Multiscale simulation of radiofrequency wave scattering in the scrape-off layer

Bodhi Biswas

York Plasma Institute, University of York. York, UK.

PPPL Theory Seminar. November 30, 2023.

This work is supported by the US DOE under grants DE-SC0018090, DE-SC0014264, and DE-FC02-04ER54698.

Scattering is a problem for RF-driven heating and current drive actuators in tokamaks

Objective: localised resonant power deposition

- Increase fusion output
- Non-inductive operation
- Shape *q*-profile
- Suppress NTMs

Scattering modifies wave-spectrum, leading to:

- Decreased antenna-core coupling.
- Broadening and displacement of power deposition peak.
- Introduces large uncertainties in predictive models.

Lower hybrid current drive (LHCD) is sensitive to wave-trajectory

- Lower hybrid (LH) waves $(\Omega_i^2 \ll \omega^2 \ll \Omega_e^2)$ efficiently drive current by electron Landau damping.
- Strong linear electron Landau damping (ELD) condition: $N_{||} \equiv \frac{k_{||}c}{\omega} \gtrsim \frac{c}{3v_{te}}$
- N_{||} evolves along the wave-trajectory. CD performance can be sensitive to initial launch and plasma parameters.

Theoretical model for LHCD:

Multi-pass regime in Alcator C-Mod

If
$$N_{||0} < \frac{c}{3v_{te}} \rightarrow \text{long wave trajectories.}$$

The multi-pass regime is notoriously difficult to model

- The spectral-gap problem: $|N_{||_0}| < \frac{c}{3v_{te}}$
- Standard Ray-tracing/Fokker-Planck simulations cannot resolve the spectral gap.
 - Inaccurate
 - Not robust
- LH waves must propagate through the highly turbulence SOL region. Direct experimental evidence of scattering¹.
- How does scattering affect the wavespectrum? Can it explain measurements in Alcator C-Mod?

C-Mod fully non-inductive plasma

Nature of edge turbulence and scattering

- Turbulence is largely field-aligned $(\nabla_{||}n \sim 0)$ ٠
- RF scattering rotates k_{\perp} , and breaks toroidal mode-number • $(\mathcal{N} \equiv k_{\phi}R)$ conservation.
- Filaments are dense and spatially localized^{1,2} •

$$\begin{array}{c} n_b/n_0 \approx 1-10 \\ a_b \approx 0.5-5 \ \mathrm{cm} \sim 1/k_\perp \\ k_\perp L_n {\sim} 1 \end{array}$$

- Highly intermittent^{2,3} •
- Strongest at outer mid-plane⁴
- Ad-hoc introduction of k_{\perp} angle rotation can reproduce LHCD measurements in C-Mod.⁵ Could edge turbulence account for this?

Gas puff imaging (GPI) in C-Mod

S Zweben, PPPL.

¹Zweben et al., PPCF. 2016. ⁴Terry et al., PoP. 2003. ²Zweben et al., PoP. 2002. ⁵Baek et al., NF. 2021. ³Kube et al., PPCF. 2016.

Spatial coherency and intermittency of turbulence impacts wave-scattering

 $\theta \equiv \sin^{-1}(k_y/k_x).$

Previous drift-wave-like models under-predict scattering.²

¹Bonoli and Ott, PoF. 1982. ²Biswas et al., PPCF. 2020.

8

Hierarchy of RF wave scattering models

Increasing fidelity and computational cost

Reduced ray-tracing models

Drift-wave turbulence

- Ray-tracing (diffusive broadening of k_{\perp}) [1]
- Wave-kinetic approach [2,3] Fast solve

SOL turbulence is filamentary

Filamentary turbulence

- Ray-tracing over synthetic turbulence [4]
- Limited validity $(k_{\perp}L_n \sim 1)$ Increased accuracy Limited validity

- [1] Bellan and Wong, PoF. 1978.
- [2] Bonoli and Ott, PoF. 1982.
- [3] Andrews and Perkins, PoF. 1983.
- [4] Biswas et al., PPCF. 2020.

Hierarchy of RF wave scattering models

Single wave-filament interaction

Analytic solution available [1,2]
 Fast solve
 Only one filement

Only one filament

Multiple filaments or whole SOL

Numeric full-wave solvers [3,4]
 All optical effects
 Computationally expensive
 Coupling to core solver is non-trivial

Hierarchy of RF wave scattering models

Increasing fidelity and computational cost

Multiscale full-wave/ray-tracing solver

At wave-filament interaction:

 $k_{\perp}L_n \sim 1$. **Apply full-wave solver** Elsewhere:

 $k_{\perp}L_n \gg 1$. Ray-tracing is acceptable

Couple using radiative transfer theory

Fast solve Many optical effects Straightforward coupling to core solver

Single filament full-wave...

