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The theory of a class of collective modes of a thermonuclear magnetically confined plasma,
with frequencies in the range of the ion-cyclotron frequency and of its harmonics, is presented.
These modes can be excited by their resonant cyclotron interaction with a plasma component
of relatively high-energy particles characterized by a strongly anisotropic distribution in
velocity space. Normal modes that are spatially localized by the inhomogeneity of the plasma
density are found. This ensures that the energy gained by their resonant interaction is not
convected away. The mode spatial localization can be significantly altered by the magnetic
field inhomogeneity for a given class of plasma density profiles. Special attention is devoted to
the case of a spin polarized plasma, where the charged products of fusion reactions are
anisotropically distributed. It is shown that for the mode of polarization that enhances nuclear
reaction rates the tritium will be rapidly depolarized for toroidal configurations with relatively

mild gradients of the confining magnetic field.

I. INTRODUCTION

In a magnetically confined plasma, high-frequency col-
lective modes (in the ion-cyclotron range of frequency) may
be driven unstable by resonant interaction with a high-ener-
gy ion population. Energetic ion populations can arise in
thermonuclear plasmas either as a result of the injection of
fast neutral beams or, more fundamentally, as the charged
products of the fusion reactions. The presence of nonthermal
features in the energetic ion distribution functions, such as
nonmonotonicity and/or anisotropy in velocity space or spa-
tial inhomogeneity, can be the source of the excitation ener-
gy that is necessary to sustain the growth of the mode ampli-
tude.

We note that an analysis of the mode spatial structure
that takes into account the inhomogeneity of a realistic plas-
ma configuration is necessary in order to ascertain the effec-
tive occurrence of this type of instability. In fact, the energy
transfer rate between the energetic ions and the modes, as
derived in the limit of a homogeneous plasma model, is typi-
cally a relatively small quantity. Thus energy convection,
which is often an important factor in the instability of modes
in inhomogeneous configurations, or damping processes at-
tributable to the bulk plasma species, can significantly alter
the energy balance.

In this paper we determine the conditions under which
the high-frequency modes exist as radially localized normal
modesin a toroidal configuration. The problem of the excita-
tion of these modes in the case of a spin polarized plasma is
then addressed, as it is of particular relevance for the investi-
gations on the processes of nuclear spin depolarization. We
recall that the interest in the physics of fusing plasmas with
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polarized nuclear spins has been rekindled recently by the
analysis presented in Ref. 1. In particular, this analysis sug-
gested that a thermonuclear plasma with coherently polar-
ized nuclear spins could maintain its polarization for a time
the order of, or longer than, the particle fusion time. Thus,
control over the spin polarization of the fusing nuclei would
give a series of advantages, ranging from a 50% enhance-
ment' of the fusion rate in a D-T plasma to a more efficient
confinement of the charged fusion reaction products. Addi-
tional advantages would be a more convenient redistribution
of the neutron flux over the chamber walls, of relevance, for
example, to the process of tritium breeding? in a lithium
blanket, or possibly to the achievement of nearly neutron-
free D-He® burning conditions, although this possibility de-
pends on the actual spin dependence of the D-D fusion cross
section, which is still under debate.** An effective mecha-
nism for causing a fast depolarization of the nuclear spin
would be the possible presence in the plasma of collective
magnetic fluctuations at a level above thermal. These can
resonate with the nuclear spin precession frequency and thus
induce spin-flip transitions (see Sec. VI). It was pointed out
in Refs. 6 and 7 that magnetic fluctuations of this type can be
excited in a polarized D-T plasma by an anisotropy in veloc-
ity space of the fusion produced ¢ particles, this anisotropy
being a consequence of the coherent polarization of the
reacting D-T nuclei. In the present paper a detailed analysis
of the conditions for such an excitation in an inhomogenecus
configuration is presented. We find a characteristic value of
the growth rate, divided by the mode frequency, of order
10~ times the relative a-particle density. We also find that
for devices with relatively large values of the inverse aspect
ratio, the bulk ion-cyclotron damping can be important.
High-energy ion populations are also produced in pres-
ent-day experiments where neutral beams are injected to
provide auxiliary heating. In fact, enhanced fluctuations in
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the ion-cyclotron range of frequency have been recently ob-
served in various devices during neutral beam injection ex-
periments.®® An application of our theory to this case, how-
ever, would require a detailed study of the hot-ion
distribution function that results from neutral beam ioniza-
tion processes and of its subsequent evolution. We consider

' this task beyond the scope of this paper. Our presentation is
organized as follows.

" In Sec. II, the relevant modes are discussed in the limit
of a homogeneous plasma model. Two different frequency
ranges are considered for a plasma with two bulk ion species.
In the lower range, the mode frequency is the order of the
ion-cyclotron frequency, and the dispersion relation is com-
plicated by the presence of a cutoff and of a resonance fre-
quency. In the upper range, the mode frequency corresponds
to higher harmonics of the ion-cyclotron frequency, and the
dispersion relation reduces to that of magnetosonic waves.
Subsequently, the presence of mode—particle resonances
with the high energy ions and with the bulk plasma species is
considered, and the relevant expression for the growth
(damping) rate is derived,

In Sec. I1I, the spatial structure of the modes is analyzed
initially from a heuristic dispersion equation derived from
the local dispersion relation given in Sec. II, and then by
gradually increasing the level of complexity, first in a cylin-
drical and then in a toroidal configuration. In the upper fre-
quency range we find that the radially localized normal
mode solutions derived in a cylindrical configuration are
also possible in a toroidal one, provided that the density pro-
file does not belong to a given class. For density profiles in
this case (of which a parabolic density profile is a remark-
able example), the associated modes tend to drift out of the
plasma column. In the lower frequency range the modes are
found to be substantially damped by the resonant electrons
(transit time damping).

In Sec. IV, we adopt the geometrical optics approxima-
tion to describe the normal mode solutions found in Sec. III
and to give a relatively clear graphic representation of var-
ious significant cases.

In Sec. V, we evaluate the growth rate of the relevant
modes in the case where the deuterium and tritium compo-
nents of the fusing plasma are coherently spin polarized, and
the distribution of the produced & particles is anisotropic in
velocity space.

In Sec. VI, we evaluate the rate of spin depolarization as
a function of the mode amplitude and find that, in the pres-
ence of excited modes, the depolarization of the tritium nu-
clei is as fast as the particle confinement time.

