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What is numerical thermalization?
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Fig: EVDF evolution from initial 
waterbag in 3D explicit energy-
conserving PIC simulation of a 
homogeneous plasma.
NO COLLISIONS ADDED

• It relaxes the EVDF towards a Maxwellian distribution
• It is often called numerical collisions or noise
• Cause: Inherent granularity of PIC simulations, decreases with increasing particles-per-cell (ppc)



Numerical thermalization is NOT heating
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Thermalization often happens much faster than 
heating timescales

EVDF can evolve inconsistent with Vlasov eqn. 
while energy is conserved

Fig: Evolution of the kinetic energy of the 
electrons in the simulation shown on the left

Kinetic energy W remains constant

Fig: EVDF evolution from initial waterbag in 2D EC-PIC 
simulation: comparison to Maxwellian



Numerical thermalization is often faster in 
multidimensional PIC simulations 
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By 𝑡𝜔𝑝𝑒 = 3000, the EVDF in the 2D simulation has evolved significantly. 

Fig: EVDF evolution from initial waterbag in 1D and 2D PIC simulations with identical Δ𝑥/𝜆𝐷 and ppc



Thermalization is a departure from Vlasov 
eqn. representing macroparticle collisions
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𝑑𝑓𝛼

𝑑𝑡
=

𝜕

𝜕𝑡
+ 𝒗 ∙ ∇ + 𝒂 ∙ ∇𝑣 𝑓𝛼 𝑡, 𝒙 =

𝜕𝑓𝛼

𝜕𝑡
𝑐

Vlasov physics, fluid in phase space
0th order in 1/𝑁𝐷 

Effects due to inherent “graininess” of the plasma: collisions
1st order and higher in 1/𝑁𝐷 

Key parameter 𝑁𝐷: number of macroparticles per Debye length/square/cube
1D: 𝑁𝐷 = 𝑛𝑚𝑎𝑐𝜆𝐷 
2D: 𝑁𝐷 = 𝑛𝑚𝑎𝑐𝜆𝐷

2  
3D: 𝑁𝐷 = 𝑛𝑚𝑎𝑐𝜆𝐷

3  



Thermalization timescale can be obtained 
from velocity drag and diffusion
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Fokker-Planck form of numerical collision operator [1] yields
• Drag coefficients (A = Δv/Δ𝑡)

• Diffusion coefficients (D∥ = Δv∥
2/Δ𝑡 and D⊥ = Δv⊥

2 /Δ𝑡 )

From A, D∥, D⊥ can directly and extract timescales. [2]

𝜕𝑓

𝜕𝑡
𝑐

= −
𝜕

𝜕𝒗
∙ 𝐴 𝐯 𝑓 𝐯 +

1

2

𝜕

𝜕𝒗

𝜕

𝜕𝒗
: 𝑫 𝐯 𝑓 𝐯

[1] Jubin et al. Phys. Plasmas 31, 023902 (2024). doi: 10.1063/5.0180421
[2] Hockney. J. Comput. Phys. 8, (19-44) (1971); doi: 10.1016/0021-9991(71)90032-5. 

Example initial test particle 𝛿(v) EVDF 
evolving in a background Maxwellian

𝝉𝑺 =
𝐯

−𝑨 𝐯
, 𝝉𝑹~

𝐯𝐓𝐞

− 𝑨



The numerical collision operator
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[1] Birdsall and Langdon. Plasma Physics via Computer Simulation. (2004)
[2] M. Touati et al. Plasma Phys. Control. Fusion 64, 115014 (2022); doi: 10.1088/1361-6587/ac9016

Neglecting aliasing effects due to the timestep:
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𝛿𝑁𝛽

𝑚𝛼

𝜕

𝜕𝒗
−

𝛿𝑁𝛼

𝑚𝛽
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𝜕𝒗′ 𝑓𝛼 𝒗 𝑓𝛽 𝒗′

with collision tensor 𝑸𝛼𝛽 𝒗, 𝒗′  given below:

𝑸𝛼𝛽 𝒗, 𝒗′ ≡ න
𝑑𝒌

2𝜋 d
𝑲 ⊗ 𝑲 

𝒑

𝑆 𝒌 𝑆 𝒌𝒑 𝑞𝛼𝑞𝛽

𝜀0𝜖 𝒌 ∙ 𝒗, 𝒌 𝐾2

2

𝜋𝛿 𝒌 ∙ 𝒗 − 𝒌𝒑 ∙ 𝒗′

The numerical collision operator for electrostatic PIC is an analogue of the Balescu-Lenard 
collision operator. It is described in textbooks [1] and was recently carefully derived for a 
multiple-species plasma [2]. However, it is rarely considered in practice! 



