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Abstract 

New tridimensional plasma structures, that are oscillatory and classified as non-separable 

ballooning modes, can emerge in inhomogeneous plasmas and undergo resonant mode-particle 

interactions, e.g., with a minority population, that can lead them to modify their spatial profiles. 

Thus, unlike the case of previously known ballooning modes their amplitudes are not separable 

functions of time and space. The relevant resonance conditions are intrinsically different from 

those of the well-known Landau conditions for (ordinary) plasma waves: they involve the mode 

geometry and affect different regions of the distribution in momentum space at different positions 

in configuration space. A process for a transfer of energy among different particle populations is 

envisioned.  
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1. INTRODUCTION 

 

The same factors that make the physics of magnetically confined fusion burning plasmas difficult 

to predict provide also the opportunity to identify novel processes extending the range of 

meaningful fusion burn conditions which can be achieved beyond those predicted on the basis of 

(conventional) thermonuclear fusion theory. 

 

In fact, weakly collisional and well confined plasmas have been found to be strongly influenced 

by the presence of collective modes and self-organization processes [1]. In fusion burning regimes, 

where the plasma energy is supplied by the charged reaction products, self-organization is 

expected to be more important than in present and past experiments where plasma heating is 

provided by an external and controlled source. Then new modes or new forms of previously known 

modes can be expected to emerge. In particular, given the relevance of novel [2] resonant mode-

particle interactions [3], it is reasonable to expect that the distributions of the reacting nuclei in 

momentum space will not remain strictly Maxwellian and that the resulting reaction rates will be 

different from those evaluated for (conventional) thermalized plasmas. 

 

The present paper is organized as follows; In Section 2, the topology of non-separable ballooning 

modes [4,5] that can be excited in an axisymmetric confinement configuration is described as 

geometry plays a key role in the processes identified in later sections. In Section 3, the 

magnetosonic modes found for multispecies homogeneous plasmas are introduced in order to 

identify the range of plasma parameters for which the theory of modes emerging in inhomogeneous 

deuterium – tritium plasmas is developed. In Section 4, the class of mode-particle resonant 

interactions that are involved in the transfer of energy from the  - particle population to the 

deuterons are identified. In Section 5, the analysis showing that the considered ballooning modes 

are localized radially, and their energy is contained, is given. In Section 6, the ballooning profile 

along magnetic field lines of the considered modes is derived in the absence of mode-particle 

interactions and, in addition, the (novel) conditions for these interactions are introduced and shown 

to be intrinsically different from those considered in Section 4, referring to “ordinary” waves. In 

Section 7, the intrinsically different time and space dependence of the mode amplitude and profile, 

from that of well-known waves, resulting from resonant interactions with a minority particle 

population is demonstrated. In Section 8, the amplitudes of the plasma density fluctuations 

associated with realistic rates of energy extraction from the emitted  - particle population are 

estimated. In Section 9, results from two different sets of experiments are discussed which lend 

support to the presented theory. In Section 10, final considerations based on the presented theory 

are made. 
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2. NON-SEPARABLE HIGH FREQUENCY MODES  

 

We refer, for simplicity, to a toroidal plasma with a large aspect ratio, a circular cross section and 

high toroidal and poloidal magnetic fields, the former being represented by 

( )0 0/ 1 cos /B B r R+  where 0R  is the major radius, r  the (minor) radial coordinate and   the 

poloidal angle. Moreover, the assumed poloidal field ( )B B r   is smaller than 0B , that is 

2 2

0/ 1B B  , and / / / / 1/dB dr B dn dr n a  , a  being the torus minor radius. The 

transverse plasma pressure ( )e D Tp p p p⊥ ⊥
= + +  is taken to be 2

0 / 8B  . Then, to lowest order 

in the small considered parameters, the radial equilibrium condition reduces to 

( ) ( )
1

0 e ip p J B J B
r c

   ⊥


= − + − −


.                                           (1) 

The ballooning modes [4,5] that are introduced for this configuration are represented by plasma 

density perturbations of the form 

( ) ( )0 0 0

0
ˆ , , expn n r r t i t im in   = − − − + ,                                        (2) 

where 0m  and 0n  are integers, 

1 n

n t






,                                                               (3) 

