electron temperature (T_e)	2-6 eV
Ion temperature (T _i)	0.2 eV
Neutral temperature (T _n)	Approx. 300 K

- > Plasma is created by the injection of primary electrons from source towards the study chamber.
- > Existence of coherent rotating spoke in MISTRAL plasma.

Aix*Marseille

UNIVERSITE

Rotating spoke in MISTRAL plasma

Probe 2

m = 1

 $B = 160 G, P = 10^{-4} mbar$

Time averaged plasma profiles at B = 160 Gauss (Argon plasma)

> Time averaged over a few periods of rotating spoke (\approx 5-6).

Parameterization of density and potential profiles

 Ion diamagnetic flow frequency

$$\omega_{*0} = \frac{\mathbf{T_i}}{\mathbf{en_eB}} \frac{\mathbf{B} \times \nabla \mathbf{n_e}}{\mathbf{rB}} \cdot \hat{\mathbf{e}}_{\theta} = \frac{\mathbf{T_i}}{\mathbf{erB}} \frac{\mathbf{n'_e}}{\mathbf{n_e}} = -\frac{\mathbf{T_i}}{\mathbf{eB}} \frac{\mathbf{2}}{\mathbf{r_0^2}}$$

Characteristic frequencies in MISTRAL

▶ Ion – neutral collisions (v_{in}) are important → should be taken into account.
 ▶ ω_{E0}, v_{spoke}, v_{in} ≈ ω_{ci}

What's the goal ?

Experimental evidence on existence of rotating structures*/instabilities.

- Existing models** to study instabilities are based on:
 - Low frequency approximation (LFA) \rightarrow characteristic frequencies << ω_{ci}
 - No collisionality, If considered then based on LFA
 - Local analysis, if global analysis is present then it's based on LFA
- These assumptions are not compatible with parameters relevant to MISTRAL.

Objective

Model development to investigate instabilities in weakly magnetized plasma devices like MISTRAL:

- Valid at arbitrary frequency values
- Accounts for ion neutral collisionality
- Radially global model

*[Escarguel EPJD 2010] **[Rosenbluth et al., Nucl.Fusion Suppl. (1962)] **[Chen, PoF (1966)]

Possible instabilities in MISTRAL

Outline

Background and Motivation

Experimental results

□ Theory

- I. Two-fluid formalism
- II. Linear Stability Analysis
- Results and Discussion
- Summary and Conclusions
- Outlook and Future Perspectives

Two-fluid model

$$\textit{Continuity Equation}: \quad \frac{\partial n_j}{\partial t} + \nabla \cdot (n_j \mathbf{v}_j) = S_{ion} \ ; \quad j = i, e \quad , \ S_{ion} = n_{ep} \nu_{ion}$$

force

gradient

viscosity

friction

term

Electron momentum : $0 = -en_e(-\nabla \phi + \mathbf{v}_e \times \mathbf{B}) - \nabla p_e$

Closure :
$$rac{\partial T_i}{\partial r}=0$$
 , $abla p_j=
abla n_jT_j$

Quasi – neutrality : $n_i = n_e$

Assumptions

- Electrostatic approximation $\implies \frac{\partial B}{\partial t} = 0$
- No axial variations (k₁₁= 0) and uniform magnetic field i.e. $\boldsymbol{B} = B\hat{e}_z$
- No neutral flow $(v_n = 0)$
- Rigid body rotation → Gaussian density + parabolic potential profiles (deviation at high pressure)

$$\begin{aligned} \mathbf{Gyro-viscosity is neglected} \\ \mathbf{i.e.} \ \nabla \mathbf{v_i} = \mathbf{0} \\ \mathbf{v_i} + \mathbf{v_i} \cdot \nabla \mathbf{v_i} \end{aligned} = \frac{e}{m_i} \left(-\nabla \phi + \mathbf{v_i} \times \mathbf{B} \right) - \frac{1}{n_i m_i} \nabla p_i - \frac{1}{n_i m_i} \nabla \cdot \pi_i - \nu_{in} \mathbf{v_i} - \frac{S_{ion} \mathbf{v_i}}{n_i} \end{aligned}$$