In Sec. VII, we summarize our conclusions.

. HOMOGENEOUS MODEL
A. Mode features and dispersion relation

In this section, we refer to a homogeneous, magnetized
plasma with two bulk ion species (for definiteness, we shall
consider a denterium—tritium plasma), in which a small po-
pulation of high energy ions is also present (we shall use a
subscript “A” to denote quantities referring to this “hot”
population).
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We look for electromagnetic modes that can interact
resonantly with the high-energy ions and that are not
damped, or at most only weakly damped, by the bulk plas-
ma. Thus we consider modes with a frequency w close to one
of the harmonics of the hot ion-cyclotron frequency £, i.e.,
o =pA}, , where p is an integer, and with a wave vector com-
ponent k; perpendicular to the equilibrium magnetic field
By, such that k, v, /Q, ~p. Here, v, = (2¢,/m,)""* is a
characteristic velocity of the hot-ion distribution function,
and €, is the corresponding energy. Further, in order to
avoid significant parallel electron Landau damping and
transit-time damping, wc shall focus on modes that have a
vanishing parallel electric field and propagate almost per-
pendicularly to B,

We take the perpendicular fluctuating electric field to be
of the form

E,(r,1) =Eexp[ — (ot —kyz—k,y)] (1)

and describe the bulk plasma response using the cold plasma
conductivity tensor o:

0'—(0.1 0) 2)
=\o o/

Heresmall terms of order (k 7k, )%, w/Q,,and m./m; have
been neglected, oy = iw?, /(47w) and

o _ﬂ( 1 il ) o= _en,r:w2 ;9
< o\—id 1/ 7° B, i=§.’l‘0?—ﬂ)2’
3)
and the polarization factor A (o) = — iE‘,/E’, is given by
3 _pr @0/ (QF —a?)

A = ) , "
4 2. b Td,ﬂ./(.()?'_a)z) (4)

with @; = (n,/n,) the isotopic ratio. From Maxwell equa-
tions and Eq. (2) with | =0, we obtain
drog(1 —A2%) = k%?, (5)
which can be rewritten ag°
2 2_ 02
K(w)—k“z’_ ==t (6)
=0
This dispersion relation describes magnetosonic (compres-
sional, fast Alfvén) waves modified by the so-called ion—ion
hybrid resonance that occurs in a plasma with more than one
ion species. The cutoff frequency ¢ ) and the resonance fre-
quency ), are defined by Q= apfdy +arflp and
Dy, = (N0 0/0)'2, with 0 = apQp +ary. The
Alfvén velocity is given by 7, = (Q,0)"? d,; where
d, =c/w,, is the electron inertial skin depth. In the case
ofa D-T plasma with equal ion species concentrations,
ap =ar =4, so that > =03 and 04, =303. The
components of the wave-perturbed magnetic field are related
through the equations B, =iAB, and ky §" = —k,B,,
with By = — ¢k, /oE, .
When the mode frequency  is above the ion-cyclotron
frequency Q,, (high-frequency range), the dispersion rela-
tion simplifies into the magnetohydrodynamic (MHD) dis-

, persion relation @®=k 25?2, as shown in Fig. 1.

In this frequency range, the wave polarization is ellipti-
cal and the polarization factor A, which can be rewritten as
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Al@) = a(ap D} + ar 0} — o®)/ [ (0, — 0?)], scales
asd(w) ~w/0. Inthe lowfrequencyrangc.w~ﬂn, Oy, the
polarization factor A varies rapidly from right circulard = 1
forw = Qp, Oy, to leftcircularﬂ. = —1form = Q, to lin-
ear, A=0 for &’=ap0} +a;N and A= for
@ = Qy,. Inthe frequency interval between Q2y,, and 0, the
waves are evanescent with k 2 = Oforeo = Qand k * = o for
o=y,

B. Mode-particle resonances

The resonant interaction between the waves and the
high-energy ion population and the damping attributable to
the bulk electrons and ions give an imaginary part to the
frequency. Setting w = @, + iy with ¥ €@, we obtain

dro?(1 4+ 42) €*00, €
k2 w[0K(0)/d0]’

where € = (1,i1)/(1 +1?2)"?, 8o, is the resonant correc-
tion to the conductivity tensor and

2K _ 2{02 1+ 0%, (02— 02,) &)
o Tk o' — 0% )?
i8 a positive quantity.

The electron contribution ¢, is important when the
parallel phase velocity @/k | of the modes is not sufficiently
larger than the electron thermal velocity vy, , and for plas-
mas with finite values of the ratio 8, = 87n,7,/B> The
main contribution to o, [see also Eq. (12} ], is given by
80 = (1/4mr) (0, /©) (k vy ,/Q. )¢, Im Z(L, ), where
$. =w/|ky| vy, and Z({, ) is the plasma dispersion func-
tion. Then the electron damping rate is given by

Yo 7L exp(—L)

€))]
() w 0K /3w
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Thls damping, usually referred to as transit time damp-
ing,'® is the interaction between the electron magnetic mo-
ment x4 and the paralle]l gradient of the mode magnetic
field."!

The bulk ion contribution 8o, + 80'r comes from har-
monics of the cyclotron resonance of the mode with the ions.
Assuming a Maxwellian distribution function for theions we
obtain the damping rate resulting from the i species

Hon et O e,
o n, wdK /o0 k33 kv, )

() (-

for the resonance with the pth cyclotron harmonic. In Eq.
(10) v = (@ — pﬂf)/kl. , and we have taken the limit
b, €1, b = (kyvy,,/Q,)%/2, with vy, = (2T;/m;)"'? the
ion thermal velocity.