0

0

0

1m n

r n r





,                                                               (4) 

 

( )0

0, ,n r r t −  is a non-separable function of t ,  , 0

0r r−  which is periodic in   and is radially 

localized around the surface 0

0r r= , that is with ( )/ / 1/n r n a    where a  is the plasma minor 

radius. Clearly, we are concerned with a special class of ballooning modes. We may then adopt 

the “disconnected mode” approximation [5], for   , and reduce n̂  to be represented by 

( ) ( ) ( ) 0 0

0 0
ˆ , expn n t G r r i t in q r r   − − + − −   ,                              (5) 

where ( ) ( )0 0/q r B r R B r   , ( ) 0 0

0 0/q r r m n q= =   and 0

0 0 0 0/ 1 /r r r R−  . Then 

( ) ( ) 0 00
0 0

0 0

ˆ exp
B n

n G r r i t in q r r
q R

  



 − − + − −  

B .                        (6) 

In particular, we consider ev odn n n= +  where evn  and odn  are even and odd functions of  , 

respectively, ( ) ( )ev ev/ 0 1n n  = =  , as required for the validity of the disconnected mode 

approximation, and the component odn  is not involved in the cold, homogeneous plasma 

approximation [6]. 

 

3. MULTISPECIES MAGNETOSONIC MODES 

 

The modes that, for an infinite, homogeneous and cold plasma correspond to those under 

consideration can be classified as multispecies magnetosonic modes [6]. These are represented by 

( )ˆ expkn n i t ik y ik z ⊥= − + + , where k⊥  corresponds to 0

0/m r . If we adopt the “disconnected 
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mode” approximation represented by Eq. (5),  and refer to Eq. (6), 
kik n  can simulate 

( ) ( )01/ /qR n     . 

 

Since the modes of interest are those that can extract energy [3] from the  - particle population 

produced by the DT fusion reaction, the most appropriate frequency to consider is 
0

0

VA

m

r
 =  + ,                                                      (7) 

where ( ) ( )2 2V / 4 2 / 3 /A e D D T eB n m n n n = +  ,   is the  - particle cyclotron frequency and 

   . Referring to the dispersion relation presented in Ref. [3], condition (7) corresponds to 

0

0 0/ / 1pD Dm r c r d    

where 
2 24 /pD D Dn e m = , /D pDd c = , en , Dn  and Tn  are the densities of the electron, deuteron 

and triton populations. In fact, the cold homogeneous plasma dispersion relation {Eq. (6) in Ref. 

[3]} is 

( )
2 2

2 2 2 2

2 2
VA

Hy

k k





⊥

−
= +

−
,                                                 (8) 

where ( ) /D T T Dn n n =  +  , ( )2 /Hy D T =      and ( ) /D D T Tn n n =  +  . We can verify 

that for ( )85 10 /10 /D B T rad s   , and / 2D Tn n n= = , 2  is close to ( )2 2 2VAk k⊥ + .  

 

4. “CONVENTIONAL” MODE-PARTICLE RESONANT INTERACTIONS  

 

Referring, for simplicity, to the homogeneous model, we note that the mode-particle resonance 

)v 0k 
 − + =  is involved in extracting energy [3] from the  - particle population. For 

this, significant values of k ⊥  have to be considered [1], where V /   =  , V  being the 

velocity of the emitted  - particles. We note that, considering T Dn n , the value of Dk d⊥  is the 

main parameter that identifies the relevant limits of the dispersion relation. The ratio 

/ V / VD ADd  =  is computed where ( )2 2V / 4AD D DB m n= . In particular, 

( ) ( )
1/2

21 33.5 /10 10 /D Dk n m T B k d
−

⊥ ⊥  and 1Dk d⊥  can correspond to significant value of 

k ⊥  for attainable plasma confinement parameters. Clearly, when referring to the ballooning 

modes represented by Eq. (5) 0

0/m r  corresponds to k⊥ .  

 

Referring to the energy absorbing resonance )v 0D D
k − + =  we notice that ) )v v

D
k k


 

and the needed two resonances with the two populations will have to involve different k ’s. 

