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Motivation and Main Results

• Motivation: studying simple models can provide insight into rich nonlinear
behavior that can guide our understanding of more complex systems

• Goal: understand the influence of drag on the nonlinear evolution of an isolated
eigenmode in the presence of large scattering (common tokamak regime)

– Role of drag in chirping has been explored extensively, but less for steady solutions

• Main results: new analytic solutions are found for the electrostatic bump on tail
problem near marginal stability in the large effective scattering limit with drag

– Drag increases the saturation amplitude and shifts the oscillation frequency
– A quasilinear equation for δF naturally emerges from nonlinear theory
– Drag fundamentally modifies the resonance lines – shifting and splitting
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Assumptions to Derive the Berk-Breizman Cubic Equation

• The electrostatic Vlasov equation with scattering and drag is written

∂F
∂t

+ v
∂F
∂x

+
E(x, t)

k
∂F
∂v

=
ν3

k2

∂2δF
∂v2︸ ︷︷ ︸

diffusive

+
α2

k
∂δF
∂v︸ ︷︷ ︸

convective

• Monochromatic wave E(x, t) = Re
[
Ê(t)ei(kx−ωt)

]
, where ω2

b(t) = ekÊ(t)/m

for particles deeply trapped within the resonant phase space island.

• Bump on tail: analyze near a region where F0(v) has constant slope ∝ γL

• Assume marginal stability: γ ≡ γL − γd � γL

• Goal:1 solve for Ê(t) by perturbatively expanding in ω2
b/ν

2 � 1

1H.L. Berk et al. Phys. Rev. Lett. 76, 1256 (1996)
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Cubic Equation Contains Rich Nonlinear Behavior

• Cubic equation with scattering (ν̂ ≡ ν/γ) and drag (α̂ ≡ α/γ)
describes the evolution of the complex amplitude A(τ) ∝ Ê(γt)

dA(τ)

dτ
= A(τ)− 1

2

∫ τ/2

0
dz
∫ τ−2z

0
dx

z2e−ν̂
3z2(2z/3+x)+iα̂2z(z+x)A(τ − z)A(τ − z − x)A∗(τ − 2z − x)

• Paradigm to interpret nonlinear experimental phenomena2,3

2K.L. Wong et al. Phys. Plasmas 4, 393 (1997)
3R.F. Heeter et al. Phys. Rev. Lett. 85, 3177 (2000)
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Steady vs. Non-Steady Solutions

• Cubic equation includes both steady state and
dynamical (non-steady) solutions
• Scattering is stabilizing while drag is destabilizing

– Diffusion tends to smooth the distribution
– Convection carries flattened gradients out of

resonant region, replacing with new particles

• Non-steady solutions occur4 when α/ν > 0.96
– In reality, must integrate over 6D phase space,

leading to the more complicated chirping criteria5

• Not previously investigated: how are the steady
state solutions modified by drag?

4M.K. Lilley et al. Phys. Rev. Lett. 102, 195003 (2009)
5V.N. Duarte et al. Nucl. Fusion 57, 054001 (2017)
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Derivation of the Time-Local Cubic Equation

• Berk-Breizman cubic equation:

dA(τ)

dτ
= A(τ)− 1

2

∫ τ/2

0
dz
∫ τ−2z

0
dx

z2e−ν̂
3z2(2z/3+x)+iα̂2z(z+x)A(τ − z)A(τ − z − x)A∗(τ − 2z − x)

• When effective collisions are large relative to the growth rate, ν̂ = ν/γ � 1, the
amplitudes pass through the integral, leading to the time-local cubic equation:

– Physically, large collisions erase phase correlations, making time delays irrelevant
In tokamaks, ν̂ & 10 is typical due to small angle collisions, turbulence, etc.

dA(τ)

dτ
= A(τ)− b (ν̂, α̂) A(τ) |A(τ)|2 where

b (ν̂, α̂) =
1

2ν̂4

∫ ∞
0

e−2u3/3+iu2α̂2/ν̂2

1− iα̂2/ (ν̂2u)
du
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Analytic Solution of Time-Local Cubic Equation

• Solve for the amplitude and phase evolution separately: A(τ) = |A(τ)| eiφ(τ)

Amplitude Phase

|A(τ)|′ = |A(τ)| − Re [b] |A(τ)|3 φ′(τ) = −Im [b] |A(τ)|2

|A(τ)| =
|A0| eτ√

1− Re [b] |A0|2 (1− e2τ )
φ(τ) = φ0 −

Im [b]

2Re [b]
log
[
1− Re [b] |A0|2 (1− e2τ )

]
Asat ≡ lim

τ→∞
|A(τ)| = 1/

√
Re [b(ν̂, α̂)]

δωsat

γ
≡ − lim

τ→∞
φ′(τ) = Im [b(ν̂, α̂)] /Re [b(ν̂, α̂)]

• Re [b] > 0 corresponds to steady state solutions (α/ν < 0.96)
• Any amount of drag α̂ > 0 leads to a finite frequency shift δωsat

– E(x, t) = Ê(t)ei(kx−ωt) ∝ |A(τ)| eiφ(τ)e−i(kx−ωt) τ→∞−−−−→ Asate−i(kx−(ω+δωsat)t)
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Saturation Amplitude and Frequency Shift
Depend on Ratio of Drag to Scattering

• Larger α/ν leads to larger saturation amplitude

α� ν Asat ∝ ν̂2/
√

1− πα2/2ν2

α/ν ≈ 0.96 Asat ∝ ν̂2/
√

0.96− α/ν

• Larger α/ν leads to a larger shift in frequency due to wave packet modulation
– Approximate trends are more complicated, but note δωsat = h(α/ν)γ
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Analytic Solution Compares Well With Full Cubic Equation

