Greg Riggs¹, M. Koepke¹, W. Heidbrink², M. A. Van Zeeland³, D. Spong⁴, Y. Ghai⁴

¹West Virginia University, WV, USA ²University of California Irvine, CA, USA ³General Atomics, CA, USA ⁴Oak Ridge National Laboratory, TN, USA

Time-resolved biphase signatures of quadratic nonlinearity observed in coupled eigenmodes on the DIII-D tokamak

Partial financial support from NNSA-JPHEDP grant DE-NA0003874 and DOE-FES grant DE-SC0021404 is gratefully acknowledged. GR and MK express deep gratitude to the DIII-D team for necessary support and impactful collaboration during this project.

Why are we here?

Understanding the **mechanism of saturation** in toroidicity induced Alfven eigenmodes (TAEs) is crucial for the success of next-generation fusion devices such as ITER

Previous work [e.g., Todo 2018, *Reviews of Modern Plasma Physics*] has suggested **nonlinear mode-mode coupling** as a viable explanation for overestimates of saturation amplitude in models

Transport of energetic ions facilitated by coupling with TAEs may detrimentally affect reactor output by reducing confinement time, damaging vessel walls, etc.

Interaction of counter-propagating cylindrical modes furnishes frequency gap^{1,2}

Experiment scanned energetic particle drive with NBI in low-field (1.25 T) configuration

Experiment scanned energetic particle drive with NBI in low-field (1.25 T) configuration

Bispectral analysis detects complementary phase relationships between frequency triples¹³

Average of Fourier-transformed triple correlation is auto-bispectrum

$$egin{aligned} & C_{xxx}(t_1,t_2) \ = \ \int_{-\infty}^{\infty} x(au+t_1) \, x(au+t_2) \, x(au) \, d au \ & egin{aligned} & eta_{xxx}(f_1,f_2) \ = \ \hat{x}(f_1) \, \hat{x}(f_2) \, \overline{\hat{x}(f_1+f_2)} \ & eta_{xxx}(f_1,f_2) \ & eta_{xxxx}(f_1,f_2) \ & eta_{xxxx}(f_1,f_2) \ & eta_{xxxx}$$

Squared bicoherence given by Cauchy-Schwarz inequality:

$$b_{xxx}^2(f_1,f_2) \,=\, rac{\left| {\mathcal B}_{xxx}(f_1,f_2)
ight|^2}{ ig\langle \left| \hat x(f_1) \hat x(f_2)
ight|^2 ig
angle ig\langle \left| \hat x(f_1+f_2)
ight|^2 ig
angle} \in [0,1]$$

Bispectral analysis detects complementary phase relationships between frequency triples¹³

Average of Fourier-transformed triple correlation is auto-bispectrum

$$C_{xxx}(t_1, t_2) = \int_{-\infty}^{\infty} x(\tau + t_1) x(\tau + t_2) x(\tau) d\tau$$

Simple model for amplitude:
 $rac{d\hat{x}_j}{dt} = \gamma_j \hat{x}_j + \sum_{j_1+j_2=j} \Lambda_{j_j j_2} \hat{x}_{j_1} \hat{x}_{j_2}}{\hat{x}_{j_1} \hat{x}_{j_2}} \hat{x}_{j_1} \hat{x}_{j_2}} = \hat{\mathcal{X}}(f_1, f_2) = \hat{x}(f_1) \hat{x}(f_2) \overline{\hat{x}(f_1 + f_2)}$
 $\mathcal{B}_{xxx}(f_1, f_2) = \hat{\mathcal{B}}_{xxx}(f_1, f_2) \left| e^{i \widehat{\mathcal{B}}(f_1, f_2)} \right| e^{i \widehat{\mathcal{B}}(f_1, f_2)} \Big\rangle \in \mathbb{C}$
 $\frac{d^2}{dt} |\hat{x}_j|^2 = 2\gamma_j |\hat{x}_j|^2$
 $+ \sum_{j_1+j_2=j} \Lambda_{j_j j_2} \hat{x}_{j_1} \hat{x}_{j_2} \hat{x}_{j_1+j_2} + \text{c.c.}$ biven by Cauchy-Schwarz inequality:
 $b_{xxx}^2(f_1, f_2) = \frac{\left| \mathcal{B}_{xxx}(f_1, f_2) \right|^2}{\left\langle \left| \hat{x}(f_1) \hat{x}(f_2) \right|^2 \right\rangle \left\langle \left| \hat{x}(f_1 + f_2) \right|^2 \right\rangle} \in [0, 1]$

Phase or amplitude modulation require careful interpretation

Quadratic nonlinearity contributes coherent sum and difference frequencies

9

Quadratic coupling found to correlate with n=1 chirping in saturated density regime