Moreover, mode particle resonant interactions with the main body of the electron distribution, 

transferring considerable energy to it, are avoided as te e    where te  is the average 

electron transit frequency. On the other hand, the transfer of energy to the tail of the electron 

distribution corresponding to )v
e

k =  should be considered as a plasma diagnostic means [8] 
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involving the emission of e.m. radiation at the frequency  = . This has been, in fact, observed 

by the DT plasma experiments reported in Ref. [9]. Moreover, since finite values of k ⊥  are 

involved, higher harmonic modes can be excited as well. In the case of the deuterons we have to 

consider that, correspondingly, ( )
2

1Dk ⊥  . 

 

5. RADIAL CONTAINMENT 

 

The radial localization of the modes we are considering is like that of the waves which were 

proposed [9] as being responsible for the experimentally observed e. m. emission at the harmonics 

of  - cyclotron frequency. The radial containment of a mode can, in fact, be viewed as a positive 

characteristic in view of preventing loss of its energy toward surrounding walls. 

 

As  indicated in the previous section we choose to consider mode spatial profiles represented by 

( ) ( ) ( )0 0

0 0 0, ,n r r g r r f r − = − . In order to evaluate ( )0

0g r r−  we neglect the effects of 

toroidicity that are included in ( )0

0,f r . We refer to modes with frequencies 0 0

0V /Am r  where 

( )
1/20

0V / 4A B r=    , ( )i D D T Tm n r m n m n = = + , and ( )
2

0 1m  . 

 

Then, adopting the ideal MHD approximation and following a standard procedure {see Ref. [8]}, 

based on the same equations considered in Section 6, we are led to find the following equation for 

( )0

0g r r−  

( )

( )

( )
2

02 2

22 2 0
0

0
VA

m n rd g
g

dr r n


 
 − − =
 
 

                                             (9) 

where 0n  is the peak particle density and ( ) ( )
2

0 2

0V / 4A iB n m= . Then ( )
2

2 0

0 / m  can be chosen 

in such a way that 0

0r  defined by 

( ) ( )
2 2

0 0

0

0 2

0 0

V
1

Am

r 
= ,                                                        (10) 

for ( ) ( )
2

0 2 0

0 0V / 4A iB m n r r = =
 

, and by  

( )

( ) ( ) 0
0

2
0 2

0

3 2
0 0

0 0

1
2 0

V r r
A

m dn

n drr



=

 
+ = 

 
                                             (11) 

falls within the plasma column. In fact, Eqs. (10) and (11) imply that 

0
0

0

0

1 2

r r

dn

n dr r=

 
= − 

 
.                                                        (12) 

Consequently, Eq. (9) reduces to 
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( )

( ) ( )
( )

( )

( )

( )
2

0 2 022 2
2 1 000

04 2 22 20 0 0
0 00

6 1 1
0

2V VA A

m n rd g d n
r r g

dr n dr nr


  
  − − − − = 
    

                  (13) 

for ( )2 2 2

0 1
  + . The relevant solution is  

( )
2

0

0

0 2

1
exp

2 r

r r
g g

 −
 = −
 
 

                                                   (14) 

where 

( )

( )

( )
0
0

4 2
0 0 2

0 04 4

2 20

1
/ 1

63
r

r r

r r d n
a

n drm =

 
 

  = −  
  
 

,                                   (15) 

a  is the plasma minor radius and 

( )
0
0

2 2 2

01

1
r

r r

dn

n dr
 

=

 
  

 
.                                                 (16) 

In particular, 

( ) 22 0

01

2 0

0 r

r

m





 
=  

 
 

implies that ( ) ( )
2 2

0 0

0 / rm r    as assumed. As an example, we note that if ( )2 2

0 1 /n n r a− , 

condition corresponds to 
0

0 / 2r a= . 

