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Electric Propulsion and Plasma Laboratory (EPPL) 

• Nanosecond repetitively pulsed discharges

• Laser-induced plasmas

• Microwave/optical diagnostics for combustion and 

electric propulsion
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• Electric propulsion systems for CubeSats

• High power microwave gas heating

• Generation, diagnostics and applications of cold plasmas



Outlook

1. Coherent Microwave Scattering (CMS):

• Fundamentals and Experimental Implementation

• Experimental Validation of the Scattering Regimes

2. Plasma dynamics and electron decay

• Laser induced plasmas

• Nanosecond repetitively pulsed discharges

• Small plasma objects enclosed within glass tubes

3. Photoionization rates

• Femtosecond photoionization at 800nm and 3.9 um

4. Electron Momentum Transfer Collision Frequency

5. Diagnostics of selective species in gaseous mixtures

• Electric Propulsion applications

• Combustion applications

6. Conclusions
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Rayleigh scattering

Scattering in optical frequency range

𝜎 ∝ ሷ𝑠2 ∝ 𝜔4 ∝
1

𝜆4 - classical Rayleigh cross-section

𝜔0
2𝑠 = −

𝑒

𝑚
𝐸0 cos 𝜔𝑡

ሷ𝑠2 ∝ 𝜔4 (𝑃𝑟𝑎𝑑 ∝ ሷ𝑑2 ∝ ሷ𝑠2 )

Rayleigh scattering of light:

Reproduced  from http://hyperphysics.phy-astr.gsu.edu/

Characteristic spatial 

scale: ~100s of nm

>
>

Particle size

(Otherwise, Mie scattering)

ሷ𝑠 + 𝜔0
2𝑠 = −

𝑒

𝑚
𝐸0 cos 𝜔𝑡 - restoring force dominates

Free electrons:

ሷ𝑠 + 𝜔0
2𝑠 = −

𝑒

𝑚
𝐸0 cos 𝜔𝑡 - no restoring force

ሷ𝑠 = −
𝑒

𝑚
𝐸0 cos 𝜔𝑡

ሷ𝑠2– independent of  𝜔  𝜎 ∝ ሷ𝑠2 – independent of 𝜔

𝜎𝑇 =
8𝜋

3

𝑒2

4𝜋𝜀0𝑚𝑐2

2

- Thomson cross-section 

Thomson scattering on plasma electrons: 

Tsikata et al. 2015, 2018

• Incoherent: ne (>1010 cm-3) 

and Te measurements
• Coherent: Waves,  

dispersion relations

Bound electrons (Lorentz oscillator model): 𝝎𝟎 ≫ 𝝎

Thomson scattering

𝜔2𝑠

~
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Scattering off small-size plasmas in microwave frequency range

(Shneider & Miles 2005)
Wavelength: large compared to the optical band (e.g., 𝜆 =3 cm for 10 GHz)

Small plasma size (< 𝜆): 

• Entire plasma volume “sees” the same phase of incident field

• Detector is nearly equidistant from each plasma element

𝜆

In-phase coherent scattering:

Scattered power:

•
𝑑𝑃𝑆

𝑑𝐴
- time-averaged scattered power per 

unit area at detector location 

• 𝑬𝑗𝑆 - field by 𝑗th electron at observation 

location

• 𝐸𝑆,0 - field amplitude at observation 

location (same by each electron)

𝑑𝑃𝑆
𝑑𝐴

= 𝑐𝜀0 ෍

𝑗=1

𝑁

𝑬𝑗𝑆 ∙෍

𝑙=1

𝑁

𝑬𝑙𝑆 =
𝑐𝜀0
2

𝑁𝐸𝑆,0
2 + 𝑐𝜀0 ෍

𝑗,𝑙=1
𝑙≠𝑗

𝑁

𝑬𝑗𝑆 ∙ 𝑬𝑙𝑆

Incident wave

V1/3 R ≫ V Τ1 3

Scatterer

Detector

𝑑𝑃𝑆
𝑑𝐴

= 𝑐𝜀0 ෍

𝑗=1

𝑁

𝑬𝑗𝑆 ∙෍

𝑙=1

𝑁

𝑬𝑙𝑆 =
𝑐𝜀0
2

𝑁2𝐸𝑆,0
2

𝑁𝑬𝑗𝑆 𝑁𝑬𝑗𝑆
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The Fluid-Short Dipole Formulation