-0.8

-1.0

A single wave-filament interaction

- Plane wave interacting with a field-aligned, infinitely long, cylindrical filament.
- Poloidally symmetric.
- Analytic, series solution to scattered waves (slow and fast branch).

Solution scheme for a radially tapered filament

Vector Helmholtz equation solved by separation of variables.

Known: Bessel coefficients for incident Lower Hybrid slow wave.Unknown: Bessel coefficients for slow and fast waves, both inside and outside filament.Boundary conditions: Maxwell BC's at the edge of each radial bin.

Leads to linear system of equations with unique solution. Very fast solve!

Calculating scattering-width

¹Shiraiwa et al., EPJ Web Conf. 2017.

Parametric scan of filament parameters

4.6GHz slow-wave launched at $N_{||} = 2$. $a_b = 0.85$ cm

Asymmetric scattering not captured in ray-tracing

Symmetry broken by orientation of magnetic field. This is a higher-order (full-wave) effect.

Averaging over filament statistics

Multiple scattering events modeled with radiative transfer equation (RTE)

 Σ_{eff} is the inverse mean free-path for a wave-packet to scatter with a filament.

This can be used to formulate the RTE

$$\begin{pmatrix} \frac{dP_j}{dt} \end{pmatrix}_r + 2\gamma(\mathbf{k}_j, \mathbf{r})P_j = \begin{pmatrix} \frac{dP_j}{dt} \end{pmatrix}_{\text{sct}} \qquad j = S, F$$

$$\hat{f} = \sum_{j'=S,F} -\sum_{\text{eff}, j \to j'} (k_{||}, \mathbf{r}) |\mathbf{v}_{gr\perp}(\mathbf{k}_j, \mathbf{r})|P_j \qquad \text{Out-scatter} \qquad \hat{\sigma}(\theta) \equiv \sigma(\theta)/\sigma$$

$$\text{In-scatter}$$

$$+ \sum_{j'=S,F} \sum_{\text{eff}, j' \to j} (k'_{||}, \mathbf{r}) |\mathbf{v}_{gr\perp}(\mathbf{k}_{j'}, \mathbf{r})| \int_{-\pi}^{\pi} \hat{\sigma}_{\text{eff}, j' \to j} (\theta - \theta'; k_{||}, \mathbf{r}) P_{j'}(\theta', k_{||}, \mathbf{r}) d\theta'$$

$$\text{In-scatter}$$

First, a simple slab problem

Assumptions:

- Turbulent layer of width L_x
- homogenous background and turbulence parameters
- initial slow wave at normal incidence
- neglect possibility of mode-conversion to fast wave

OK approximation for scatter in front of LH grill.

$$cos\theta \frac{dP(x,\theta)}{dx} = -\Sigma_{\rm eff}P(x,\theta) + \Sigma_{\rm eff} \int_{-\pi}^{\pi} \hat{\sigma}_{\rm eff}(\theta - \theta')P(x,\theta')d\theta'$$

Out-scatter

This equation can be solved by a Markov Chain. See Biswas et al., JPP. 2021.

Solving RTE in slab geometry using an absorbing Markov chain

Similarities with radiation modeling in atmospheric science¹.

Discretize turbulent layer width $x = [0, L_x]$ and angle of photon trajectory $\theta = [-\pi, \pi]$.

Transmitted wave-spectrum:

$$P_{T}(\theta_{n'}) \approx \Pi \cdot (I - T)^{-1} \cdot R_{T}$$
Source of incident photons at (x_{i}, θ_{l})
Probability to transition from $(x_{j}, \theta_{m}) \rightarrow (x_{j'}, \theta_{m'})$

Probability to **escape** via transmittance from $(x_k, \theta_n) \rightarrow (L_x, \theta_{n'})$

Fast, deterministic method to solve the RTE.

Markov Chain (MC) used to model LH scattering in front of antenna

Outputs:

 $P_{sct}(\theta)$: angle-broadened wave-spectrum

 F_{bal} : fraction of ballistic power. F_T : fraction of non-ballistic transmitted power. F_R : fraction of reflected power.