 

6. INITIAL BALLOONING MODE PROFILE 

 

The derivation of the ballooning mode equation is greatly simplified by the observation made in 

Section 3 that modes with D   and 1Dkd  can be described by the relatively simple theory 

of magnetosonic modes where both deuterons and tritons can be treated in the limit 2 2

D  . Then 

the particle conservation equation 

ˆ ˆ 0ei n n− + u                                                             (17) 

is combined with the total momentum conservation equation 

( ) ( )
ˆ 1 ˆ ˆˆ ˆ ˆ ˆ
4 4

D D D T T T e ii m n m n p p
 

 
− + = − + + +  +  

 

B B
u u B B B B                (18) 

where the contribution of the  - particle population, considered a minority species, is not included 

and ˆ ˆ ˆ ˆ
D T en n n n= + = . 

 

Referring to the toroidal configuration introduced in Section 2, we take mB B B+ , where mB  

is the minimum field corresponding to 0 = , ( )0 01 /mB B r R− . Then 

( )( )0 0/ / 1 cosB B r R  − . The equation ˆ ˆ / 0e c+  =E u B  combined with ˆ ˆ/ t c−  = B E  

leads to 
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( )ˆ ˆ ˆ
e ei− =  − B B u B u                                                  (19) 

that is 

( )ˆ ˆ ˆ
e ei B B u− =  −u , 

where ( )/ B = B , and 

( )
ˆ

ˆ ˆ
e e

B i
u

B 
= −  −u .                                                  (20) 

Therefore, 

( )
ˆ ˆ

ˆ
e

B n i
u

B n 
= +  .                                                     (21) 

 

Next, considering that ( ) 28 / 1e ip p B  +   we take ˆˆ ˆ / 4e ip p  B B  and, for 

( )ˆ ˆ / /D D D T Tnm n m n m n = + , obtain 

( )2 21 ˆˆ
4

 


−  B B .                                                   (22) 

Combining this with Eq. (21) we arrive at the mode dispersion equation indicating that 

( ) ( ) ( )
2

2 0 2 2

0 1 2
V /Amm r  = + + , where ( )2

2
  can be evaluated referring, for simplicity, to 

the surface 0

0 0r r r=  from the solution of the following ballooning equation 

( ) ( )
( )

( ) ( )
2

2 2 0
2 2 0

0 02 22
0 00

V
, V 2 1 cos , 0Am

Am

rd m
r r

d r RqR


     



   
 − − −  
     

.        (23) 

This indicates that the mode is localized over a relatively small angle  , around 0 = , that is 

( )

1/4

0

1/2
0

0

1
1

r

Rqm


 
  

 
.                                                (24) 

Then the solution of Eq. (23) is 

( ) ( )
2

0 0, exp
2

r r


   
 
− 
 

                                             (25) 

where 

( )
2

2 0 0

0

R
m q

r
 =                                                        (26) 

and 

( )
2

2

2
0

VAm

qR


 
=  
 

.                                                     (27) 

Consequently, the distance along a magnetic field line over which the mode is localized is 

0
2

L qR





.                                                         (28) 
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FIG.1 Ballooning mode evolution resulting from (damping) mode-particle resonances with a 

Maxwellian distribution. The considered ballooning mode profile is represented by Eq. (23). 

Courtesy of A. Cardinali] 

 

Assuming that the  - particle density is relatively small we refer to Eq. (22) and extend it by 

adding the contribution of ˆ
P , the perturbed  - particle pressure tensor. Clearly,  this can be 

derived from the distribution function f̂  based on an unperturbed ( )2

0 , v , vf r ⊥
. Considering the 

symmetry in   of the driving factors of the perturbed f̂  (see Appendix), this can be split into an 

even component of  , ˆ
evenf− , and an odd component ˆ

oddf− . Then the mode-particle resonance 

condition is [see Eq. (A-9)] 

( )
( )

( )
1

2 2 20 0

2

0 00 0

1 1
0 v

2 2

r dG r dG

R G d R dq R

 
   



   
 

−     
= −  + −     
     

,         (29) 

where ( )2G   represents the ballooning profile of ˆ
evenf− . As an example, if 

( )22exp / 2G   = − 
 

, 

2 2

2 22

1 1
1

d G

G d







  

 
= −  − 

   

. 

