Nonlinear Evolution of Instabilities due to Drag and Large Effective Scattering

Jeff Lestz University of California, Irvine

Vinícius Duarte, Nikolai Gorelenkov, Roscoe White Princeton Plasma Physics Lab

> PPPL EP Meeting Zoom, NJ July 8, 2020

Motivation and Main Results

- **Motivation**: studying simple models can provide insight into rich nonlinear behavior that can guide our understanding of more complex systems
- **Goal**: understand the influence of drag on the nonlinear evolution of an isolated eigenmode in the presence of large scattering (common tokamak regime)
 - Role of drag in chirping has been explored extensively, but less for steady solutions
- **Main results**: new analytic solutions are found for the electrostatic bump on tail problem near marginal stability in the large *effective* scattering limit with drag
 - Drag increases the saturation amplitude and shifts the oscillation frequency
 - A quasilinear equation for $\delta {\it F}$ naturally emerges from nonlinear theory
 - Drag fundamentally modifies the resonance lines shifting and splitting

- Introduction: the Berk-Breizman cubic equation
- The time-local cubic equation and its analytic solution
- Spontaneous emergence of a quasilinear system
- Implications for the resonance condition and future applications

- Introduction: the Berk-Breizman cubic equation
- The time-local cubic equation and its analytic solution
- Spontaneous emergence of a quasilinear system
- Implications for the resonance condition and future applications

Assumptions to Derive the Berk-Breizman Cubic Equation

• The electrostatic Vlasov equation with scattering and drag is written

$$\frac{\partial F}{\partial t} + v \frac{\partial F}{\partial x} + \frac{E(x,t)}{k} \frac{\partial F}{\partial v} = \underbrace{\frac{\nu^3}{k^2}}_{\text{diffusive}} \frac{\partial^2 \delta F}{\partial v^2} + \underbrace{\frac{\alpha^2}{k}}_{\text{convective}} \frac{\partial \delta F}{\partial v}$$

- Monochromatic wave $E(x, t) = \text{Re}\left[\hat{E}(t)e^{i(kx-\omega t)}\right]$, where $\omega_b^2(t) = ek\hat{E}(t)/m$ for particles deeply trapped within the resonant phase space island.
- Bump on tail: analyze near a region where $F_0(v)$ has constant slope $\propto \gamma_L$
- Assume marginal stability: $\gamma \equiv \gamma_L \gamma_d \ll \gamma_L$
- **Goal**:¹ solve for $\hat{E}(t)$ by perturbatively expanding in $\omega_b^2/\nu^2 \ll 1$

¹H.L. Berk et al. Phys. Rev. Lett. 76, 1256 (1996)

Cubic Equation Contains Rich Nonlinear Behavior

• Cubic equation with scattering $(\hat{\nu} \equiv \nu/\gamma)$ and drag $(\hat{\alpha} \equiv \alpha/\gamma)$ describes the evolution of the complex amplitude $A(\tau) \propto \hat{E}(\gamma t)$

$$\frac{dA(\tau)}{d\tau} = A(\tau) - \frac{1}{2} \int_0^{\tau/2} dz \int_0^{\tau-2z} dx$$
$$z^2 e^{-\hat{\nu}^3 z^2 (2z/3+x) + i\hat{\alpha}^2 z(z+x)} A(\tau-z) A(\tau-z-x) A^*(\tau-2z-x)$$

• Paradigm to interpret nonlinear experimental phenomena^{2,3}

²K.L. Wong *et al.* Phys. Plasmas 4, 393 (1997)
 ³R.F. Heeter *et al.* Phys. Rev. Lett. 85, 3177 (2000)

UCI University of California, Irvine

Steady vs. Non-Steady Solutions

- Cubic equation includes both steady state and dynamical (non-steady) solutions
- Scattering is stabilizing while drag is destabilizing
 - Diffusion tends to smooth the distribution
 - Convection carries flattened gradients out of resonant region, replacing with new particles
- Non-steady solutions occur⁴ when $\alpha/\nu > 0.96$
 - In reality, must integrate over 6D phase space, leading to the more complicated chirping criteria⁵
- Not previously investigated: how are the steady state solutions modified by drag?