Normal mode analysis

Equilibrium description

Experimental observation: $\epsilon \ll 1$

Radial ion equilibrium flow $\bar{v}_{\mathrm{i}r_{0}}$ $= -\bar{r} \in$ $C = 1+2*\omega_0/\omega_{ci}$ 3.0 Normalized values $C = 1 + 2^* \omega_0 / \omega_{ci}$ v_{in}/ω_{ci} Normalized values ω_0 / ω_{ci} ω_0/ω_{ci} ω_{ci} F 0.0 0.0 200 2Ż5 250 275 3Ó0 3Ż5 175 1 Ż Ż 4 5 Ġ Ż 8 B (Gauss) Pressure (×10⁻⁴ mbar)

 \blacktriangleright Verification of the assumption $\epsilon \ll 1$ for MISTRAL plasma motivates this choice.

$$\bar{\mathbf{v}}_{i1} = \bar{\mathbf{v}}_{i1}^{(0)} + \epsilon \bar{\mathbf{v}}_{i1}^{(1)}$$

Dispersion relation

$$\begin{split} \boxed{\left[\left(\frac{\partial \mathbf{v_i}}{\partial t} + \mathbf{v_i} \cdot \nabla \mathbf{v_i}\right) = \frac{e}{m_i} \left(-\nabla \phi + \mathbf{v_i} \times \mathbf{B}\right) - \frac{1}{n_i m_i} \nabla p_i} - \nu_{in} \mathbf{v_i}}_{\mathbf{n}_i} - \frac{S_{ion} \mathbf{v_i}}{n_i} \\ \hline \mathbf{u}_i \\ \boxed{\mathbf{u}_i^{m_i} + \left(\frac{1}{\bar{r}} - \frac{1}{\bar{L}_n}\right) \Phi_1' - \frac{m^2}{\bar{r}^2} \Phi_1 + \frac{1}{\bar{r}\bar{L}_n} N \Phi_1 = 0}}_{\mathbf{n}_i^{m_i} \\ \boxed{\mathbf{u}_i^{m_i} + \left[\frac{C_{NC}}{\bar{r}} + \epsilon \left(\frac{3}{\bar{r}} - \frac{1}{\bar{L}_n}\right)\right] \Phi_1'' + \left[\frac{C_{NC}}{\bar{r}} \left(\frac{1}{\bar{r}} - \frac{1}{\bar{L}_n}\right) + \epsilon \left(-\frac{m^2}{\bar{r}^2} + \frac{1}{\bar{r}} \left(\frac{1}{\bar{r}} - \frac{1}{\bar{L}_n}\right) + \mathcal{A} - \mathcal{B}\right)\right] \Phi_1'}_{\mathbf{n}_i^{m_i} \\ + \left[\frac{C_{NC}}{\bar{r}} \left(-\frac{m^2}{\bar{r}^2} + \frac{N}{\bar{r}\bar{L}_n}\right) - \epsilon \mathcal{B}\left(\frac{2}{\bar{r}} - \frac{1}{\bar{L}_n}\right) + \mathcal{A} - \mathcal{B}\right] \Phi_1' \\ -\lambda \epsilon \left(im\bar{\omega}_0 + \xi\bar{r} \left(\frac{5}{\bar{r}} - \frac{1}{\bar{L}_n}\right) - \lambda c_{\xi}\bar{r}\right] \Phi_1' + \left[\frac{C_{NC}}{\bar{r}} \left(-\frac{m^2}{\bar{r}^2} + \frac{N}{\bar{r}\bar{L}_n}\right) - \epsilon \mathcal{B}\left(\frac{2}{\bar{r}} - \frac{1}{\bar{L}_n}\right) + \lambda \mathcal{D}\left(\frac{m\bar{\omega}_c}{\bar{r}C} + \frac{2}{\bar{r}} - \frac{1}{\bar{L}_n}\right) \\ -\lambda \epsilon \left(\frac{2im\bar{\omega}_0}{\bar{r}} + 2\xi \left(\frac{2}{\bar{r}} - \frac{1}{\bar{L}_n}\right) - \left(\frac{\mathcal{F}}{\bar{r}} + C_{NC} \left(\frac{2}{\bar{r}} - \frac{1}{\bar{L}_n}\right)\right)\right)\right] \Phi_1 = 0 \quad (42) \quad (41)$$