For ( ) 2

0 0/r R     and remembering that k  can be represented by 
2

0 0/ q R  
 

, we 

would have, instead of Eq. (29), 

( ) ( )2 22 2

max
v 0k k − − = .                                            (30) 

Then, if we define 

( ) ( )( )0 0Vph q R    , 

0

0.5

1

1.5

2

2.5

3

-4 -3 -2 -1 0 1 2 3 4

run 7173E
z
(z)

z

t=0
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the resonant v  is given by 

) ( )
2

2

22Re

1
v V

1 /
phs


 

=
− 

.                                              (31) 

 

Considering the mode-particle resonance conditions represented by Eq. (29) it is clear that the 

most effective damping of the mode should correspond to deuteron velocities that are as close as 

possible to V  but not so close that the resonating particle densities are too small, as in the case of 

particles far out in the tail of a Maxwellian distribution. Thus, a simple mathematical model 

incorporating these two requirements indicates that the resonant velocities, for most effective 

damping, corresponds to a fraction of V  that is in the tail of the deuteron distribution. This is 

consistent with the experimental observation reported in Ref [10].  

 

7. EVOLUTION OF BALLOONING MODES 

 

Since the considered mode is contained (standing and localized) in the radial direction [8], this 

feature should prevent it from transporting its energy toward the wall surrounding the plasma. The 

other important feature is that the mode is of the ballooning type along the magnetic field and as 

such it can be viewed as a superposition of modes with the same frequency but propagating along 

the field with different phase velocities [2]. In this case the relevant mode-particle interactions that 

can produce damping or growth of the mode can affect the height and the width (along the 

magnetic field) of the mode ballooning amplitude. 

 

Referring to the combination of growth and damping resulting from the interaction of the 

considered modes with the reaction products and the fusing nuclei, we may expect that the modes 

will evolve to become purely oscillatory where the growth and damping rates compensate each 

other. We expect also that the mode radial profile will change during its evolution as shown by the 

following analysis referring to the case where damping prevails. An oscillatory ballooning mode 

viewed as a superposition of standing modes having the same frequencies and involving a 

continuous spectrum of the relevant phase velocities [2], can be represented by 

( ) ( )

2 2

2 2
ˆ exp exp

2 2

l
n i t i t

l


 



   
 − −  − −   

       

,                              (32) 

where ( )
2

1   and 0 0l R q = . Thus, the superposed waves have the form 

( ) ( )
22exp 2 l lk l i t k l −  − −

 
.                                             (33) 

If we consider the case analyzed in Section 6, the relevant mode-particle resonance condition, for 

( )
2

0 0/r R     , is 

( ) ( )
22

v 0lk − = .                                                     (34) 

Returning to the simpler case where ( )2

0 d li k  = −  and 0d  , if the following model for the 

damping rate corresponding to all values of lk  is assumed  
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( ) ( )
22 22d l lk k l =  ,                                                    (35) 

we find 

( )( ) ( ) ( )

2

01/2 2

1
ˆ exp

1 2 1

l
n i t

l t l t


 

 
 − − 

 +  +  

.                              (36) 

 

Clearly, this indicates that the resulting mode profile becomes broadened and lowered as t  

increases. 

Starting from an initial ( )0t =  mode profile represented by Eq. (25) an accurate numerical analysis 

(see Fig. 1) of the mode profile evolution has been carried out involving the relevant Landau 

damping with a Maxwellian distribution and it has confirmed qualitatively the results obtained 

with the model (35). In fact, Eq. (35) can be considered the limit of a less simplified expression 

such as 

( ) ( )
2

22

4 4
2

1 /

l
d l

l M

k
k l

k k
 = 

+
,                                               (37) 

for 4 4

l Mk k . Since the process of transferring energy from populations with high energy to 

populations with lower energies through the excitation of ballooning modes can avoid the 

inefficiencies of conventional nonlinear coupling processes [3], further numerical analysis 

involving resonances producing both growth and damping on components of the same ballooning 

mode is planned. Clearly, the indications of the analysis in Section 6 will have to be considered. 

 

8. PLASMA FLUCTUATIONS AND POWER DENSITIES 

 

An important question is whether the considered modes will involve acceptable plasma density 

fluctuations in order to transfer energy at significant rates from the   - particle population to the 

reacting deuterons. 