⁴M.K. Lilley *et al.* Phys. Rev. Lett. **102**, 195003 (2009) ⁵V.N. Duarte *et al.* Nucl. Fusion **57**, 054001 (2017)

- Introduction: the Berk-Breizman cubic equation
- The time-local cubic equation and its analytic solution
- Spontaneous emergence of a quasilinear system
- Implications for the resonance condition and future applications

Derivation of the Time-Local Cubic Equation

• Berk-Breizman cubic equation:

$$\frac{dA(\tau)}{d\tau} = A(\tau) - \frac{1}{2} \int_0^{\tau/2} dz \int_0^{\tau-2z} dx$$
$$z^2 e^{-\hat{\nu}^3 z^2 (2z/3+x) + i\hat{\alpha}^2 z (z+x)} A(\tau-z) A(\tau-z-x) A^*(\tau-2z-x)$$

- When *effective* collisions are large relative to the growth rate, $\hat{\nu} = \nu/\gamma \gg 1$, the amplitudes pass through the integral, leading to the time-local cubic equation:
 - Physically, large collisions erase phase correlations, making time delays irrelevant
 In tokamaks,
 i ≥ 10 is typical due to small angle collisions, turbulence, *etc.*

$$\frac{dA(\tau)}{d\tau} = A(\tau) - b(\hat{\nu}, \hat{\alpha}) A(\tau) |A(\tau)|^2 \quad \text{where}$$
$$b(\hat{\nu}, \hat{\alpha}) = \frac{1}{2\hat{\nu}^4} \int_0^\infty \frac{e^{-2u^3/3 + iu^2\hat{\alpha}^2/\hat{\nu}^2}}{1 - i\hat{\alpha}^2/(\hat{\nu}^2 u)} du$$

Analytic Solution of Time-Local Cubic Equation

• Solve for the amplitude and phase evolution separately: $A(\tau) = |A(\tau)| e^{i\phi(\tau)}$

Amplitude

Phase

$$\begin{aligned} |A(\tau)|' &= |A(\tau)| - \operatorname{Re}[b] |A(\tau)|^3 & \phi'(\tau) &= -\operatorname{Im}[b] |A(\tau)|^2 \\ |A(\tau)| &= \frac{|A_0| e^{\tau}}{\sqrt{1 - \operatorname{Re}[b] |A_0|^2 (1 - e^{2\tau})}} & \phi(\tau) &= \phi_0 - \frac{\operatorname{Im}[b]}{2\operatorname{Re}[b]} \log\left[1 - \operatorname{Re}[b] |A_0|^2 (1 - e^{2\tau})\right] \\ A_{\operatorname{sat}} &\equiv \lim_{\tau \to \infty} |A(\tau)| &= 1/\sqrt{\operatorname{Re}[b(\hat{\nu}, \hat{\alpha})]} & \frac{\delta\omega_{\operatorname{sat}}}{\gamma} &\equiv -\lim_{\tau \to \infty} \phi'(\tau) &= \operatorname{Im}[b(\hat{\nu}, \hat{\alpha})] / \operatorname{Re}[b(\hat{\nu}, \hat{\alpha})] \end{aligned}$$

- Re [b] > 0 corresponds to steady state solutions (lpha/
 u < 0.96)
- Any amount of drag $\hat{\alpha}>$ 0 leads to a finite frequency shift $\delta\omega_{\rm sat}$
 - $E(x,t) = \hat{E}(t)e^{i(kx-\omega t)} \propto |A(\tau)| e^{i\phi(\tau)}e^{-i(kx-\omega t)} \xrightarrow{\tau \to \infty} A_{\text{sat}}e^{-i(kx-(\omega+\delta\omega_{\text{sat}})t)}$

Saturation Amplitude and Frequency Shift Depend on Ratio of Drag to Scattering

• Larger α/ν leads to larger saturation amplitude

$$\begin{array}{ll} \alpha \ll \nu & \mathbf{A}_{\rm sat} \propto \hat{\nu}^2 / \sqrt{1 - \pi \alpha^2 / 2\nu^2} \\ \alpha / \nu \approx \mathbf{0.96} & \mathbf{A}_{\rm sat} \propto \hat{\nu}^2 / \sqrt{\mathbf{0.96} - \alpha / \nu} \end{array}$$