Consider scattering from linear, 

unmagnetized short plasma dipole:

𝐸𝐼- incident irradiating field

𝐸𝑑𝑒𝑝- depolarizing field

𝐸- total electric field inside the plasma volume

𝐸= 𝐸𝐼+ 𝐸𝑑𝑒𝑝

෨𝐸0 =
෨𝐸𝐼,0

1 + 𝜉 ǁ𝜀 − 1

𝜉 - depolarization factor

ǁ𝜀 = 𝜀′ − 𝑖𝜀′′ = 1 −
𝜔𝑝

2

𝜔2+𝜈𝑚
2 − 𝑖

𝜔𝑝
2

𝜔2+𝜈𝑚
2

𝜈𝑚

𝜔
- dielectric permittivity

𝜔𝑝 =
𝑛𝑒𝑒

2

𝑚𝜀0
- plasma frequency

Equation of motion for the electron swarm in a linearly-polarized incident plane 

wave (Lorentz oscillator):

𝐿- plasma length 

𝐷 - plasma diameter 

Electric field inside plasma: 

ሷ𝑠 + 𝜈𝑚 ሶ𝑠 = −
𝑒

𝑚
𝐸

Apply complex formalism (𝐸𝐼 = 𝐸𝐼,0 𝑐𝑜𝑠 𝜔𝑡 = 𝑅𝑒 ෨𝐸𝐼,0𝑒
𝑖𝜔𝑡 ; 𝑠 = 𝑠0 𝑐𝑜𝑠 𝜔𝑡 + 𝛷 = 𝑅𝑒 ǁ𝑠0𝑒

𝑖𝜔𝑡 ): 

Solving through complex formalism for phase and amplitude of oscillations:

• Displacement Amplitude: 𝑠0 = ǁ𝑠0 =
𝑒

𝑚

𝐸𝐼,0

𝜉𝜔𝑝
2−𝜔2

2
+ 𝜈𝑚𝜔 2

• Phase: tan Φ =
−𝜈𝑚𝜔

𝜉𝜔𝑝
2−𝜔2 (phase-lag between the electron displacement and the incident electric field)

• Dipole Moment: 𝑑0 = 𝑒𝑠0 ,𝑛𝑒(𝑟׬ 𝑧)2𝜋𝑟𝑑𝑟𝑑𝑧 = 𝑒𝑠0𝑁𝑒 =
𝑒2

𝑚

𝐸𝐼,0

𝜉𝜔𝑝
2−𝜔2

2
+ 𝜈𝑚𝜔 2

𝑁𝑒

ሷ𝑠 + 𝜈𝑚 ሶ𝑠 + 𝜉𝜔𝑝
2𝑠 = −

𝑒

𝑚
𝐸𝐼

𝜈𝑚~ 109p(Torr) ~ 1010 Hz (for 10 Torr)

Skin depth 𝛿 ≫ 𝐷
Wavelength 𝜆 ≫ 𝐷, 𝐿

Collisions are not negligible:

Microwave frequency ~10 GHz → 𝜔~6 × 1010 s-1

𝜆
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The Fluid-Short Dipole Formulation (continued)

Time-Averaged Scattered Power: 𝑃𝑆 =
ሷ𝐝2

6𝜋𝜀0𝑐
3 → 𝑃𝑆 =

𝜔4𝑑0
2

12𝜋𝜀0𝑐
3 =

𝑒4

6𝜋𝑚2𝜀0
2𝑐4

𝐼𝐼𝜔
4

𝜉𝜔𝑝
2−𝜔2

2
+ 𝜈𝑚𝜔 2

𝑁𝑒
2

Total-Cross Section: 𝜎𝑇𝑜𝑡 =
𝑃𝑆

𝐼𝐼
= 𝜎𝑇ℎ

𝜔4

𝜉𝜔𝑝
2−𝜔2

2
+ 𝜈𝑚𝜔 2

𝑁𝑒
2 = 𝜎𝑒𝑁𝑒

2

Differential Cross-Section:

𝜎𝑇ℎ =
𝑒4

6𝜋𝑚2𝜀0
2𝑐4

- Thomson cross-section

Scattering regimes:

Phase: tan Φ =
−𝜈𝑚𝜔

𝜉𝜔𝑝
2−𝜔2

𝑑𝜎𝑇𝑜𝑡

𝑑𝛺
=

3

8𝜋
𝜎𝑇𝑜𝑡 sin

2 𝜃

𝑑𝑃𝑆
𝑑𝛺

=
𝑑𝜎𝑇𝑜𝑡
𝑑𝛺

𝐼𝐼

ሷ𝑠 + 𝜈𝑚 ሶ𝑠 + 𝜉𝜔𝑝
2𝑠 = −

𝑒

𝑚
𝐸𝐼

Most common scenario (𝜉𝜔𝑝
2 is negligible):

• Frequency ~10 GHz → 𝜔~6 × 1010 rad/s
• For p=760 Torr→ 𝜈𝑚~ 1012s−1

→ 𝜈𝑚>> 𝜔 (Collisional) 

• For p=1 Torr→ 𝜈𝑚~ 109s−1
→ 𝜔 >>𝜈𝑚 (Thomson)
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Experimental Implementation
Microwave scattering detection system (based on I/Q mixer):

MW 

generator
Splitter

RF

LO

I/Q mixer

I

Q

>>

>>

Amplifiers

X𝐼

𝑄

• 𝑉𝑆 ∝ 𝐸𝑆,0 cos 𝛽 =
3 𝑃𝑆

4𝜋𝜀0𝑐

sin 𝜃 cos 𝛽

𝑅
=

𝑒2𝜔2𝐸𝐼,0

4𝜋𝑅𝑚𝜀0𝑐
2

𝑠𝑖𝑛 𝜃 cos 𝛽

𝜉𝜔𝑝
2−𝜔2

2
+ 𝜈𝑚𝜔 2

𝑁𝑒

• For prolate plasma ellipsoids (ξ << 1) with moderate electron number densities: 𝜉𝜔𝑝
2 is negligible

• Math for dielectric scatterers: 𝜎𝑇𝑜𝑡,𝐷 =
𝑃𝑆

𝐼𝐼
; 𝜎𝑇𝑜𝑡,𝐷 =

𝜔2

6𝜋𝜀0
2𝑐4

𝜀0 𝜀𝐷 − 1 𝜔V𝐷
2

𝑉𝑆 = ∆𝑉 ҧ𝐼
2 + ∆𝑉ഥQ

2 ∝ 𝐵𝑆 ∝ 𝐸𝑆,0;

Electron Number Measurements:

𝐼 =
𝜅𝐵𝐿𝑂

2
𝜂𝐵𝐵 𝑐𝑜𝑠 Φ𝐵 +

𝜅𝐵𝐿𝑂

2
𝜂𝐵𝑆 𝑐𝑜𝑠 Φ𝑆 𝑡 = 𝑉 ҧ𝐼,0 + ∆𝑉 ҧ𝐼

𝑄 =
𝜅𝐵𝐿𝑂

2
𝜂𝐵𝐵 𝑠𝑖𝑛 Φ𝐵 +

𝜅𝐵𝐿𝑂

2
𝜂𝐵𝑆 𝑠𝑖𝑛 Φ𝑆 𝑡 = 𝑉ത𝑄,0 + ∆𝑉ത𝑄

tan Φ =
𝜈𝑚
𝜔

𝑉𝑆 = ൞
𝐴

𝑒2

𝑚 𝜔2 + 𝜈𝑚
2
𝑁𝑒 − plasma scatterer

𝐴V𝐷𝜀0 𝜀𝐷 − 1 𝜔 − dielectric scatterer

Measure

Determine 𝐴

Determine 𝑁𝑒Plug-in 𝐴
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𝑛𝑒 =
𝑁𝑒

Vp

Photography

Φ

Phase measurements:

• ΦS



Sensitivity and temporal resolution

• Increase amplitude of incident MW field, but keeping it non-intrusive

• Decrease distance to horn, but keeping it in far-field

• Increase sensitivity of MW detection system, e.g. homodyne and heterodyne detection schemes