Quadratic coupling found to correlate with n=1 chirping in saturated density regime

Uncertainty quantified with ensemble of random-phase realizations

Changes in TAE amplitude coincident with signatures of quadratic nonlinearity

Mode number analysis consistent with $n_3 = |n_1 - n_2|$

Period of stationary biphase correlates with enhanced local bispectral modulus

Changes in TAE amplitude coincident with signatures of quadratic nonlinearity

Mode number analysis consistent with $n_3 = |n_1 - n_2|$

Period of stationary biphase correlates with enhanced local bispectral modulus

Low-frequency fluctuation is attenuated as TAEs continue to grow

(5th order Butterworth filter)

a

Phase coherence observed between beat dynamics and low-frequency fluctuation

Phase coherence observed between beat dynamics and low-frequency fluctuation

Parity of biphase/π corresponds to sign of coupling coefficient

Parity of biphase/π corresponds to sign of coupling coefficient

BES data indicate that TAEs and low-frequency fluctuations are co-located

Multipow tool supports overlap of eigenmodes

t=[980,982] ms

Mode determination confirmed by X² analysis⁶

t=[980,982] ms

t=[984,986] ms

[6] Strait, E. 2006, RSI 77(2): 023502

Comparison with Alfven continuum reinforces results

²³

What have we found?

- **Quadratic coupling is consistently identified** on sub-millisecond timescales
- Onset of nonlinearity is **precipitated by growth of TAEs**
- Subsequent changes in TAE amplitudes are **correlated with** duration of quadratic nonlinearity
- **Energy transfer to or from low-frequency modes** is hypothesized to be facilitated by nonlinearities
- **Technique amenable to automation**; may be relevant to machine learning-driven feedback control

What's next???

- Submit paper (**PoP**), just passed R&A @ GA!
- Determine **direction of energy transfer** during nonlinearity
- Quantify **role of nonlinear coupling** and energy transfer in mediating saturated amplitude of TAEs
- Quantify changes in TAE spectra and neutron rate in context of NBI program
- Leverage **FAR3d and TRANSP simulations** to provide insight into wave-wave and wave-particle interactions
- **Correlate fluctuations** in density and magnetic field with perturbations in fast-ion distribution function / Infer **transport**

Causality determination attempted with crosscorrelation analysis¹⁸

26

Beam program conveniently samples range of eigenmode activity

Beam program conveniently samples range of eigenmode activity

Local wavenumber-frequency spectrum estimated from BES fluctuations and cross-phase

[9] Beall, J., Kim, Y., & Powers, E., 1982, Journal of Applied Physics, 53(6), 3933-3940

$$S(k,f) = \frac{1}{M} \sum_{i=1}^{M} I_{\Delta k} [k - k_i(f)] \times \frac{1}{2} [S_1^i(f) + S_2^i(f)]$$

$$I_{\Delta k} [k - k_i(f)] = \begin{cases} 1, & |k - k_i(f)| \leq \Delta k/2 \\ 0, & \text{elsewhere} \end{cases}$$

$$k_i(f) = \Delta \theta_{1,2}^i(f) / \Delta x$$

$$\int \int \int dx = \int$$

 $q_{\Lambda}/2E_fm_f$

FAR3d simulations report similar fluctuations in radial particle flux, magnetics, and phi

Thanks for your time! email: gariggs@mix.wvu.edu

Questions?

What kind of plasma are we talking about?

D
$$(m_i = 2m_p)$$

 $n_e \sim 2 \times 10^{13} \text{ cm}^{-3}$
 $n_i \sim 2 \times 10^{13} \text{ cm}^{-3}$
 $T_e \sim 1 \text{ keV}$
 $T_i \sim 1 \text{ keV}$
B $\sim 1.25 \text{ T}$
 $I_p \sim 0.7 \text{ MA}$

Fundamentals

$$\begin{split} &\Omega_{i}/2\pi ~~ 9.5 ~\text{MHz} ~~ \omega_{\text{p},i}/2\pi ~~ 640 ~\text{MHz} \\ &\Omega_{\text{e}}/2\pi ~~ 35 ~\text{GHz} ~~ \omega_{\text{p},e}/2\pi ~~ 40 ~\text{GHz} \\ &\lambda_{\text{D},i} ~~ 50 ~\mu\text{m} ~~ \varrho_{i} ~~ 4 ~\text{mm} \\ &\lambda_{\text{D},e} ~~ 50 ~\mu\text{m} ~~ \varrho_{e} ~~ 60 ~\mu\text{m} \\ &\varrho_{fi} ~~ 4 ~\text{cm} \end{split}$$

Velocities

dB_{θ}/dt @ edge is measured via inductive coils

 $-2 \frac{\log_{10}|X(t,f)|^2}{-1} = 0$