Since the density ratio n, /n, is small, only the resonant
part of 6o, need be considered. We calculate the hot-ion
perturbed distribution function f, ; by including the effects
of their density gradient and of their magnetic curvature
drift. These effects are outside the homogeneous model but
are important in the inhomogeneous analysis in the next sec-
tion. To include these effects, it will be sufficient to consider
a slab model with the equilibrium magnetic field along z,
inhomogeneous in the x direction, and with an external force
along x simulating the effect of magnetic curvature. The
equilibrium distribution function of the hot ions can then be
written as f,o =/f,o (64,X), where e=m,v?*/2 and
B=my (¥, — V.4,)?/(2B,) are the energy and magnetic
moment, V.4, is the magnetic curvature drift velocity, and
X=x+uv,/Q, is proportional to the y component of the
canonical momentum. Assuming perturbations of the form
given in Eq. (1) and using Faraday’s equation we obtain
from Vlasov equation

2
Y]

)+p+1] (10)
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(11)

i WPho i 1 3
= —qyl—X —E — —(Vy'E, + v, E|) )——
S q"[mﬂ,,m,, T a)( By 40 By ) - Bpf"o
d F.] kyvj +kevigy ) 1
! » ! — 1—_._-—.——
+J-.”dt (EIV)[BE-'-( ) B, du

where the identity (i/w)(dE/dt) = (1 ~kv/0)E, has
been used and g, is the hot-ion charge. The integration in
Eq. (11) is performed taking p, €r,, wherep, is the hot-ion
gyroradius and r, is the characteristic equilibrium density
scale length. The resulting conductivity tensor is

2
5o, = igk Z J.dg vi (Ifyo)

P=—wm &?—k"lo’" -—pn,,—mnd,,

X(J:f@h) (/& ), )J;(é’;.))
— (p/E W, €M 1 (64) (p’/f?.).f:(ﬁ) ’

(12)
where the operator II is defined by

d kyoy +oanY1 8 k, a
=—4{l-——— '—— _— —

I 6e+( » B, du ul m,o), 3X
(13)

@ean = Kk,Vq, is the magnetic curvature drift frequency,

and J, (£,) and J;(§,) =dJ,(§,)/dE, are Bessel func-

tions of argument £, = k, v, /§}, . Taking the resonant part

of 6a,, in Eq. (12) we obtain the hot-ion contribution to y

n,, mZ ﬂ,,

n, wdK /9w k3D %252

Yy =—

+ o Q
X z (p 1:) J‘dsv5(a) k"v" —pﬂ,,—-a)cd,,)
J. h

p= — >

xﬁ(ﬂmm BEIYITS ) I, .
’l), .

All coefficients in E.q. (14) multiplying I1f, , are posi-
tive definite. In the homogeneous case, the operator II re-
duces to /3¢ + B ' 8 /u=(2/m, )3 /3v?, and the por-
tion of velocity space where IIf,, >0 (instability region)
gives a positive contribution to ¥, . Positive values of df, o/
A4 can occur either for isotropic but nonmonotonic distri-
bution functions, or for anisotropic distribution functions
with a positive slope in the perpendicular direction. A posi-
tive growth rate ,, will result if the parametersw and k) can
be chosen such that, roughly speaking, the resonant surface
lies mainly inside the instability region. For each cyclotron
harmonic, the shape of the p resonant surface is determined
by the resonance condition expressed in the & function of Eq.
(14). The magnetic curvature drift frequency depends on
€4 through the combination € — u/(2B,). Thus, the reso-
nant surfaces in velocity space are given by ellipsoids
(v —v,)? + v2/2 = const, with v, = k, €,/ (m, %, ) and
wgd’l =0ey4 (E= €n, 12 ==0). Ifﬂ,gd" >k"v',, the center of
the ellipsoids approaches the origin in velocity space. In the
opposite limit, the resonant surfaces reduce to a plane
U" = const.

In the inhomogeneous slab model, assuming that only

(14)
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i,ﬁ_a]

wﬂ,, my oxX

i

the density of the high-energy ion population depends on x,

Juo contains a spaual factor that can be written as (1 —x/
rop ), with 7' = (—dlnn,/dx) the characteristic scale

length of the hot ion density. Defining a diamagnetic fre-

quency @, = k, 5/ (0,7, ), the operator Il can be writ-

ten as

g, 1 a
= ( )ae B, du
=_2_(i_&'-_i),
Tm\&? o ot

The presence of a strong density gradient (small 7,,, ) can
then alter the instability region significantly.

1il. NORMAL MODES IN AN INHOMOGENEOUS PLASMA
CONFIGURATION

The ratio ¥, /e derived in the previous section scales as
n, /n,, which is, by hypothesis, a small quantity. The rate at
which energy is transferred to the modes from the high-ener-
gy ion population is therefore slow. Thus, in addition to con-
sidering the changes introduced in the resonant responses of
the bulk species and the hot ions by the plasma inhomogene-
ity, we must ascertain whether the modes of interest exist as
normal modes in a realistic plasma configuration. In fact, a
relatively small rate of spatial convection could be sufficient
to drain away the energy gained through the resonant inter-
action and stabilize the modes.

In order to deal with problems of increasing complexity
in constructing the relevant eigenmodes, we shall first con-
sider a simplified inhomogeneous model that can be viewed
as referring to a torus of large aspect ratio and vanishing
poloidal field. On the basis of the information obtained from
this model, we shall later derive the full dispersion equation
for a realistic toroidal configuration and solve it in the high-
frequency range, i.e., when &’ » O} , Q’, by means of a com-
bined expansion in inverse powers of the poloidal number
and of the aspect ratio.

A. Localized modes

Referring to polar coordinates in the poloidal plane, we
consider the perturbed parallel magnetic field, which we
take in the form B, = B(r,8)exp[ — {(wt — k| 2)], as the
appropriate physical variable.

Then we write the differential form of the dispersion
relation w® = k2 5} heuristically as

19 3% 1 3% o? n(r)y (BY)? =
—r—B +— B = —
rar or P g9* U2, no Bi(r,6)

(15)

where U, o, 715, and B3 are the Alfvén velocity, plasma den-
sity, and magnetic field at the magnetic axis. We take
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JET Experiments [4]

* No significant indication of interaction between a @ = (). mode and the

electron population
* Evidence for interactions [5] involving the electron population that could be

described by (as Q, =Q,)) .
PR, =kV -Q,

with p° = integer and Vi>>V,,.
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Fig. 1. Emission at the harmonics of the “*He cyclotron frequency
measured in a D-T plasma near the time where the neutron
emission is peaking (fig. reproduced from ref. [2]).
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wave. This mode propagates nearly perpendicularly to the magnetic
field at harmonics of the ion cyclotron frequency.