• Increase probing frequency (collisional regime): up to about 250 GHz for 100 um plasma channels

Ways to improve sensitivity:

𝑉𝑆 ∝ 𝐸𝑆,0 cos 𝛽 =
𝑒2𝜔2𝐸𝐼,0
4𝜋𝑅𝑚𝜀0𝑐

2

𝑠𝑖𝑛 𝜃 cos 𝛽

𝜉𝜔𝑝
2 − 𝜔2 2

+ 𝜈𝑚𝜔 2

𝑁𝑒

CMS sensitivity:

Temporal resolution:

• Several periods of incident microwave radiation

• < 1 ns

• Sensitivity is governed by 𝑁𝑒: 𝑃𝑆 = 𝜎𝑇ℎ
𝜔4

𝜉𝜔𝑝
2−𝜔2

2
+ 𝜈𝑚𝜔 2

𝑁𝑒
2 𝐼𝐼

• High sensitivity due to in-phase coherency: 𝑃𝑆 ∝ 𝑁𝑒
2 (not 𝑃𝑆 ∝ 𝑁𝑒 as for incoherent counterpart)

• Minimal measurable 𝑁𝑒 ~107 electrons (currently)

• Measurements down to 𝑛𝑒 ~1012 cm2 are feasible

• Single-shot measurements 
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Outlook

1. Coherent Microwave Scattering (CMS):

• Fundamentals and Experimental Implementation

• Experimental Validation of the Scattering Regimes

2. Plasma dynamics and electron decay

• Laser induced plasmas

• Nanosecond repetitively pulsed discharges

• Small plasma objects enclosed within glass tubes

3. Photoionization rates

• Femtosecond photoionization at 800nm and 3.9 um

4. Electron Momentum Transfer Collision Frequency

5. Diagnostics of selective species in gaseous mixtures

• Electric Propulsion applications

• Combustion applications

6. Conclusions
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Experimental Validation of the Thomson and Collisional Regimes

Phase measurements:

• A 90-degree phase shift is observed as the pressure 

decreases (transition from Collisional to Thomson)

• The measured phase shift confirms the Thomson 

scattering regime at low pressures

tan Φ =
𝜈𝑚
𝜔

• Frequency~10 GHz → 𝜔~6 × 1010 rad/s

• Thomson: p=1 Torr→ 𝜈𝑚~ 109s−1
→ 𝜔 >>𝜈𝑚

• Collisional: p=760 Torr→ 𝜈𝑚~ 1012s−1
→ 𝜈𝑚>> 𝜔

• 𝜉𝜔𝑝
2 is negligible

Collisional vs. Thomson regimes:

12

Scattering cross-section and ne measurements:

• Scattered signal (cross-section) is independent of frequency: 

confirms the Thomson scattering regime (unlike 1/l2 or 1/l4) 
• Reasonable agreement between TMS and Hairpin probe

• Glow discharge: Diam-1.5 cm, ~1 Torr

• CMS at 3-4 GHz

𝑉𝑆 = 𝐴
𝑒2

𝑚𝜔
𝑁𝑒

• Laser-induced plasma: 1-760 Torr

• CMS at 11 GHz

Regime Condition 
Coherent scattering 

cross-section, σ𝑒  

Phase Shift, 

Φ 

Thomson 𝜔 ≫ 𝜈𝑚  𝜎𝑇ℎ  0° 

Collisional 𝜈𝑚 ≫ 𝜔 𝜎𝑇ℎ  
𝜔

𝜈𝑚
 
2

∝
1

𝜆2
 90° 

 

Patel et al. Sci. Reports (2021); Ranjan et al. Rev. Sci. Instrum. (2022) 
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Laser-induced plasmas

• Laser:

• 100 fs, <7 mJ, 800nm, 

400 mm lens;

• 5 ns, < 3 mJ, 287.5 nm 

(2 + 1) REMPI of O2, 

175 mm lens;

• CMS: 11 GHz

• Pressure: 1-760 Torr

14

Applications:

• Laser-assisted ignition

• Plasma filamentation physics

• Combustion diagnostics



ICCD Imaging and Radiation Pattern

ICCD Imaging 

760 Torr; 100 ns, 250 accumulations; Abel Inverted; 

𝔞 = 𝔟 = 280 μm, 𝔠 = 4.5 mm (𝜉 < 0.01).

ne Skin-Depth Limits:

• 760 Torr: 51015 cm-3

• 1 Torr: 1014 cm-3

-Short Dipole

t= 5 ns

• Good agreement between the measured radiation pattern and the theoretical short dipole pattern.