Aix*Marseille université

Outline

Background and Motivation

Experimental results

□ Theory

- I. Two-fluid formalism
- II. Instability mechanism & Linear Stability Analysis
- Results and Discussion
- □ Summary and Conclusions
- Outlook and Future Perspectives

Centrifugal instability

$$\Phi_1'' + \left(\frac{1}{\bar{r}} - \frac{1}{\bar{L}_n}\right) \Phi_1' - \frac{m^2}{\bar{r}^2} \Phi_1 + \frac{1}{\bar{r}\bar{L}_n} N \Phi_1 = 0$$

$$N = m \left[\frac{C}{\bar{\omega}_{ph}} - \frac{C^2 - \bar{\omega}_c^2}{\bar{\omega}_{ph} + m\delta\bar{\omega}_0}\right]$$
Non-singular solution $\longrightarrow \Phi_1(r) = \left(\frac{\bar{r}}{\bar{r}_0}\right)^m F\left(\frac{m-N}{2}, 1+2m, \left(\frac{\bar{r}}{\bar{r}_0}\right)^2\right)$

Confluent Hypergeometric function

For a given *m* number \rightarrow find *N* for which $\Phi_1(r_b) = 0$

Once *N* is known, $\overline{\omega}_{ph}$ can be computed.

S. Aggarwal et al., J. Plasma Phys. (2023), vol. 89, 905890310

F. F. Chen, Phys. Fluids 9, 965-981 (1966)

Centrifugal instability

Instability mechanism.

Impact of low-frequency approximation.

Characteristics of Centrifugal instability.

S. Aggarwal et al., J. Plasma Phys. (2023), vol. 89, 905890310

Aix*Marseille

Aix*Marseille

Instability arises mainly from the difference between the ion and electron azimuthal flow.

In absence of inertia or collisions, $\delta \overline{\omega}_0 = 0 \rightarrow$ no instability

Invalidity of LFA

Cubic term due to removal of low-frequency assumption Dispersion relation without LFA $\rightarrow \bar{\omega}_{ph}^3 - \frac{N}{m}\bar{\omega}_{ph}^2 - (C - C^2 + N\delta\bar{\omega}_0)\bar{\omega}_{ph} + mC\delta\bar{\omega}_0 = 0$

 \rightarrow

Dispersion relation with LFA

$$\frac{N}{m}\bar{\omega}_{ph}^2 + \left(C - C^2 + N\delta\bar{\omega}_0\right)\bar{\omega}_{ph} - mC\delta\bar{\omega}_0 = 0$$

S. Aggarwal et al., J. Plasma Phys. (2023), vol. 89, 905890310 F. F. Chen, Phys. Fluids 9, 965–981 (1966)

Radially global Eigen-modes

 $r_b = 10 \text{ cm} \rightarrow \text{radial boundary or radius of cylinder}$

Effect of radial boundary on growth rate and frequency

> Analytical solution at large r_b^2/r_0^2 and n=0 $\rightarrow \bar{\omega}_{ph} = -\bar{\omega}_0 + i\left(\sqrt{m-1}\right)|\bar{\omega}_0|$

> Deviation from the analytical solution at small $r_b^2/r_0^2 \rightarrow m=1$ gets destabilized

S. Aggarwal et al., J. Plasma Phys. (2023), vol. 89, 905890310

Local solution not applicable for MISTRAL plasma

Dispersion relation :

$$\Phi_{1}^{\prime} + \left[\frac{1}{\bar{r}} - \frac{1}{\bar{L}_{n}}\right] \Phi_{1}^{\prime} - \frac{m^{2}}{\bar{r}^{2}} \Phi_{1} + \frac{1}{\bar{r}\bar{L}_{n}} N \Phi_{1} = 0$$
$$N = m \left[\frac{C}{\bar{\omega}_{ph}} - \frac{C^{2} - \bar{\omega}_{ph}^{2}}{\bar{\omega}_{ph} - m\bar{\omega}_{0}^{2}}\right]$$