The ion velocity distribution output from the mirror plasma
simulation is shown in Fig. 5b. As the simulation evolves, the modes
grow and one can see a high-energy tail drawn out from the main
ion energy distribution in a time much shorter than the beam slow-
ing down time. This tail is small enough to have a negligible effect
on the macroscopic distribution (that is, the temperature as deter-
mined by a Gaussian fit does not change, as illustrated by the solid
lines), but large enough to have a significant impact on the fusion
reactivity, due to the sensitive dependence of the fusion cross-sec-
tion on particle energy. Figure 5c shows the fusion rate calculated
by numerically summing over binary collisions. It can be seen that

NATURE PHYSICS | VOL 15 | MARCH 2019 | 281-286 | www.nature.com/haturephysics

in 8ps, less than 1/100th of a beam slowing down time, the fusion
reaction rate is increased by a factor of 30 above thermonudear.

Based on the high-energy tail and enhanced fusion observed in
this simulation, we condlude that the beam-driven mode is probably
more active in the mirror plasma than in the core. This localization
may also explain why the fluctuations do not degrade confinement
of the FRC core.

A simple criterion based on Wakefield theory** can be used
to estimate the size of the wave electric field of the saturated ion
Bernstein mode. In Wakefield theory, the mode amplitude satu-
rates at the Tajima—Dawson field, E=m.cw, /e, where m_ is the
electron mass, c is the speed of light, @, is the plasma frequency
and e is the electron charge. Simply put, the maximum velocity a
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locations of the density (coloured horizontal lines) and magnetic field (orange dot). b, Density fluctuation spectra show a clear peak near the ion cyclotron
frequency, w,, at all radii, even those outside the separtrix. ¢, Magnetic fluctuation spectrum, showing that multiple harmonics of o are excited. d, Size

of the density fluctuations relative to the mean density peaks outside the separatrix. Error bars are propagated from the s.d. of the time-averaged line-
integrated density and the 15 error estimate of a Gaussian fit to the frequency spectrum.
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Fig. 4 | Measurements of the energy spectra of charge exchange neutrals
at the edge of the plasma reveal ion acceleration coincident with a t(us)
tise in neutron emission. a—¢, Neutral hydrogen (beam species) energy
spectrum (@), neutral deuterium (plasma species) energy spectrum (b)
and measured (blue with grey error bars representing s.d. of the mean) and
calculated (red) neutron flux (¢). The calculated neutron flux is obtained
from the measured deuterium energy spectrum.

Fig. 5| Simulation of the beam-plasma system reveals the three features
observed in experiment: fluctuations at harmenics of the ion cyclotron
frequency, a high-energy tail on the main ion species and enhanced
neutron production. a, Dispersion relation from PIC simulation of = 0.1
plasma showing the excitation of multiple ion Bemstein modes at harmonics
of the ion cyclotron frequency. b, Plasma ion velocity distributions at =0
(blue) and t =8 ps (red) in the simulation. The Gaussian fits for each time
are plotted as solid lines and overlay each other. ¢, Corresponding neutron
rate, normalized to the thermonuclear rate, as a function of time. The
generated tail enhances the fusion rate by a factor of nearly 30.

particle can obtain from electric field acceleration in a wave period
is the phase velocity. By making the substitutions m,— M, c—v,
and @, — @, we obtain the ion Bernstein analogue, E_,=Mv,w /e,
where M is the deuteron mass, v, is the wave phase velocity and
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Abstract

New tridimensional plasma structures, that are oscillatory and classified as non-separable
ballooning modes, can emerge in inhomogeneous plasmas and undergo resonant mode-particle
interactions, e.g., with a minority population, that can lead them to modify their spatial profiles.
Thus, unlike the case of previously known ballooning modes their amplitudes are not separable
functions of time and space. The relevant resonance conditions are intrinsically different from
those of the well-known Landau conditions for (ordinary) plasma waves: they involve the mode
geometry and affect different regions of the distribution in momentum space at different positions
in configuration space. A process for a transfer of energy among different particle populations is
envisioned.



1. INTRODUCTION

The same factors that make the physics of magnetically confined fusion burning plasmas difficult
to predict provide also the opportunity to identify novel processes extending the range of
meaningful fusion burn conditions which can be achieved beyond those predicted on the basis of
(conventional) thermonuclear fusion theory.

In fact, weakly collisional and well confined plasmas have been found to be strongly influenced
by the presence of collective modes and self-organization processes [1]. In fusion burning regimes,
where the plasma energy is supplied by the charged reaction products, self-organization is
expected to be more important than in present and past experiments where plasma heating is
provided by an external and controlled source. Then new modes or new forms of previously known
modes can be expected to emerge. In particular, given the relevance of novel [2] resonant mode-
particle interactions [3], it is reasonable to expect that the distributions of the reacting nuclei in
momentum space will not remain strictly Maxwellian and that the resulting reaction rates will be
different from those evaluated for (conventional) thermalized plasmas.

The present paper is organized as follows; In Section 2, the topology of non-separable ballooning
modes [4,5] that can be excited in an axisymmetric confinement configuration is described as
geometry plays a key role in the processes identified in later sections. In Section 3, the
magnetosonic modes found for multispecies homogeneous plasmas are introduced in order to
identify the range of plasma parameters for which the theory of modes emerging in inhomogeneous
deuterium — tritium plasmas is developed. In Section 4, the class of mode-particle resonant
interactions that are involved in the transfer of energy from the « - particle population to the
deuterons are identified. In Section 5, the analysis showing that the considered ballooning modes
are localized radially, and their energy is contained, is given. In Section 6, the ballooning profile
along magnetic field lines of the considered modes is derived in the absence of mode-particle
interactions and, in addition, the (novel) conditions for these interactions are introduced and shown
to be intrinsically different from those considered in Section 4, referring to “ordinary” waves. In
Section 7, the intrinsically different time and space dependence of the mode amplitude and profile,
from that of well-known waves, resulting from resonant interactions with a minority particle
population is demonstrated. In Section 8, the amplitudes of the plasma density fluctuations
associated with realistic rates of energy extraction from the emitted « - particle population are
estimated. In Section 9, results from two different sets of experiments are discussed which lend
support to the presented theory. In Section 10, final considerations based on the presented theory
are made.