Key differences from real Coulomb collisions
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Neglecting aliasing effects due to the timestep:

with collision tensor 𝑸𝛼𝛽 𝒗, 𝒗′  given below:

Differences from standard Balescu-Lenard:



Key differences from real Coulomb collisions
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Neglecting aliasing effects due to the timestep:

with collision tensor 𝑸𝛼𝛽 𝒗, 𝒗′  given below:

Differences from standard Balescu-Lenard:

• Shape functions / filtering 

𝑆 𝒌 , the Fourier transform of the shape function used in 
particle / field interpolation and additional filtering 



Key differences from real Coulomb collisions
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Neglecting aliasing effects due to the timestep:

with collision tensor 𝑸𝛼𝛽 𝒗, 𝒗′  given below:

Differences from standard Balescu-Lenard:

• Shape functions / filtering
•  Aliasing from finite spatial grid

𝒌𝒑 = 𝒌 − 𝒑 ⊙ 𝒌𝒈 𝒑 ∈ ℤ,  𝒌𝒈 = 2𝜋𝚫𝒙
−1

Wavenumbers separated by an integer number of Nyquist 
wavenumbers 𝒌𝒈 are coupled.



Key differences from real Coulomb collisions
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Neglecting aliasing effects due to the timestep:

with collision tensor 𝑸𝛼𝛽 𝒗, 𝒗′  given below:

Differences from standard Balescu-Lenard:

• Shape functions / filtering 
•  Aliasing from finite spatial grid
• Dependence on discretization method

𝑲, a wavenumber-like quantity dependent on the method by 
which Maxwell’s equations / the Poisson equation are solved 
on the grid.



Key differences from real Coulomb collisions
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Neglecting aliasing effects due to the timestep:

with collision tensor 𝑸𝛼𝛽 𝒗, 𝒗′  given below:

Differences from standard Balescu-Lenard:

• Shape functions / filtering 
•  Aliasing from finite spatial grid
• Dependence on discretization method
• The number of spatial dimensions

The number of dimensions, 𝑑, only affects the number of 

factors of 
1

2𝜋
 in the inverse Fourier transform*

*There are complications in 1D



Key differences from real Coulomb collisions
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Neglecting aliasing effects due to the timestep:

with collision tensor 𝑸𝛼𝛽 𝒗, 𝒗′  given below:

Differences from standard Balescu-Lenard:

• Shape functions / filtering 
•  Aliasing from finite spatial grid
• Dependence on discretization method
• The number of spatial dimensions
• The macroparticle weighting!

Macroparticle weight 𝛿𝑁𝛼 =
Q𝛼

q𝛼
=

M𝛼

m𝛼
  for species 𝛼

The whole collision operator is scaled by the number of real 
particles represented by a macroparticle! 



Accurate kinetic behavior requires sufficiently 
small numerical thermalization/relaxation time 𝜏𝑅 
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• Long PIC simulations do not exactly act as Vlasov solvers

• Convergence tests (increasing ppc until results no longer change) are useful

• Thermalization timescale gives a quantitative answer to the question of: 
“How many particles per cell do we need?”

• We require numerical thermalization time > real timescale of EVDF evolution or particle 
residence time in simulation



Thermalization timescales of PIC plasmas
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Thermalization in energy conserving (EC) PIC vs 
momentum conserving (MC) PIC
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• Scaling in EC-PIC and MC-PIC is 
comparable

• EC-PIC was used for the following 
work to allow broader parameter 

space, namely: 
Δ𝑥

𝜆𝐷
> 1

Fig: thermalization time in 2D EC-PIC and MC-PIC as a function of 𝑁𝐷. 



Thermalization in 2D PIC – 𝑁𝐷 scaling
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[1] Hockney. J. Comput. Phys. 8, (19-44) (1971); doi: 10.1016/0021-9991(71)90032-5. 

Linear in number of macroparticles per 

Debye volume, 𝑁𝐷 = n𝜆𝐷
2  

𝜏𝑅 ∝ 𝑁𝐷 in 2D PIC is directly obtainable 
from the numerical collision operator.