- Larger α/ν leads to a larger shift in frequency due to wave packet modulation
 - Approximate trends are more complicated, but note $\delta\omega_{\rm sat}=h(lpha/
 u)\gamma$

Analytic Solution Compares Well With Full Cubic Equation

- Solid curves: numerically integrated cubic equation
 - Blue: Re [A]
 - Red: Im [A]
 - Gold: |A|

Analytic Solution Compares Well With Full Cubic Equation

- Solid curves: numerically integrated cubic equation
 - Blue: Re [A]
 - Red: Im [A]
 - Gold: |A|
- Dashed curves: analytic solution to time-local cubic equation
 - Blue: Re [A]
 - Red: Im [A]
 - Black: |A|
- Convergence of phase lag is not yet understood

- Introduction: the Berk-Breizman cubic equation
- The time-local cubic equation and its analytic solution
- Spontaneous emergence of a quasilinear system
- Implications for the resonance condition and future applications

Perturbed Distribution Satisfies a Quasilinear Diffusion Equation When $\nu/\gamma \gg$ 1

- Review: perturbative expansion of the Vlasov system (in $\omega_b^2/\nu^2 \ll 1$) yields the Berk-Breizman cubic equation, describing the nonlinear evolution of $A(t) \propto \hat{E}(t)$
- Time evolution equation for $\langle \delta F(v,t) \rangle_x \equiv \int \delta F(v,x,t) dx$ is found the same way
- When $\hat{\nu} \gg 1$, the evolution of $\langle \delta F(\mathbf{v}, t) \rangle_x$ is <u>identical</u> to a quasilinear system

$$\frac{\partial \delta F}{\partial t} - \frac{\partial}{\partial v} \left[\underbrace{\frac{\pi \gamma^4 \left(1 - \gamma_d / \gamma_L\right)}{2k^3} |A(t)|^2 \mathcal{R}(v)}_{\text{quasilinear diffusion coefficient}} \frac{\partial \delta F}{\partial v} \right] = \frac{\nu^3}{k^2} \frac{\partial^2 \delta F}{\partial v^2} + \frac{\alpha^2}{k} \frac{\partial \delta F}{\partial v}$$

- Quasilinear theory usually requires overlapping resonances to destroy coherence
 - Remarkably, near marginal stability with sufficiently large collisions, kinetic theory is equivalent to quasilinear theory even for a single, isolated resonance⁶

⁶V.N. Duarte *et al.* Phys. Plasmas **26**, 120701 (2019)

Drag Leads to a Shift of Resonance Lines

- $\mathcal{R}(v)$ is the <u>resonance window function</u>, which weights the quasilinear diffusion coefficient
- The window function is calculated self-consistently from first principles
 - Needed for realistic quasilinear modeling

$$\mathcal{R}(\mathbf{v}) = rac{k}{\pi
u} \int_0^\infty \cos\left(rac{k \mathbf{v} - \omega}{
u} \mathbf{s} + rac{lpha^2}{
u^2} rac{\mathbf{s}^2}{2}
ight) \mathbf{e}^{-\mathbf{s}^3/3} d\mathbf{s}$$

- In the absence of collisions, $\mathcal{R}(\mathbf{v}) = \delta(\omega k\mathbf{v})$
- Scattering broadens the resonance $\propto \mathcal{O}\left(
 u
 ight)$
- Drag breaks symmetry, shifting the peak

- Peaks at
$$\omega - kv \approx \frac{3^{1/3} \Gamma[4/3]}{2} \frac{\alpha^2}{\nu} \equiv \Delta \Omega_{\text{win}}$$

Perturbed Distribution is Sensitive to Drag

• Saturated δF can also be calculated

$$\langle \delta F(\mathbf{v})
angle_{x, {
m sat}} \propto - \int_{-\infty}^{k
u - \omega} \mathcal{R}(\mathbf{v}') e^{-rac{lpha^2}{
u^2} rac{k(
u -
u')}{
u}} d \mathbf{v}'$$

- Perturbed distribution exhibits sensitive dependence on α/ν due to exponential factor
 - In contrast, the window function modification is relatively less substantial
- $\langle \delta F(v) \rangle_{x,\text{sat}}$ agrees with 1D Vlasov code BOT⁷
 - Caveat: simulations were run *very* close to marginal stability $(\gamma_d/\gamma_L = 0.99)$