2. NON-SEPARABLE HIGH FREQUENCY MODES

We refer, for simplicity, to a toroidal plasma with a large aspect ratio, a circular cross section and
high toroidal and poloidal magnetic fields, the former being represented by

B=B, /(1+rc056?/ RO) where R, is the major radius, r the (minor) radial coordinate and 6 the
poloidal angle. Moreover, the assumed poloidal field B, =B,(r) is smaller than B, that is
B2/B?<<1, and |dB,/dr|/|B,|~|dn/dr|/n~1/a, a being the torus minor radius. The
transverse plasma pressure p, =(p, + P, + P; ), is taken to be << BZ /87 . Then, to lowest order
in the small considered parameters, the radial equilibrium condition reduces to

Oz—g(pe+ p, )L—%(J(pBg—JeB(p). 1)

The ballooning modes [4,5] that are introduced for this configuration are represented by plasma
density perturbations of the form

ﬁ:ﬁ(&,r—roo,t)exp(—ia)t—im°0+ino(p), 2)
where m°® and n° are integers,
loi
| >>——, 3
ol >> == (3)
m®| |1 o
—| > == 4
|| ar‘ @

ﬁ(@,r—roo,t) is a non-separable function of t, &, r—r. which is periodic in @ and is radially
localized around the surface r =ry, that is with |(ofi/or)/ A >1/a where a is the plasma minor

radius. Clearly, we are concerned with a special class of ballooning modes. We may then adopt
the “disconnected mode” approximation [5], for |t9| < ,and reduce i to be represented by

ﬁ:ﬁ(e,t)G(r—roo)exp{—ia)t+in°[(p—q(r—ro)cﬂ}, (5)
where q(r)=B,r/[R,B,(r)], a(r=r,)=m/n"=q, and |r, /1, 1| <r,/R,. Then
. B, on . .
B~Vn=qOI;O@G(F—VOO)EXP{—W[HHO[(P—Q(r—ro)ﬂ}- (6)

In particular, we consider A=n,, +n, where fi,, and i, are even and odd functions of &,
respectively,

i, (0 =7)/1, (0=0) <<1, as required for the validity of the disconnected mode

approximation, and the component fi, is not involved in the cold, homogeneous plasma
approximation [6].

3. MULTISPECIES MAGNETOSONIC MODES

The modes that, for an infinite, homogeneous and cold plasma correspond to those under
consideration can be classified as multispecies magnetosonic modes [6]. These are represented by

A=n, exp(—ia)t+ikly+ikuz), where k, corresponds to m®/r,. If we adopt the “disconnected



mode” approximation represented by Eqg. (5), and refer to Eq. (6), ikf, can simulate
[1/(aR,)](ri/00).

Since the modes of interest are those that can extract energy [3] from the « - particle population

produced by the DT fusion reaction, the most appropriate frequency to consider is

m0

W= \_/A:Qa+5a), (7)

r-0
where V7 =[B®/(4zn,my)|(n, +2n, /3)/n,, Q, is the a - particle cyclotron frequency and
|5co| < Q. Referring to the dispersion relation presented in Ref. [3], condition (7) corresponds to
m’ =rw,/c=r/dy >>1
where @}, =47zn,e’ /my, d; =cl/w,, N, N, and n, are the densities of the electron, deuteron
and triton populations. In fact, the cold homogeneous plasma dispersion relation {Eq. (6) in Ref.

[31} is
0~ =
a)Z_—£)2a)2:(ki+kH2)V§’ (8)
Hy

where Q=(n,Q; +n,Qp)/n, O =Q.Q; ((:2/5_)) and Q=(n,Q, +n,Q;)/n. We can verify
that for @ =Q, =5x10°(B/10 T)rad /s, and n, =n, =n/2, o is close to (k? +k’)Vy.

4. “CONVENTIONAL” MODE-PARTICLE RESONANT INTERACTIONS

Referring, for simplicity, to the homogeneous model, we note that the mode-particle resonance

o-Q,+K v, )a =0 is involved in extracting energy [3] from the « - particle population. For

this, significant values of k, p, have to be considered [1], where p, =V, /Q_, V, being the
velocity of the emitted « - particles. We note that, considering n, =ng, the value of k d; is the
main parameter that identifies the relevant limits of the dispersion relation. The ratio

p,1dy =V, IV, iscomputed where V7, = B*/(47m,n, ). In particular,

k,p, = (3.5nD /10%m™ )112 (10 T/B)k,d, and k,d ~1 can correspond to significant value of

k, p, for attainable plasma confinement parameters. Clearly, when referring to the ballooning
modes represented by Eq. (5) m°/r, corresponds to k; .

I I ([l
and the needed two resonances with the two populations will have to involve different k ’s.
Moreover, mode particle resonant interactions with the main body of the electron distribution,
transferring considerable energy to it, are avoided as @, <<Q, <<€, where @, is the average
electron transit frequency. On the other hand, the transfer of energy to the tail of the electron

distribution corresponding to Q, =k v, )e should be considered as a plasma diagnostic means [8]

Referring to the energy absorbing resonance w—Qj, +k, v,) =0 we notice that kv, ) =kyv )a



involving the emission of e.m. radiation at the frequency « = . This has been, in fact, observed
by the DT plasma experiments reported in Ref. [9]. Moreover, since finite values of k, p, are
involved, higher harmonic modes can be excited as well. In the case of the deuterons we have to
consider that, correspondingly, (k, pp )’ <<1.

5. RADIAL CONTAINMENT

The radial localization of the modes we are considering is like that of the waves which were
proposed [9] as being responsible for the experimentally observed e. m. emission at the harmonics
of « - cyclotron frequency. The radial containment of a mode can, in fact, be viewed as a positive
characteristic in view of preventing loss of its energy toward surrounding walls.