• Solid curves: numerically
integrated cubic equation

– Blue: Re [A]
– Red: Im [A]
– Gold: |A|

• Dashed curves: analytic
solution to time-local
cubic equation

– Blue: Re [A]
– Red: Im [A]
– Black: |A|

• Convergence of phase lag
is not yet understood
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Perturbed Distribution Satisfies a
Quasilinear Diffusion Equation When ν/γ � 1

• Review: perturbative expansion of the Vlasov system (in ω2
b/ν

2 � 1) yields the
Berk-Breizman cubic equation, describing the nonlinear evolution of A(t) ∝ Ê(t)

• Time evolution equation for 〈δF(v , t)〉x ≡
∫
δF(v , x, t)dx is found the same way

• When ν̂ � 1, the evolution of 〈δF(v , t)〉x is identical to a quasilinear system

∂δF
∂t
− ∂

∂v

[
πγ4 (1− γd/γL)

2k3 |A(t)|2R(v)R(v)R(v)︸ ︷︷ ︸
quasilinear diffusion coefficient

∂δF
∂v

]
=
ν3

k2

∂2δF
∂v2 +

α2

k
∂δF
∂v

• Quasilinear theory usually requires overlapping resonances to destroy coherence
– Remarkably, near marginal stability with sufficiently large collisions, kinetic theory

is equivalent to quasilinear theory even for a single, isolated resonance6

6V.N. Duarte et al. Phys. Plasmas 26, 120701 (2019)
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Drag Leads to a Shift of Resonance Lines

• R(v) is the resonance window function, which
weights the quasilinear diffusion coefficient
• The window function is calculated

self-consistently from first principles
– Needed for realistic quasilinear modeling

R(v) =
k
πν

∫ ∞
0

cos

(
kv − ω
ν

s +
α2

ν2

s2

2

)
e−s3/3ds

• In the absence of collisions,R(v) = δ(ω− kv)

• Scattering broadens the resonance ∝ O (ν)
• Drag breaks symmetry, shifting the peak

– Peaks at ω − kv ≈ 31/3Γ[4/3]

2
α2

ν
≡ ∆Ωwin
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Perturbed Distribution is Sensitive to Drag

• Saturated δF can also be calculated

〈δF(v)〉x,sat ∝ −
∫ kv−ω

−∞
R(v ′)e−

α2

ν2
k(v−v′)
ν dv ′

• Perturbed distribution exhibits sensitive
dependence on α/ν due to exponential factor

– In contrast, the window function modification
is relatively less substantial

• 〈δF(v)〉x,sat agrees with 1D Vlasov code BOT7

– Caveat: simulations were run very close to
marginal stability (γd/γL = 0.99)

7M.K. Lilley et al. Phys. Plasmas 17, 092305 (2010)
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Frequency Shifts Modify the Resonance Condition

• Two distinct frequency shifts have been derived
1. Drag modulates the real part of mode amplitude

δωsat/γ = Im [b(ν̂, α̂)] /Re [b(ν̂, α̂)]

2. Drag shifts the peak in the window function
∆Ωwin/ν = 31/3Γ[4/3]α2/2ν2

• Interpretation: the “most resonant” velocity changes
as the system evolves: ωNL(t)− kvres(t) = ∆Ωwin

– Linear stage: ωL − kvres,L = ∆Ωwin

– NL stage: ωL + δωsat︸ ︷︷ ︸
ωNL

−k(vres,L + δvres,NL︸ ︷︷ ︸
new vres

) = ∆Ωwin
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Very Large Drag Induces Resonance Splitting

• To this point: all results have assumed α/ν < 0.96,
which ensures a steady solution
• What about the early phase of the non-steady

solutions with large drag α̂ > ν̂ � 1?
– The formalism remains valid until ω2

b/ν
2 � 1 is violated

• For α̂� ν̂, the window function splits with many peaks
• 〈δF(v , t)〉x has stationary, growing holes and clumps

– This is not the saturated 〈δF(v)〉x,sat from before, as
ω2

b/ν
2 ∼ 1 occurs prior to saturation in this regime

• Open question: how are these features connected to
the system’s nonlinear fate?
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Fusion Applications

• Reduced quasilinear models for wave-particle interactions are further justified
– Equivalent to full nonlinear theory in the typical ν̂ � 1 regime, even with drag
– The previously ad-hoc window function has now been rigorously derived

• Resonance-broadened-quasilinear model (RBQ)8 for realistic yet reduced
simulations of AE-induced fast ion transport in present and future burning devices

– Motivated in part by DIII-D critical gradient experiments9

– Similar methods could be applied to study RF heating

• How can the α/ν knob be turned experimentally?
– Change the level of microturbulence, which contributes to ν̂

DIII-D negative triangularity experiments led to chirping10

– Possibly other dependencies, TBD
NBI injection angle, magnetic shear, temperature, others?

8N.N. Gorelenkov et al. Phys. Plasmas 26, 072507 (2019)
9C.S. Collins et al. Phys. Rev. Lett. 116, 095001 (2016)

10M.A. Van Zeeland et al. Nucl. Fusion 59, 086028 (2019)

J.B. Lestz PPPL EP Meeting July 2020 14/ 15



Summary and Outlook

Problem

• The nonlinear evolution of instabilities was studied in the presence of drag and
large effective scattering (relative to growth rate) near marginal stability

Main Results

• The time-local cubic equation was derived, leading to new analytic solutions

• Drag increases the saturation amplitude and introduces a frequency shift

• δF satisfies a quasilinear system, demonstrating NL theory
ν̂�1−−−→ QL theory

• The resonance lines can be shifted – and even split – due to drag

Future Work

• Explore the consequences of resonance splitting for non-steady solutions

• Understand dependence of α/ν on plasma properties for experimental verification
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