Theory vs Simulation $\delta F(\nu l\gamma = 20, \gamma_d | \gamma_L = 0.99)$ 0.5

⁷M.K. Lilley *et al.* Phys. Plasmas **17**, 092305 (2010)

- Introduction: the Berk-Breizman cubic equation
- The time-local cubic equation and its analytic solution
- Spontaneous emergence of a quasilinear system
- Implications for the resonance condition and future applications

Frequency Shifts Modify the Resonance Condition

- Two distinct frequency shifts have been derived
 - 1. Drag modulates the real part of mode amplitude

 $\bullet \delta \omega_{\text{sat}} / \gamma = \text{Im} \left[b(\hat{\nu}, \hat{\alpha}) \right] / \text{Re} \left[b(\hat{\nu}, \hat{\alpha}) \right]$

2. Drag shifts the peak in the window function

• $\Delta \Omega_{\rm win}/\nu = 3^{1/3} \Gamma[4/3] \alpha^2 / 2\nu^2$

• Interpretation: the "most resonant" velocity changes as the system evolves: $\omega_{NL}(t) - kv_{res}(t) = \Delta \Omega_{win}$

- Linear stage:
$$\omega_L - k\mathbf{v}_{\text{res},L} = \Delta\Omega_{\text{win}}$$

- NL stage: $\underbrace{\omega_L + \delta\omega_{\text{sat}}}_{\omega_{NL}} - k(\underbrace{\mathbf{v}_{\text{res},L} + \delta\mathbf{v}_{\text{res},\text{NL}}}_{\text{new }\mathbf{v}_{\text{res}}}) = \Delta\Omega_{\text{win}}$

 $\frac{(kv - \omega)}{(kv - \omega)}$

-0.1

Very Large Drag Induces Resonance Splitting

- To this point: all results have assumed $\alpha/\nu <$ 0.96, which ensures a steady solution
- What about the early phase of the non-steady solutions with large drag â > î ≫ 1?

– The formalism remains valid until $\omega_b^2/\nu^2 \ll$ 1 is violated

- For $\hat{\alpha} \gg \hat{\nu}$, the window function splits with many peaks
- $\langle \delta F(v, t) \rangle_x$ has stationary, growing holes and clumps - This is <u>not</u> the saturated $\langle \delta F(v) \rangle_{x,sat}$ from before, as
 - $\omega_b^2/
 u^2 \sim$ 1 occurs prior to saturation in this regime
- **Open question**: how are these features connected to the system's nonlinear fate?

Fusion Applications

- Reduced quasilinear models for wave-particle interactions are further justified
 - Equivalent to full nonlinear theory in the typical $\hat{
 u} \gg$ 1 regime, even with drag
 - The previously ad-hoc window function has now been rigorously derived
- Resonance-broadened-quasilinear model (RBQ)⁸ for realistic yet reduced simulations of AE-induced fast ion transport in present and future burning devices
 - Motivated in part by DIII-D critical gradient experiments⁹
 - Similar methods could be applied to study RF heating
- How can the α/ν knob be turned experimentally?
 - Change the level of microturbulence, which contributes to $\hat{\nu}$
 - DIII-D negative triangularity experiments led to chirping¹⁰
 - Possibly other dependencies, TBD
 - NBI injection angle, magnetic shear, temperature, others?

⁸N.N. Gorelenkov *et al.* Phys. Plasmas **26**, 072507 (2019) ⁹C.S. Collins *et al.* Phys. Rev. Lett. **116**, 095001 (2016) ¹⁰M.A. Van Zeeland *et al.* Nucl. Fusion **59**, 086028 (2019)

Summary and Outlook

Problem

• The nonlinear evolution of instabilities was studied in the presence of drag and large *effective* scattering (relative to growth rate) near marginal stability

Main Results

- The time-local cubic equation was derived, leading to new analytic solutions
- Drag increases the saturation amplitude and introduces a frequency shift
- δF satisfies a quasilinear system, demonstrating NL theory $\xrightarrow{\hat{\nu} \gg 1}$ QL theory
- The resonance lines can be shifted and even split due to drag

Future Work

- Explore the consequences of resonance splitting for non-steady solutions
- Understand dependence of α/ν on plasma properties for experimental verification