21

Model comparison against Petra-M

		Plasma parameters						F _{ref}	
Simulation setup in finite-element code PETRA-M.	Case #	$n_0 \times 10^{19} [\mathrm{m}^{-3}]$	$\langle n_b/n_0 \rangle$	$\langle a_b \rangle$ [cm]	f_p	L_x [cm]	$\Sigma_{\rm eff}L_x$	Petra-M	Multiscale
	1	0.55	2.60	0.48	0.02	5.0	0.26	0.01	0.02
	2	0.55	2.60	0.48	0.10	5.0	1.29	0.13	0.13
Periodic boundary	3	0.55	2.60	0.48	0.25	5.0	3.23	0.18	0.31
$\begin{array}{c c} PML & I_{ext} & v_{gr_{\perp}} \rightarrow & turbulent \\ \downarrow & \downarrow & layer & PML \\ \downarrow & \downarrow & e_{x} & \downarrow & Lx \end{array} PML PML$	4	0.55	2.60	0.48	0.50	5.0	6.45	0.29	0.48
	5	0.55	2.60	1.10	0.25	5.0	1.33	0.02	0.06
	6	0.55	1.80	0.48	0.25	5.0	1.42	0.04	0.13
	7	0.55	2.60	0.48	0.10	15.0	3.89	0.22	0.35
	8	2.25	2.60	0.48	0.02	5.0	0.40	0.04	0.04
	9	2.25	2.60	0.48	0.10	5.0	2.02	0.15	0.23
	10	2.25	2.60	0.48	0.25	5.0	5.06	0.34	0.46
	11	2.25	2.60	0.48	0.50	5.0	10.1	0.55	0.65

Accuracy:

- 1. Both models predict the same trends in F_{ref} vs. turbulence parameters.
- 2. Reasonable match at low f_p (~0.1).
- 3. Multiscale model generally over-predicts F_{ref} .
- 4. Error grows with f_p . This is as expected from theory [1].

Computational cost:

Each PETRA-M run: ~300GB RAM and ~25 CPU-hours. Each multiscale run: ~1 minute on a laptop with 8GB available RAM. [1] Mishchenko. *EM scattering by particles and particle groups*.2014.

Broadened wave-spectrum coupled to RTFP code

Fully non-inductive, low-density ($\bar{n}_e \approx 0.52 \times 10^{20} \text{m}^{-3}$) L-mode discharge.

axis peaks.

First-pass ray-trajectories

Modified wave-spectrum leads to increased on-axis damping on first-pass...

Solution scheme for general RTE

Generalise to arbitrary geometry:

- Account for scattering along the entire ray-trajectory.
- Varying SOL background and turbulence profiles.
- Mode-conversion between slow (S) and fast (F) mode.

Ray-trajectory and damping calculated in GENRAY/CQL3D

$$\left(\frac{dP_j}{dt}\right)_r + 2\gamma(\mathbf{k}_j, \mathbf{r})P_j = \left(\frac{dP_j}{dt}\right)_{\rm sc}$$

Stochastic kicks to raytrajectory that rotate ${m k}_\perp$

$$\begin{split} \left(\frac{dP_{j}}{dt}\right)_{\text{sct}} &= \sum_{j'=S,F} - \left[\Sigma_{\text{eff},j \to j'}(k_{||},\mathbf{r}) |\mathbf{v}_{gr\perp}(\mathbf{k}_{j},\mathbf{r})|P_{j} \right] \text{Look-up tables in GENRAY} \\ &+ \sum_{j'=S,F} \sum_{\text{eff},j' \to j} (k'_{||},\mathbf{r}) |\mathbf{v}_{gr\perp}(\mathbf{k}_{j'},\mathbf{r})| \int_{-\pi}^{\pi} \hat{\sigma}_{\text{eff},j' \to j}(\theta - \theta';k_{||},\mathbf{r}) P_{j'}(\theta',k_{||},\mathbf{r}) d\theta' \end{split}$$

Prescribing scattering probabilities in a tokamak geometry

Radial (ρ) and poloidal (θ_p) tapering of filament PDFs in the SOL

For more detail, see Biswas et al., NF. 2023.