As indicated in the previous section we choose to consider mode spatial profiles represented by

f(r—1,,0)=q(r-r)) f(6,r7). In order to evaluate §(r—r’) we neglect the effects of
toroidicity that are included in fz(e ry ). We refer to modes with frequencies =m°Vy /1, where
Ve =B/[4mp(r,)]", p=mn(r)=myn, +mn,, and (mo)2 >>1,

Then, adopting the ideal MHD approximation and following a standard procedure {see Ref. [8]},
based on the same equations considered in Section 6, we are led to find the following equation for

i)

- - §=0 (9)
n

where n, is the peak particle density and (V,‘j)2 =B’ /(4zn,m,). Then o} /(mo)2 can be chosen

in such a way that r’ defined by
(mo )20(\2/20 )2 -1, (10)
Iy 0y
for (Vg )2 = B? /[47rmin(r = )J , and by
(mo )2 @} (1dn
M) e ( _j 0 (12)

3 2| N
() (Vi) mar
falls within the plasma column. In fact, Egs. (10) and (11) imply that

1dn 2
- -_- 12
(n drjrr(? rO0 ( )

Consequently, Eq. (9) reduces to



s L e e LR
for o = o +(0w) . The roelevant soiution is A
2
G = §,exp —;<r;g°o) (14)
where
Al = 3((:::2;2 / 1—(?2 (%%} <<a*, (15)
a is the plasma minor radius and
(00, = o 2 j—:] - (16)

In particular,

2 2
(6), (&
o} m°A,
implies that (m‘))2 > (1 /A,)2 as assumed. As an example, we note that if n=ny(1-r*/a’),

condition corresponds to I, = al~2.

6. INITIAL BALLOONING MODE PROFILE

The derivation of the ballooning mode equation is greatly simplified by the observation made in
Section 3 that modes with @ =Q and kd, ~1 can be described by the relatively simple theory

of magnetosonic modes where both deuterons and tritons can be treated in the limit »* > Q2 . Then
the particle conservation equation

—ioN+nV-0, =0 a7
is combined with the total momentum conservation equation
—io(mpngly, +men.0; ) =-V| p, + b, BB +i(B-VI§+ B-VB) (18)
Az Ar

where the contribution of the « - particle population, considered a minority species, is not included
and N=n, +n, =N,.

Referring to the toroidal configuration introduced in Section 2, we take B =B +AB, where B
is the minimum field corresponding to #=0, B, =B,(1-r/R;). Then
AB/B,=(r/R,)(1-cos@). The equation E+0,xB/c=0 combined with —6B/dot=cVxE
leads to



-iwB=B-V0,-B(V-0,) (19)
that is
-iwB=B(V,d,-V-0,),
where V, =(B/B)-V, and
B i, . .
E :—Z(V'Ue _VHUBII)' (20)
Therefore,
B 1 -
S=oe (V). (21)
Next, considering that S =8z(p,+p;)/B*<<1 we take |ﬁe|~|ﬁi|<<‘l_3>-8/47z‘ and, for
p=hmy (n, +mgn; /m;)/n, obtain
2A 1 .5
a)p——EV (B-B). (22)
Combining this with Eq. (21) we arrive at the mode dispersion equation indicating that
o =(V,,m° /1) +(60°) +(5w”),, where (6w ), can be evaluated referring, for simplicity, to
the surface r=r, =r_ from the solution of the following ballooning equation
Vi (d?p me)

ow*) p(r,0)=——=4m ~VZ |2 — | = (1-cosb) |p(r,,0)=0. 23

( )Zp(o ) (qRO)2£d92j Aml: [ro RO( ) p(o ) ( )
This indicates that the mode is localized over a relatively small angle A&, around =0, that is

14
Ae~;ﬂ2(r—°J <1, (24)
(am®) LR
62
— 25
> j (25)

(26)

p(ro,m:/%(ro)em(—a

(27)

(]

Consequently, the distance along a magnetic field line over which the mode is localized is
AO

Then the solution of Eq. (23) is

where
(28)

and
~ R
L” o 27
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FIG.1 Ballooning mode evolution resulting from (damping) mode-particle resonances with a
Maxwellian distribution. The considered ballooning mode profile is represented by Eq. (23).

Courtesy of A. Cardinali]

Assuming that the « - particle density is relatively small we refer to Eq. (22) and extend it by
adding the contribution of Isa, the perturbed « - particle pressure tensor. Clearly, this can be

derived from the distribution function f, based on an unperturbed f, (ro,vi,v“). Considering the
symmetry in @ of the driving factors of the perturbed fa (see Appendix), this can be split into an

Py

even component of 4, f_ .., and an odd component fHdd. Then the mode-particle resonance

condition is [see Eq. (A-9)]

-1
0=|(6w,)- 020, |+v2 L L Cull (55 )T p2q | Gl (o9
2R, (GR, G, do 2R, do

where G, (6°) represents the ballooning profile of f

1 d°G, 1 0’
~ a2 7| 1= 2 |-
5, 4 jad | ad

For |w,| >> (1, /R,)€2,0° and remembering that |k | can be represented by |6?|/[|A0|2 qORO} , We

As an example, if

G, =exp| -0* I (2]l )]

would have, instead of Eg. (29),

(d0,)" =vi ([ [, [ )=0. (30)
Then, if we define

(Vi) =(0m, ) (R, |A0)),



the resonant v, is given by

1
Vi ) oo = (Vi ) N (31)

Considering the mode-particle resonance conditions represented by Eq. (29) it is clear that the
most effective damping of the mode should correspond to deuteron velocities that are as close as
possible to V, but not so close that the resonating particle densities are too small, as in the case of

particles far out in the tail of a Maxwellian distribution. Thus, a simple mathematical model
incorporating these two requirements indicates that the resonant velocities, for most effective
damping, corresponds to a fraction of V,_ that is in the tail of the deuteron distribution. This is

consistent with the experimental observation reported in Ref [10].
7. EVOLUTION OF BALLOONING MODES

Since the considered mode is contained (standing and localized) in the radial direction [8], this
feature should prevent it from transporting its energy toward the wall surrounding the plasma. The
other important feature is that the mode is of the ballooning type along the magnetic field and as
such it can be viewed as a superposition of modes with the same frequency but propagating along
the field with different phase velocities [2]. In this case the relevant mode-particle interactions that
can produce damping or growth of the mode can affect the height and the width (along the
magnetic field) of the mode ballooning amplitude.