We may consider ( )0 3 31 MW/ /Q m J cm s = =  as a reference value for the power density of the 

emitted   - particles and we assume that this is also a reference value for the power density of the 

modes driven by their interaction with the emitted   - particles. Then, referring to a homogeneous 

plasma model, the corresponding mode amplitudes could be evaluated from 

WQ    

where W  is the energy density of the modes and   is the rate of energy extraction from the   - 

particle population, and 
2

2
2ˆ ˆ

2
4 8

k
k

W

B B B

B
     

 
= = .                                            (38) 

Therefore, the plasma density fluctuations associated with the extracted power density Q  can be 

estimated as 
1/2

ˆˆ 1.6 

2

k kn B Q T

n B B





   
   

  
,                                             (39) 
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where 0/Q Q Q   , ˆ / 1kn n   and ( )82 10 /10 /B T rad s     . Thus, if 1Q
, 

10 B T  and 42 10 s , 
3ˆ / 1.6 10kn n −  that is a modest value. Clearly, an estimate of  , 

associated with the resonance (29), will depend on the details of the considered   - particle 

distribution. The advantage of adopting high magnetic fields, for a fixed value of /Q  , is clear 

from Eq. (39). When all the energy extracted from the   - population is transferred to the 

deuterons we have 

abs D WQ P  = =                                                          (40) 

 

where D  is the relevant damping rate.  

As a start, we may assume a Maxwellian distribution for the deuterons and consider 2 2 1Dk ⊥   

where ( )2 22 /D D D DT m =   for the relevant perturbations. Given the characteristics of the mode-

particle resonant interactions discussed earlier, one of the difficulty of relying on a homogeneous 

plasma model, to have an estimate of D , is that the result depends on a significant choice for a 

representative value of k . In fact, the mode-particle resonances represented by Eq. (29) depends 

on   and the consequence of this is that the mode profile, along the magnetic field, can change as 

a function of time as shown by the analysis of Section 7. Therefore, the definitions of   and D  

will have to be reformulated accordingly. In particular, referring for simplicity to Eq. (30) and 

considering that superthermal deuterons should be involved in absorbing the mode energy, we may 

take 

( ) ( )
2

V 2 /ph ST D DT m                                                    (41) 

with 1ST  . In this case the corresponding mode amplitude is its maximum, as ) ( )
Re

v V
D

phs
= , 

is reached at 0 = . On the other hand, if ( )
2

2V Vph   a significant resonance with the  - 

particle population is reached for 2  near 
2

 .  

 

Finally, we observe that when considering higher harmonics of   the mode-particle resonance 

condition (29) is replaced by 

( )
( )

2
2

0 2

2 22

0 0

1
v 1 0p

q R





 

 
−  −  −  =

   

.                                (42) 

Clearly, the coupling of higher harmonics with the lowest harmonic ( )0 1p =  deserves to be taken 

into consideration in view of the features of the perturbed deuteron density and for ( )
2

1Dk ⊥  . 

 

9. RELEVANT EXPERIMENTAL OBSERVATIONS 

 

Results that are relevant to the theory described in the previous sections have been obtained by a 

series of experiments [10] carried out on magnetically confined plasmas with a combined mirror 

– FRC confinement configuration. These involved Deuterium plasmas with relatively low 

temperatures in which a Hydrogen neutral beam with relatively high energy (30 keV) was injected. 
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A large increase of neutron emission, due to DD reactions, was observed. This is clearly due to a 

collective mode driven by high energy protons and supplying energy to the tail of the (energy) 

distribution of the reacting nuclei. A coherent mode with the Deuteron cyclotron frequency was 

observed at the same time. Differently from the theory involving DT plasmas, the cyclotron 

frequency of the high energy population is larger than that of the reacting nuclei. On the other 

hand, considering that most of the area of the transverse cross section of the plasma column is 

subject to an axisymmetric magnetic field distribution of the mirror kind, the emergence of a 

ballooning mode [11] of the kind analyzed in the previous section can be envisioned. In this case 

the magnetic field near 0z = , z  being the symmetry axis would be of the form ( )2 2

0 1 /B B l L+

, l  being the distance along a given field line. Then the analysis summarized in Section 6 can be 

extended [12] to cover this case. Clearly, it would be desirable to conduct parallel experiments on 

plasmas with different magnetic confinement configurations. 