Scattering is most prevalent in the far SOL at the outer mid-plane

Scattering is preferentially in outward direction

Parametric scan of turbulence parameters

3D scan:

 $\langle n_b/n_0 \rangle$: mean relative filament density (at LH antenna) $\langle a_b \rangle$: mean filament radial width f_p : packing fraction

Metric for agreement with experiment:

$$\bar{\chi}^2 = \frac{\sum_i (J_{\phi, \text{sim}}(\rho_i) - J_{\phi, \exp}(\rho_i))^2}{\sum_i (J_{\phi, \text{refsim}}(\rho_i) - J_{\phi, \exp}(\rho_i))}$$

Impact of scattering on LHCD saturates

Impact of scattering on LHCD saturates

$\bar{\chi}^2$ current density

Saturated case finds good match to experiment

Scatter causes near-axis damping on first pass

Simulating higher density discharges

Caveat: not modeling DC electric field.

Saturation explained by filling in of phase-space

How important is asymmetric scatter?

Reversed scattering parity: $\sigma(\theta) \rightarrow \sigma(-\theta)$

Conclusion

- For the first time, full-wave scattering effects on downstream damping and current drive modeled.
- Scattering can explain the spectral gap in Alcator C-Mod.
- Identified asymmetric scatter occurs, and is important.
- In C-Mod, effect of scattering is saturated. Exact filament PDF not important.

Mitigation strategies:

- Decrease SOL width/fluctuations
- HFS launch

Future work:

Can we directly measure RF scattering in the SOL? Can scattering resolve *large* spectral gaps (e.g. WEST)? Applications of ECCD. Impact on O-X mode conversion.

Future work: large spectral gap in WEST

Assuming toroidal mode-number conservation, LH waves cannot Landau damp in WEST.

But experiments show significant Landau damping in core...

Scattering breaks toroidal mode-number conservation. Is this strong enough to bridge the spectral gap?

Peysson et al., Journal of Fusion Energy. 2020.

Lower hybrid current drive (LHCD)

Tokamaks require a steady-state source of current.

Lower hybrid (LH) waves $(\Omega_i^2 \ll \omega^2 \ll \Omega_e^2)$ drive current by electron Landau damping.

$$N_{||} \equiv \frac{k_{||}c}{\omega} \gtrsim \frac{c}{3v_{te}}$$

Electrons preferentially accelerated in wave's parallel direction \rightarrow asymmetric distribution function \rightarrow net current

LHCD is sensitive to the phase-space trajectory of the wave

Fully non-inductive C-Mod discharge summary

Figure 3.2: "Summary of Alcator C-Mod upper single-null L-Mode discharge #1101104011. $\overline{n_e} = 0.52 \times 10^{20} \,\mathrm{m}^{-3}$, $I_p = 530 \,\mathrm{kA}$, and B=5.4 T. At t=1.10 sec, current is fully driven by 850 kW LH power launched at $N_{||} = -1.6$. Electron density (n_e) and temperature (T_e) profiles show experimental data from Thomson scattering (blue), and the fit profile (red) used in GENRAY/CQL3D runs."[†]

Ray-tracing equations

Cold plasma dispersion relation

$$D_{0} = P_{4}N_{\perp}^{4} + P_{2}N_{\perp}^{2} + P_{0} = 0$$
$$P_{0} = \epsilon_{||} \left[\left(N_{||}^{2} - \epsilon_{\perp} \right)^{2} - \epsilon_{xy}^{2} \right]$$
$$P_{2} = \left(\epsilon_{\perp} + \epsilon_{||} \right) \left(N_{||}^{2} - \epsilon_{\perp} \right) + \epsilon_{xy}^{2}$$

$$P_4 = \epsilon_\perp$$

Ray evolution in phase-space

$$\frac{d\mathbf{r}}{dt} = -\frac{\frac{\partial D_0}{\partial \mathbf{k}}}{\frac{\partial D_0}{\partial \omega}}$$
$$\frac{d\mathbf{k}}{dt} = \frac{\frac{\partial D_0}{\partial \mathbf{r}}}{\frac{\partial D_0}{\partial \omega}}$$

Ray damping in phase-space

$$\frac{dP}{dt} = -2\omega_I P$$
$$\omega_I = \frac{1}{(\partial D_0 / \partial \omega)|_{\omega_r}} \sum_p D_I^{(p)}$$