Referring to the combination of growth and damping resulting from the interaction of the
considered modes with the reaction products and the fusing nuclei, we may expect that the modes
will evolve to become purely oscillatory where the growth and damping rates compensate each
other. We expect also that the mode radial profile will change during its evolution as shown by the
following analysis referring to the case where damping prevails. An oscillatory ballooning mode
viewed as a superposition of standing modes having the same frequencies and involving a
continuous spectrum of the relevant phase velocities [2], can be represented by

2 2
A oc exp| — 0 ~—lot |occexp| — ! > —lot |, (32)
2(A0) 2(Al)
where (A6)” <1 and | = Ryq,8. Thus, the superposed waves have the form
exp| 2k’ (A1) =i (@t k)| (33)

If we consider the case analyzed in Section 6, the relevant mode-particle resonance condition, for
|60, | >> (1, I R,)|A6] ©Q,, is
2 2
(6m,)" =(kv,) =0. (34)
Returning to the simpler case where o = @, —iy, (k,z) and y, >0, if the following model for the

damping rate corresponding to all values of k, is assumed
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7o (K7)=27k7 (AI)’, (35)
we find

|2

A oc ;exp{———iw t]
(AD)(L+71)" 2(AIY (1+7t) |

Clearly, this indicates that the resulting mode profile becomes broadened and lowered as t
increases.

Starting from an initial (t = 0) mode profile represented by Eqg. (25) an accurate numerical analysis

(see Fig. 1) of the mode profile evolution has been carried out involving the relevant Landau
damping with a Maxwellian distribution and it has confirmed qualitatively the results obtained
with the model (35). In fact, Eq. (35) can be considered the limit of a less simplified expression
such as

(36)

k2
k2)=27 (Al ——r
7o(K') =27 )1+kﬁ/k;;’

for k' <<k . Since the process of transferring energy from populations with high energy to

populations with lower energies through the excitation of ballooning modes can avoid the
inefficiencies of conventional nonlinear coupling processes [3], further numerical analysis
involving resonances producing both growth and damping on components of the same ballooning
mode is planned. Clearly, the indications of the analysis in Section 6 will have to be considered.

(37)

8. PLASMA FLUCTUATIONS AND POWER DENSITIES

An important question is whether the considered modes will involve acceptable plasma density
fluctuations in order to transfer energy at significant rates from the « - particle population to the
reacting deuterons.

We may consider Q° =1 MW/m® =] /(cm:“s) as a reference value for the power density of the

emitted « - particles and we assume that this is also a reference value for the power density of the
modes driven by their interaction with the emitted o - particles. Then, referring to a homogeneous
plasma model, the corresponding mode amplitudes could be evaluated from

Q, =7.6w
where g, is the energy density of the modes and y,, is the rate of energy extraction from the « -

particle population, and
2

A
A

B __ [&lB
ar  7«|B| 8z

Therefore, the plasma density fluctuations associated with the extracted power density Q_ can be

estimated as
— 1/2
:(Q_j (1.6T]’ 39)
2y, B

7agW = 7/0: (38)

A

B¢
B

A

N
n
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where Q, =Q,/Q°, In<<l and y,<<Q, =2x10°(B/10T)rad/s. Thus, if Q, =1,
B=10T and 2y, =10%s, |A, /n|=1.6><10*3 that is a modest value. Clearly, an estimate of y_,

associated with the resonance (29), will depend on the details of the considered « - particle
distribution. The advantage of adopting high magnetic fields, for a fixed value of Q, /y,, is clear

from Eq. (39). When all the energy extracted from the « - population is transferred to the
deuterons we have

Ny

Q, =P =70éw (40)

where y, is the relevant damping rate.
As a start, we may assume a Maxwellian distribution for the deuterons and consider k’p? <<1
where pZ =2T,/ (mDQfJ) for the relevant perturbations. Given the characteristics of the mode-

particle resonant interactions discussed earlier, one of the difficulty of relying on a homogeneous
plasma model, to have an estimate of y,, is that the result depends on a significant choice for a

representative value of k. In fact, the mode-particle resonances represented by Eq. (29) depends

on @ and the consequence of this is that the mode profile, along the magnetic field, can change as
a function of time as shown by the analysis of Section 7. Therefore, the definitions of y, and y,

will have to be reformulated accordingly. In particular, referring for simplicity to Eq. (30) and
considering that superthermal deuterons should be involved in absorbing the mode energy, we may
take

2
(6Vy) =ag (2T, /my) (41)
with ag; >1. In this case the corresponding mode amplitude is its maximum, as vH)Ees = (5Vph),
is reached at @ =0. On the other hand, if V? >>(5Vph)2 a significant resonance with the « -

particle population is reached for 8 near |A0|2.

Finally, we observe that when considering higher harmonics of ©, the mode-particle resonance
condition (29) is replaced by

0 2 p 1 6
(w_an) V) 2 7| 1- 7 |=0. (42)

(aR,) a6 |ad]
Clearly, the coupling of higher harmonics with the lowest harmonic ( p’ = 1) deserves to be taken

into consideration in view of the features of the perturbed deuteron density and for (k, o )2 <<1.

9. RELEVANT EXPERIMENTAL OBSERVATIONS

Results that are relevant to the theory described in the previous sections have been obtained by a
series of experiments [10] carried out on magnetically confined plasmas with a combined mirror
— FRC confinement configuration. These involved Deuterium plasmas with relatively low
temperatures in which a Hydrogen neutral beam with relatively high energy (30 keV) was injected.
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A large increase of neutron emission, due to DD reactions, was observed. This is clearly due to a
collective mode driven by high energy protons and supplying energy to the tail of the (energy)
distribution of the reacting nuclei. A coherent mode with the Deuteron cyclotron frequency was
observed at the same time. Differently from the theory involving DT plasmas, the cyclotron
frequency of the high energy population is larger than that of the reacting nuclei. On the other
hand, considering that most of the area of the transverse cross section of the plasma column is
subject to an axisymmetric magnetic field distribution of the mirror kind, the emergence of a
ballooning mode [11] of the kind analyzed in the previous section can be envisioned. In this case

the magnetic field near =0, z being the symmetry axis would be of the form B =B, (1+1° /L")

, | being the distance along a given field line. Then the analysis summarized in Section 6 can be
extended [12] to cover this case. Clearly, it would be desirable to conduct parallel experiments on
plasmas with different magnetic confinement configurations.

The first set of experiments with DT plasmas carried out by the JET facility [9] revealed significant
rate of e.m. radiation emission from the lowest to high harmonics of €, . Assuming that modes of

the kind analyzed here were excited, a coupling to e.m. modes with observed frequency and
propagating away from the plasma column should be considered. Since neutrons of non-thermal
origin have also been observed it is conceivable that a fraction of them could be associated with
the excitation of relevant collective modes.