 

The first set of experiments with DT plasmas carried out by the JET facility [9] revealed significant 

rate of e.m. radiation emission from the lowest to high harmonics of  . Assuming that modes of 

the kind analyzed here were excited, a coupling to e.m. modes with observed frequency and 

propagating away from the plasma column should be considered. Since neutrons of non-thermal 

origin have also been observed it is conceivable that a fraction of them could be associated with 

the excitation of relevant collective modes. 

 

10. FINAL CONSIDERATIONS 

 

Therefore, by identifying and possibly controlling the modes that can increase the reaction rates, 

for a given temperature of the electron population, can lead to new perspectives that include D-T 

ignition under less restrictive conditions than those usually assumed, utilizing high magnetic field 

experiments to reach significant burn conditions with D-D catalyzed reaction, etc. On the other 

hand, new experiments will be needed to ascertain the excitation of the considered modes – an 

objective that can be pursued  even with plasmas that do not contain tritium, as indicated earlier. 

Another issue that needs consideration is that of gaining some control on the process by which the 

amplitudes of these modes are limited. A damping on a region of the distribution in phase space 

of the reacting nuclei which can maximize the plasma reactivity is certainly desirable. In this 

context, the technology developed, and the expertise gained in introducing of Ion Cyclotron 

Resonant Heating (ICRH) systems, may make it possible to interact from outside the plasma 

column with the considered modes without the high-power requirements associated with 

“conventional” ion cyclotron heating.  
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APPENDIX 

 

Driven Distribution Functions 

 

Referring at first to the  - particle population we start from the linearized collisionless 

equation 

( ) ( ) ( )
ˆ

ˆ ˆ, , 0
q q

f t f
t m c m c

 
 

 

     
+  +   + +  =  

     

v B
v v B r v E v

v v
,          (A-1) 

and refer to the coordinates v  and v⊥  in velocity space, where v / B v B , v / B⊥  −v v B , 

v v cosr ⊥= , v v sin ⊥= , 2 2v v vr ⊥ = +  and ( )1tan v / vr −= . Then 

0

0

ˆ ˆ ˆv sin v
m

f i f f
r l

  ⊥


 = +


v  

( ) ˆ ˆq
f f

m c


  

 

 
  = −

 
v B

v
 

( ) 2
ˆ ˆ ˆv , v 2

v v
f f E f  ⊥ ⊥ ⊥

⊥

  
 =  +
  

E E v
v

 

where ( )0 0/ 1/ /l q R       . Moreover 



14 
 

( ) ( )ˆ v , v 0f ⊥


  =


v B

v
 

if we assume for simplicity that f  is isotropic. Consequently, Eq. (A-1) reduces to 

( )

0

0

ˆ ˆ ˆ ˆv sin v

ˆ ˆ ˆcos sin .
v v

r

m
i f i f f f

r l

q
E E f E f

m

    


  



 


 

⊥

⊥

 
− + + −

 

   
= − + + 

   

                             (A-2) 

We define 

( ) ( ) ( )ˆ ˆ,v , v , ,v , v , exp cosf l g l i     ⊥ ⊥ −                          (A-3) 

where ( )( )0

0/ v /m r  ⊥   and find 

( ) ( )

ˆ ˆv

ˆ ˆ ˆexp cos cos sin
v v

r

i g g
l

q
i E E f E f

m

  


   






   
⊥

  
− + − 

  

   
= − + + 

   

                 (A-4) 

Next, use ( ) ( ) ( ),
ˆˆ ˆ,v , v , ,v , v expn

n

g l g l in  
+

⊥ ⊥

=−

= −  in Eq. (A-4) and obtain 

( ) ( )

( ) ( )

,
ˆ̂v ,v , v exp

ˆ ˆ ˆexp cos cos sin
v v

n

n

r

i in g l in
l

q
i E E f E f

m

 