Background flow :
$$\bar{\omega}_0^2 + \bar{\omega}_0 - (\bar{\omega}_{E0} + \bar{\omega}_{*0}) = 0$$

 $\frac{1}{\bar{L}_n}$

 $C = 1 + 2\bar{\omega_0}$ $\Phi_1 = \bar{n}_1 + \tau\bar{\phi}_1$

 $\frac{T_i}{T_e}$

 $= \bar{\omega} - m\bar{\omega}_0$

 $\frac{2\bar{r}}{\bar{r}_0^2}$

Local \rightarrow R. Gueroult et al., Phys. Plasmas 24, 082102 (2017)

Global → S. Aggarwal et al., J. Plasma Phys. 89, 905890310 (2023)

Dispersion relation with collisionality and inertia in the limit $\in =0$

Reminder !
$$\bar{\omega}_0 = \frac{1}{2} \sqrt{\frac{1}{2}} \left[\{ 1 + 4(\bar{\omega}_{*0} + \bar{\omega}_{E0}) - \bar{\nu}_{in}^2 \} + \sqrt{\{ 1 + 4(\bar{\omega}_{*0} + \bar{\omega}_{E0}) - \bar{\nu}_{in}^2 \}^2 + 4\bar{\nu}_{in}^2} \right] - \frac{1}{2}$$

UNIVERSITÉ

Dual effect of collisions (m=1)

$$\bar{\omega}_{ph}^{3} - \left(\frac{N}{m} - 2i\bar{\nu}_{in}\right)\bar{\omega}_{ph}^{2} - \left(C - C^{2} + \frac{N}{m}(m\delta\bar{\omega}_{0} + i\bar{\nu}_{in}) + \bar{\nu}_{in}^{2}\right)\bar{\omega}_{ph} + (mC - iN\bar{\nu}_{in})\delta\bar{\omega}_{0} = 0$$

$$\bar{\nabla}_{c=1}$$

$$\delta\bar{\omega}_{0} = \bar{\omega}_{0} - \bar{\omega}_{E0} - \bar{\omega}_{*0}$$

$$\bar{\omega}_{0} = \frac{1}{2}\sqrt{\frac{1}{2}\left[\left\{1 + 4(\bar{\omega}_{*0} + \bar{\omega}_{E0}) - \bar{\nu}_{in_{0}}^{2}\right\} + \sqrt{\left\{1 + 4(\bar{\omega}_{*0} + \bar{\omega}_{E0}) - \bar{\nu}_{in_{0}}^{2}\right\}^{2} + 4\bar{\nu}_{in_{0}}^{2}}\right] - \frac{1}{2}}$$

Dual effect of collisions (m=1)

$$\bar{\omega}_{ph}^{3} - \left(\frac{N}{m} - 2h_{n}\right)\bar{\omega}_{ph}^{2} - \left(C - C^{2} + \frac{N}{m}(m\delta\bar{\omega}_{0} + i\lambda_{n}) + \lambda_{n}\right)\bar{\omega}_{ph} + (mC - iN\bar{\nu}_{n})\delta\bar{\omega}_{0} = 0$$

$$\bar{\omega}_{0} = \frac{1}{2}\sqrt{\frac{1}{2}\left[\left\{1 + 4(\bar{\omega}_{*0} + \bar{\omega}_{E0}) - \bar{\nu}_{in_{0}}^{2}\right\} + \sqrt{\left\{1 + 4(\bar{\omega}_{*0} + \bar{\omega}_{E0}) - \bar{\nu}_{in_{0}}^{2}\right\}^{2} + 4\bar{\nu}_{in_{0}}^{2}\right]} - \frac{1}{2}$$

$$-0.05 - \frac{1}{0.0} - \frac{1}{0.0} - \frac{1}{0.5} - \frac{1}$$

> Parameters used: $r_b = 10\rho_i$, $\overline{\omega}_{E0} = 0.4$, $\overline{\omega}_{*0} = -0.18$, $r_0 = 3\rho_i$