Toroidal effects to ray trajectory

$$\frac{dm}{d\theta} = -\frac{\frac{\partial D_0}{\partial \theta}}{\frac{\partial D_0}{\partial m}} \approx -k_{||} R_0 q(r) \left(1 + \frac{\omega_{pe}^2 / \Omega_e^2}{\epsilon_{\perp}}\right) \frac{(r/R_0) sin\theta}{1 + (r/R_0) cos\theta}$$

$$k_{||} = (\mathbf{k} \cdot \mathbf{B}/B) \approx \frac{m}{r} \frac{B_{\theta}}{B_{\phi}} + \frac{\mathbb{N}}{R}$$

43

Cold plasma dielectric tensor

$$\begin{split} \epsilon &= \begin{bmatrix} \epsilon_{\perp} & -i\epsilon_{xy} & 0 \\ +i\epsilon_{xy} & \epsilon_{\perp} & 0 \\ 0 & 0 & \epsilon_{||} \end{bmatrix} \\ \epsilon_{\perp} &= 1 - \sum_{s} \frac{\omega_{ps}^2}{\omega^2 - \Omega_s^2} \\ \epsilon_{xy} &= \sum_{s} \frac{\Omega_s}{\omega} \frac{\omega_{ps}^2}{\omega^2 - \Omega_s^2} \\ \epsilon_{||} &= 1 - \sum_{s} \frac{\omega_{ps}^2}{\omega^2} \end{split}$$

Ray-tracing validity limit (1)

$$\mathbf{E} = \tilde{\mathbf{E}}(\mathbf{r})e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}$$

$$\boldsymbol{\nabla} \mathbf{E} = \left[i \left(\boldsymbol{\nabla} S \right) \tilde{\mathbf{E}} + \boldsymbol{\nabla} \tilde{\mathbf{E}} \right] e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)} \qquad \boldsymbol{\nabla} S = \mathbf{k}$$

$$\frac{c^2}{\omega^2}(\mathbf{k} - i\mathbf{\nabla}) \times [(\mathbf{k} - i\mathbf{\nabla}) \times \tilde{\mathbf{E}}] + \epsilon \cdot \tilde{\mathbf{E}} = \mathbf{D} \cdot \tilde{\mathbf{E}} = 0$$

If
$$\frac{|\nabla \tilde{\mathbf{E}}|}{|\tilde{\mathbf{E}}|} \ll \mathbf{k}$$
 then ray-tracing valid.

$$\left(\left|\epsilon_{xy}\right| + N_{||}^2\right) \frac{1}{k_{\perp}L} \ll 1$$

k-scattering model validity 1) if $(k_{\perp}/\zeta_0)^2 \gg 1$ then $(k_{\perp}/\zeta_0)^2 < \zeta_0 l_s$

2) if $k_{\perp} \lesssim \zeta_0$ then $\zeta_0 l_s > 1$

Ray trajectories on first-pass

Figure 5.19: Ray-trajectories during first pass through the core. Plotting rays launched with $N_{||0} = 1.6 \pm 0.1$. Ray color denotes \log_{10} of normalized ray power. Green patch denotes near-axis region ($\rho \leq 0.2$).

Sensitivity to choice of EFIT

Figure 6.21: Sensitivity to equilibrium reconstruction model. Plotting simulated current (left) and HXR (right) profiles without scattering. C-Mod discharge #1120608016. Stars: experiment.

Impact of scattering on LHCD saturates

 $ar{\chi}^2$ current density

Initial rotation of ray-trajectory

$$\hat{\mathbf{b}} \cdot (\hat{e}_{\nabla\psi} \times \mathbf{k}_{\perp}) = k_{\perp} \sin \chi$$

$$\begin{split} k_{\rho} &= k_{\perp} \cos \chi \\ k_{\theta} &= k_{||} \frac{B_{\theta}}{B} - k_{\perp} \sin \chi \frac{B_{\phi}}{B} \\ k_{\phi} &= k_{||} \frac{B_{\phi}}{B} + k_{\perp} \sin \chi \frac{B_{\theta}}{B} \end{split}$$

$$\left|\frac{v_{gr,\rho}}{v_{gr,\theta}}\right| \approx \left|\frac{\epsilon_{\perp}k_{\perp}\cos\chi}{\epsilon_{\parallel}k_{\parallel}\frac{B_{\theta}}{B} - \epsilon_{\perp}k_{\perp}\sin\chi\frac{B_{\phi}}{B}}\right|$$

Figure 4.13: Initial ray orientation versus χ . For typical C-Mod launch parameters: $N_{||} = -1.6, B_{\phi} = -4 \text{ T}, B_{\theta} = 0.4 \text{ T}, n_e = 10^{19} \text{ m}^{-3}.$