   



 

   

+

⊥

=−

⊥

 
− +  + − 

 

   
= − + + 

   


                 (A-5)               

Now we use the following expressions 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

exp exp cos ,

exp sin exp cos ,

exp cos exp cos ,

n

n

n

n

n

n

n

n

n

i J in i

i nJ in i

i J in i i

 

  

 

   

     

    

+

=−

+

=−

+

=−

− =

− =

 − =







                           (A-6)                                            

and obtain from Eq. (A-5), 

( )

( ) ( ) ( ) ( )

,
ˆ̂v exp

ˆ ˆ ˆ exp .
v v

n

n

n

n r n n

n

i in g in
l

q n
i i J E i J E f iJ E f in

m

 


     

 

 

   


+

=−

+

=− ⊥

 
− +  + − 

 

     
= + + −  

    





  (A-7) 

Thus 
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( )

( ) ( ) ( )

,

1

ˆ̂v ,v , v ,

ˆ ˆ ˆ .
v v

n

n

n r n n

i in g l
l

q n
i J E i J E f iJ E f

m

 


     

 



  


⊥ ⊥

+

⊥

 
− +  + 

 

     
= + +  

    

r

             (A-8) 

In particular for 1n =  and   = +  

( )

( ) ( ) ( )

,1

1 1 1

v ,v , v

1
.

v v
r

i g l
l

q
J E i J E f iJ E f

m

 


     

 



  


⊥

⊥

 
− + 

 

     
= − + +  

    

               (A-9) 

Now if we separate 
,1g  into an even and odd functions and take into account the parity of the 

r.h.s. of Eq. (A-8) we arrive at the mode-particle resonance (8-4). 

 

Referring to Eq. (A-3) we have 

( ) ( ) ( ),
ˆˆ ˆ,v , v , ,v , v exp cosn

n

f l g l in i     
+

⊥ ⊥

=−

= − − .                         (A-10) 

When the expression 

( ) ( ) ( ) ( )exp cos exp
m

m

m

i i J im    
+

=−

− = −                              (A-11) 

is used, Eq. (A-10) gives 

( ) ( ) ( ) ( ),
ˆˆ ˆ,v , v , 2 ,v , v

n

n n

n

d f l i J g l     
+

⊥ ⊥

=−

= − ,                      (A-12) 

where ( ),
ˆ̂ ,v , vng l ⊥  is determined by Eq. (A-8).  

For the modes that we consider we may take ˆ 0E = , ˆ ˆ
r rE⊥E e  and ( ) ( )0

0
ˆ ˆ/ / rc B i m r E − . 

Since ˆ ˆ/ /B B n n  , B̂  and ˆ
rE  are even functions of  . 

To assess the effect of the mode-particle resonance for the deuteron population we 

consider, for simplicity, the homogeneous plasma model. In this case, we refer to Eq. (A-8), where 

we take 0zE = , / l ik  = , and find Df , the perturbed deuteron distribution function, as 

 

( )
( ) ( )

exp cos

v v

Dn M

D n D x n D y D

nD D D

in ie n
f i J E i J E f

m n k

  
 

 

+

=− ⊥

− −   
= − + 

−  −  
     (A-13) 

 

where v /D y Dk ⊥  . Using the expression given by Eq. (A-11), we derive the perturbed 

density Dn  as 
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( ) ( ) ( ) ( ) ( )

2

2

0 0 1 1 1

v v

    ,
v v

M

D D

y D

D D
D D D D D x D y

e
n d d f

k T

J J J J E i J E
k k 



     
 

⊥

    
  + +  

− −    


 (A-14)     

 

where M

Df  is the deuteron Maxwellian distribution. It may be verified that, in the limits 1D   

and vk  , Eq. (A-14) for Dn  agrees with the result that is obtained from the fluid equations 

(particle and momentum conservation equations). Thus, for ( )2 2/ 1D y D D Db k T m    and 

following standard procedures, 

 

( ) ( )Im ImD D Dn n W − ,                                       (A-15) 

 

where ( ) ( )2Im expDW   = −  and / Vth D
k  . 