Hockney’s empirical formula [1]:

𝜏𝑅𝜔𝑝𝑒 =
2𝜋𝑁𝐷

0.98
1 +

Δx

𝜆𝐷

2

Fig: Thermalization time as a function of 𝑁𝐷 in 2D EC-PIC 
using CIC scheme



Thermalization in 2D PIC - Δ𝑥/𝜆𝐷scaling
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Increasing 
𝛥𝑥

𝜆𝐷
 broadens effective particle 

width and reduces rate of thermalization.

Hockney’s empirical formula [1]:

𝜏𝑅𝜔𝑝𝑒 =
2𝜋𝑁𝐷

0.98
1 +

Δx

𝜆𝐷

2

Fig: Thermalization time as a function of grid spacing in 
2D EC-PIC using CIC scheme

[1] Hockney. J. Comput. Phys. 8, (19-44) (1971); doi: 10.1016/0021-9991(71)90032-5. 



Thermalization in 3D PIC – 𝑁𝐷 scaling
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Real Coulomb collisions in 3D space:

𝜏𝑅𝜔𝑝𝑒 ∝
𝑁𝐷

ln 𝑁𝐷

But this is incorrect for 3D PIC! Instead:

𝜏𝑅𝜔𝑝𝑒 ∝ 𝑁𝐷

Our empirical fit to measured 𝜏𝑅:

𝜏𝑅𝜔𝑝𝑒 = 2𝜋𝑁𝐷 1.58 + 0.92
Δ𝑥

𝜆𝐷
+ 4.0

Δ𝑥

𝜆𝐷

2

Fig: Thermalization time as a function of 𝑁𝐷 in 3D EC-
PIC using CIC scheme



Thermalization in 3D PIC – Δ𝑥/𝜆𝐷scaling
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Same story - increasing 𝛥𝑥/𝜆𝐷: 
• Broadens effective particle width
• Reduces rate of thermalization
• Increases 𝜏𝑅

Our empirical fit to measured 3D PIC 𝜏𝑅:

𝜏𝑅𝜔𝑝𝑒 = 2𝜋𝑁𝐷 1.58 + 0.92
Δ𝑥

𝜆𝐷
+ 4.0

Δ𝑥

𝜆𝐷

2

Fig: Thermalization time as a function of grid spacing 
in 3D EC-PIC using CIC scheme



Slow thermalization in 1D PIC – 𝑁𝐷
2 scaling
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To first order in 1/𝑁𝐷 the collision operator cancels 
any stable distribution in a single-species plasma, 
not just a Maxwellian [1,2].*

Velocities can be exchanged, but not changed.

Relaxation rates depend on next order. [2,3,4]

𝜏𝑅𝜔𝑝𝑒 ∝ 𝑁𝐷
2

3-particle correlations required for relaxation! [2]

[1] Eldridge and Feix. Phys. Fluids 6, 398 (1963); doi: 10.1063/1.1706746.
[2] Dawson. Phys. Fluids 7, 419 (1964); doi: 10.1063/1.1711214.
[3] Montgomery and Nielson. Phys. Fluids 13, 1405 (1970); doi: 10.1063/1.1693081.
[4] Virtamo and Tuomisto. Phys. Fluids 22, 172 (1979); doi: 10.1063/1.862453.
[5] Turner. Phys. Plasmas 13, 033506 (2006). doi: 10.1063/1.2169752

Fig: Numerical thermalization time in 1D PIC 
Fig. from [3].

*Exceptions occur when MCC added! [5]



Exception: 1D PIC/MCC
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1D PIC numerical thermalization can speed up significantly 
when using a Monte Carlo collision algorithm. [1]

𝜏𝑅𝜔𝑝𝑒 ∝ 𝑁𝐷
2 →  𝜏𝑅𝜔𝑝𝑒 ∝ 𝑁𝐷

𝜏𝑅𝜔𝑝𝑒 =
34.4

𝑁𝐷
−2+28𝑁𝐷

−1 𝜈/𝜔𝑝𝑒
  [1]

[1] Turner. Phys. Plasmas 13, 033506 (2006). doi: 10.1063/1.2169752
[2] Lai et al. Phys. Plasmas 21, 122111 (2014); doi: 10.1063/1.4904307
[3] Lai et al. Phys. Plasmas 22, 092127 (2015); doi: 10.1063/1.4931741

Fig: Dependence of thermalization time on 
the ratio of the collision frequency to the 
plasma frequency. Fig. from [1].