Dual effect of collisions (m=1)

$$\bar{\omega}_{ph}^{3} - \left(\frac{N}{m} - 2i\bar{\nu}_{in}\right)\bar{\omega}_{ph}^{2} - \left(C - C^{2} + \frac{N}{m}(m\delta\bar{\omega}_{0} + i\bar{\nu}_{in}) + \bar{\nu}_{in}^{2}\right)\bar{\omega}_{ph} + (mC - iN\bar{\nu}_{in})\delta\bar{\omega}_{0} = 0$$

$$\bar{\omega}_{0} - \bar{\omega}_{E0} - \bar{\omega}_{*0}$$

$$\bar{\omega}_{0} = \frac{1}{2}\sqrt{\frac{1}{2}} \left[\left\{ 1 + 4(\bar{\omega}_{*0} + \bar{\omega}_{E0}) - \bar{\nu}_{in_{0}}^{2} \right\} + \sqrt{\left\{ 1 + 4(\bar{\omega}_{*0} + \bar{\omega}_{E0}) - \bar{\nu}_{in_{0}}^{2} \right\}^{2} + 4\bar{\nu}_{in_{0}}^{2}} - \frac{1}{2}$$

$$-0.05$$

$$-0.15$$

$$-0.20$$

$$0.5$$

$$1.0$$

$$1.5$$

$$2.0$$

$$2.5$$

$$3.0$$

$$0.5$$

$$0.15$$

$$0.10$$

$$0.5$$

$$1.0$$

$$1.5$$

$$2.0$$

$$2.5$$

$$3.0$$

$$0.5$$

$$0.15$$

$$0.10$$

$$0.5$$

$$1.0$$

$$1.5$$

$$2.0$$

$$2.5$$

$$3.0$$

> Parameters used: $r_b = 10\rho_i$, $\overline{\omega}_{E0} = 0.4$, $\overline{\omega}_{*0} = -0.18$, $r_0 = 3\rho_i$

Comparison of experimental data and theoretical predictions (m=1)

Qualitative agreement found between the theoretical description and experimental data.

Summary & conclusions

- □ Two fluid model developed for MISTRAL plasma:
 - Without low-frequency approximation → Valid at arbitrary frequency values
 - Radially global model
 - Linear analysis in the limit $\in \rightarrow 0$
- □ Instability can be driven by:
 - Inertia
 - Ion neutral collisions
 - Or combination of both
- □ For centrifugal instability, the mode's growth rate and frequency are significantly affected by the radial boundary position and background flow.
- Dual effect of ion-neutral collisions:
 - Destabilization as $|\delta \overline{\omega}_0| \uparrow \rightarrow$ contribution due to $\overline{\omega}_0$
 - Stabilization due to ion-neutral friction \rightarrow contribution due to perturbed ion velocity

Work in progress & Future perspectives

□ Linear analysis with finite \in and ionization source \rightarrow work in progress

□ Accounting for FLR effects is essential for achieving the stabilization of higher mode numbers.

 \Box Performing a comprehensive linear analysis with arbitrary radial equilibrium flow i.e. without $\epsilon \ll 1$.

□ Non – linear simulations.

Thank you for your attention.....

k₁₁ measurement

Maximum growth rate for radial mode number n

n = 0 doesn't necessarily yield the largest growth rate.

Azimuthal mode spectra for growth rate and frequency

 \implies Growth rate increases as $\left(\sqrt{m-1}\right)|\bar{\omega}_0|$

Perturbed Doppler shifted frequency opposes the direction of equilibrium flow frequency \rightarrow consistent with the analytical result.

S. Aggarwal et al., J. Plasma Phys. (2023), vol. 89, 905890310

No stabilization observed at large m numbers

S. Aggarwal et al., J. Plasma Phys. (2023), vol. 89, 905890310