10. FINAL CONSIDERATIONS

Therefore, by identifying and possibly controlling the modes that can increase the reaction rates,
for a given temperature of the electron population, can lead to new perspectives that include D-T
ignition under less restrictive conditions than those usually assumed, utilizing high magnetic field
experiments to reach significant burn conditions with D-D catalyzed reaction, etc. On the other
hand, new experiments will be needed to ascertain the excitation of the considered modes — an
objective that can be pursued even with plasmas that do not contain tritium, as indicated earlier.
Another issue that needs consideration is that of gaining some control on the process by which the
amplitudes of these modes are limited. A damping on a region of the distribution in phase space
of the reacting nuclei which can maximize the plasma reactivity is certainly desirable. In this
context, the technology developed, and the expertise gained in introducing of lon Cyclotron
Resonant Heating (ICRH) systems, may make it possible to interact from outside the plasma
column with the considered modes without the high-power requirements associated with
“conventional” ion cyclotron heating.
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APPENDIX

Driven Distribution Functions

Referring at first to the « - particle population we start from the linearized collisionless
equation

m,c m, c ov
and refer to the coordinates v, and v, in velocity space, where v, =v-B/B, v, =v-Vv,B/B,

V, =V, C0S@, V, =V, sing, v, =v2+v2 and p=tan*(v,/v,). Then
o o.m® . 0 ;
v-Vf, =i—v singf, +v,—f,
r al
O (yxB). 2 f =0, 2 ¥,
m,C ov op

{§+V-V+ % (VXB)~§:| fa(r,v,t)+q—“£fz+ VXB)E f, (v)=0, (A-1)
v

~ 0 A 0 ~ 0
E-— fa(vL,v”)=2El-vLav—i f,+E—f,

ov,
where 8/6l =[1/(q,R,)]0/86 . Moreover



s\ O
(VxB)-avf (v..v,)=0
if we assume for simplicity that f, is isotropic. Consequently, Eq. (A-1) reduces to
m° 0 ; 0

—|a)f +i—vVv smgof +V, — fa -Q, —f
I ol “op “

q - _ o~ . _\ O ~ 0
——2 ¢ E, cosp+E,sin )
ma {( r ¢ 0 ¢) avl a 1| GVH a}

We define
f, (v, v,.@)=4, (Lv,.v,.®)exp(-ix, cosp)
where 4, =(m’/r,)(v,/€,) and find
0 0
[ |a)+v”aljg -Q, 8_‘9
:_:]—Zexp(iya cos@){(lﬁr COS P + Egsin@)a\/iL fa+éllavi”fa}
Next, use g, (I.v,,v,,@)= i g:a,n(l,vu,vl)exp(—ingz) in Eq. (A-4) and obtain

N=—o0

~+00

> (—iawrinQa +V, g]@a (I Vv, )exp(—in@)

q . — 2 _ o~ .. _\ O A 0
=——2exp(iu cos E cosp+E, sinp)|—f +E — f
m p( H, (0){( r 4 0 q))@Vl P 1 8V” a}

o

Now we use the following expressions

D", (u, )exp(-ing) =exp(iu, cosp),

i i"nd,, (1, )exp(—ing) = u, singexp(iu, cosp),

n=—0

i i"J) (1, )exp(—ing)=icos@exp(ix, cosp),

and obtain from Eq. (A- 75)

( iw+inQ), I)é“‘“ exp(—ing)
i Qo

m,

i { )E +ilJn(ua)I§9}8\a/

o

s

Thus

. s O -
f, +|Jn(ya)EHaT fa}exp(—mgo).
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(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

(A-7)
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0 )z
(la)+|nQ +V, Jg (IvH,v r)

5 5 (A-8)
q s+l ’ - . N A A
= J E +i—J E f, +iJ E,—f, ¢
mal { (k) rHﬂa (k) g:|avl *ih (k) "oy, a}
In particular for n=1 and @ =Q_ +dw,
, 0
[—I5a)a +V, aljg (v v,)
1 0 0 (A9)
4. ' = = : =
== {Jl(,ua)ErH aJl(,ua)Eg}aVl 1‘0[+|Jl(y05)E|| o, fa}

Now if we separate §,, into an even and odd functions and take into account the parity of the
r.h.s. of Eg. (A-8) we arrive at the mode-particle resonance (8-4).

Referring to Eq. (A-3) we have
f,(Lv,.v,0)=> éa'n(l V.V, )exp(—ing —iu, cosp). (A-10)

When the expression

+00

exp(—ip, cos@)= _Z (—i)" 3, (1, )exp(im@) (A-11)
is used, Eq. (A-10) gives
_[dgﬁf (Lv,v. @)= 272'2 #,)4, a(bvvy), (A-12)

where §, , (1v,,v, ) is determined by Eq. (A-8).

For the modes that we consider we may take E, =0, E, =Ee, and (o/c)B, =-i(m°/r,)E,

Since B,/Bocfi/n, B, and E, are even functions of 6.

To assess the effect of the mode-particle resonance for the deuteron population we
consider, for simplicity, the homogeneous plasma model. In this case, we refer to Eq. (A-8), where

we take E, =0, 8/4l = ik,, and find f, , the perturbed deuteron distribution function, as

- e & ., exp(—ing —iu,cosep , ~ .n ~ | O
fom e 3 SPC IR R0 )€ 0, ()E, |2 (A1)

My o—nQ, -k Vv, Hp N

where g, =k v, /Qg. Using the expression given by Eq. (A-11), we derive the perturbed
density fi, as
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~ e

fiy, = ky_TDjdvidv f

o o (A-14)
X{ﬂo |:‘]0(ﬂD)J(;(:uD)-i_rDKV”‘]l(ﬂD)Jl’(ﬂD) Ex"'im‘]lz(:uo)lzy},

where f)' is the deuteron Maxwellian distribution. It may be verified that, in the limits z, <<1

and ow, >>Kk Vv, , Eq. (A-14) for i, agrees with the result that is obtained from the fluid equations

(particle and momentum conservation equations). Thus, for stijD/(mDQZD)«l and
following standard procedures,

Im iy ) = —|fig| IMW, (2), (A-15)

where ImW,, (1) =ziexp(-4%) and A =6w, Ik \V,| -