Return of the first order 1/𝑁𝐷 numerical collision operator 
term and breaking the kinetic block: see [2,3] 



Mitigation strategies
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Mitigation strategy: Increase ppc
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In any dimension, 𝑁𝐷 ∝ 𝑝𝑝𝑐

More markers in phase space →PIC 
behaves more like a fluid in phase space 

More macroparticles → fewer real 
particles represented by each marker

Fig: Thermalization time as a function of 𝑁𝐷 in 2D EC-PIC 
using CIC scheme



Mitigation strategy: Increase Δ𝑥
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Best impact at 
𝛥𝑥

𝜆𝐷
≫ 1 

Use energy conserving codes which 
allow under-resolution of 𝜆𝐷.

Consider also: 
• Using higher order shape functions 

(not just CIC)
•  Filtering

Don’t forget to increase ppc when 
increasing 𝛥𝑥!

Fig: Thermalization time as a function of grid spacing in 
2D EC-PIC using CIC scheme



Remember that increasing 𝛥𝑥 without 
increasing ppc reduces total macroparticles!
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Increasing Δ𝑥 without increasing ppc:

• Lowers actual macroparticle density

• Reduces 𝑁𝐷 = 𝑝𝑝𝑐
𝜆𝐷

Δ𝑥

𝑑𝑖𝑚
 

• Ultimately enhances thermalization

Fig: 2D electrostatic PIC thermalization time with fixed ppc, 
increasing grid spacing



Maintaining timescale ordering
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For this simulation:

𝜏𝐿𝑥 > 𝜏𝑅
𝑟𝑒𝑎𝑙 > 𝜏𝑅

𝑛𝑢𝑚 >  𝜏𝑒−𝐴𝑟

Thermalization will happen faster
but it is nonetheless accurate.

If we can order 𝜏𝑅
𝑛𝑢𝑚 with other timescales (collision times, transport times, etc) in the 

same manner as a real Coulomb collision time 𝜏𝑅
𝑟𝑒𝑎𝑙 this might be sufficient.

Fig. modified from [1].
Thanks to Shahid Rauf for the simulation data.

[1] Jubin et al. Phys. Plasmas 31, 023902 (2024). doi: 10.1063/5.0180421

Fig: 2D PIC simulation of an electron-beam generated plasma in a magnetic 
field. A) Potential colormap, B) 1D EVDF cross sections from rectangle in Fig A. 



Mitigation strategy: Artificially scale 𝜆𝐷, 𝜔𝑝𝑒 
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For this simulation:

𝜏𝐿𝑦 > 𝜏𝑅
𝑛𝑢𝑚 >  𝜏𝑒−𝐴𝑟~𝜏𝑅

𝑟𝑒𝑎𝑙

By scaling 𝜺𝟎 → 𝟏𝟎𝟓𝟗𝜺𝟎  we 

made 𝝉𝑹
𝒏𝒖𝒎 > 𝝉𝑹

𝒓𝒆𝒂𝒍

Fig. modified from [1]. 
Thanks to Willca Villafana for the simulation data.

[1] Jubin et al. Phys. Plasmas 31, 023902 (2024). doi: 10.1063/5.0180421

Artificially increase permittivity of free space 𝜀0, thereby reducing effective 𝜔𝑝𝑒 and increasing 𝜆𝐷. 

This will delay thermalization: 𝜏𝑅 ∝ 𝑛𝜆𝐷
𝑑𝑖𝑚/𝜔𝑝𝑒.

2D PIC simulation of a hollow cathode plasma. A) Potential colormap, B) 1D EVDF 
cross sections from cathode region in Fig A. 
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• Numerical thermalization is faster in multidimensional PIC than 1D PIC

• It is faster than real thermalization due to real Coulomb collisions when CIC schemes are 

used and Debye length is well-resolved.

• Accurate kinetic behavior requires: 

Numerical thermalization timescales > real timescale of EVDF evolution

• Increasing Δ𝑥/𝜆𝐷 while maintaining 𝑁𝐷 reduces the numerical thermalization rate

• More information is needed regarding impact of irregular grid spacing, higher order 

shape functions.
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