Radiation Pattern
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Electron decay in laser-induced plasmas (1 atm, 800 nm)
Electron Decay in various gases:

Sharma et.al. Sci. Reports (2018); Sharma et.al. J. Appl. Phys (2019)
16

Electron Decay in air:

Experiment Numerical simulations

• Analysis of mechanisms of electron decay (e.g., dissociative 

recombination, attachment to oxygen)

• Validation of numerical codes



Ne measurements:

• Ideality of Thomson regime: knowledge of 𝜈𝑚 is unnecessary

𝑉𝑆 = ൞
𝐴

𝑒2

𝑚 𝜔2 + 𝜈𝑚
2
𝑁𝑒 − plasma scatterer

𝐴V𝐷𝜀0 𝜀𝐷 − 1 𝜔 − dielectric scatterer
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Electron decay in laser-induced plasmas (1-760 Torr, (2+1) REMPI 287.5 nm)

𝑉𝑆 = 𝐴
𝑒2

𝑚𝜔
𝑁𝑒 𝑉𝑆 = 𝐴

𝑒2

𝑚 𝜔2 + 𝜈𝑚
2

𝑉𝑆 = 𝐴
𝑒2

𝑚𝜈𝑚
𝑁𝑒

Patel et al. Sci. Reports (2021) 



Nanosecond Repetitively Pulsed Discharges (1 atm): CMS-LRS 
Applications. Important CMS features:

Experimental details:

• Pin-to-pin configuration;

• 1 atm;

• HV pulse: 20kV, 100 ns, 5 mJ.

Raw decay by CMS only (unphysical):

ng measurements by LRS : Corrected ne decay (CMS-LRS combined):

Wang et.al. J. Appl. Phys. (2021)

v

LRS: Laser Rayleigh Scattering
CMS: Coherent Microwave Scattering

• Plasma-assisted ignition and combustion, aerodynamic flow control, material processing, plasma medicine

• Collisional CMS (1 atm) 𝑉𝑠(𝑡) = 𝐴
𝑒2

𝑚𝜈𝑚(𝑡)
𝑁𝑒(𝑡) - knowledge of collisional frequency 𝜈𝑚(𝑡) is required

• This (in turn) requires 𝑛𝑔(𝑡)- gas number density; 𝜎𝑒𝑔- e-g collision cross-section, 𝑣𝑇𝑒-electron thermal velocity (as 𝜈𝑚 = 𝑛𝑔𝜎𝑒𝑔𝑣𝑇𝑒) 

• Plateau is unphysical

• Reason: Due to 

simultaneous reduction 

of 𝑛𝑔 and 𝑛𝑒

v
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Nanosecond Repetitively Pulsed Discharges (1 atm): CMS-LRS 
Experimental Details:

Wang et.al. Plasma Sources Sci Technol. (2018); Wang et.al. J. Appl. Phys. (2021); Wang et.al. J. Appl. Phys. (2022)
19

100-kHz NRP plasma dynamics:During ns-pulse: Afterglow:

• Mechanisms of electron decay: anomalous (slow) 

electron decay (e.g., dissociative recombination, 

attachment to oxygen)

• Validation of numerical codes

cc c

cc
ccc c

cc c

c c

c

c



Glow Discharge Plasma Dynamics 

• TMS: 3-3.9 GHz

Hairpin resonator probe:

Experimental details:

Thomson Microwave Scattering (TMS):

• ω𝑟
2 = ω𝑜

2 +ω𝑝
2 • Output signal (cross-section) is independent of frequency

• Confirms the Thomson scattering regime 

• Discharge tube: Diam-1.5 cm; 

Length-7 cm; 0.2-2.5 Torr
• Hairpin probe: length-

7.5mm; 𝑓0=9.8 GHz

TMS and Hairpin comparison:

• Reasonable agreement

Ranjan et al. Rev. Sci. Instrum. (2022) 
20

• Plasma antennae

• Plasma-based 

metamaterials, photonic 

crystals

Applications:
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Application and Motivation

• Minimal sensitivity 𝑛𝑒  1016 - 1017 cm-3

• Kerr and plasma nonlinearities are significant 

(spatial distribution of laser intensity is unknown ) 

• Tunnelling ionization dominates

Time-of-flight (TOF) mass spectrometer

Talebpour et al. (1997) (1999)Bodrov et al. Optics Express  (2011)

• Filamentation physics, combustion

• Direct measurements of photoionization rates at 800 nm are largely unavailable

• Can detect signal proportional to 𝑁𝑒 generated

• Semi-empirical method:

• Ion signal obtained cannot be calibrated (there is no 

testing object)

• Uses theoretical value for  𝑁𝑒

Laser Interferometry
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𝜎8 = 1.210-126 s-1W-1m16

𝑁𝑒 =
231 𝜋

1024 ∙ 16

𝜋

8
𝜎8 𝑛0 𝜏 𝜋 𝑤0

2 𝑧𝑅 𝐼0
8

𝜈 = 𝜎8 𝐼
8

Multiphoton ionization at 800 nm in air

• Fs-laser: 800 nm, 100 Hz repetition rate, 0.32 – 0.78 

mJ/Pulse, ~100 fs FWHM

• CMS system: 10.45 GHz, homodyne, I/Q mixer 

Scattering regime:Experimental details:

• Collisional regime: 𝜈𝑚>> 𝜔 (𝜈𝑚~1012 s-1; 𝜔~6x1010 rad/s)

• 𝑉𝑆 = ቐ
𝐴

𝑒2

𝑚𝜈𝑚
𝑁𝑒 − plasma scatterer

𝐴V𝐷𝜀0 𝜀𝐷 − 1 𝜔 − dielectric scatterer

8-photon MPI of O2:

Optical nonlinearities:

• nonlinear optical effects are OFF: can estimate Intensity in plasma
23
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Femtosecond Tunneling Photoionization of air at 3.9 µm

• Fs-laser (TU Wien, Austria): 3.9 μm, 30 mJ, 𝜏𝐹𝑊𝐻𝑀=117.7 fs, beam 

diameter ~ 4mm, 150 mm lens, beam waist radius 𝑤0 =95.85 μm

• CMS system (Purdue, USA): 11 GHz, homodyne, I/Q mixer 

Experimental details: Linear regime:

• Oblate spheroid with semi-axis estimates of 𝔞 = 𝔟 = 100 μm

and 𝔠 = 0.75 mm.
• Optical nonlinearities are negligible up to ~2 mJ

𝑛𝑒 = 𝑛𝑔𝜈𝑃𝐼𝜏𝐹𝑊𝐻𝑀𝑛𝑒 =
𝑁𝑒

Vp

From CMS

From ICCD 

camera

From SHG FROG 

2.5x1019 cm-3

Photoionization rate measurements:

Patel et al. Phys. Rev. E (2022)
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Photoionization rates at 800 nm

𝑵𝒆 measurements for variety of gases: 

ν =
׬ 𝜈𝑑𝑉

𝑉0
, 𝑉0 =

4

3
𝜋 𝑤0

2 𝑧𝑅

Sharma et.al. J. Appl. Phys (2019)
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• Nonlinear optical effects are not negligible 
precise intensity is unknown

• Spatially-averaged photoionization rates: 

Experimental details:
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Electron Momentum-Transfer Collision Frequency Measurements

• Phase measurements can be used to directly determine 𝜈𝑚
• Sensitivity in transitional region: 𝜈𝑚 and 𝜔 are comparable 

• Set Φ measured for dielectric scatterer (or at low pressure) as Φ =0

• Free electrons (Thomson): ሷ𝑠 = −
𝑒

𝑚
𝐸→ ሶ𝑠 ∝ 𝑖𝜔𝐸 → 𝑗 ∝ 𝑖𝜔𝐸

• Dielectric bullet: 𝑗 ∝
𝜕𝑃

𝜕𝑡
∝ 𝑖𝜔𝐸

Concept:

Absolute calibration of phase measurement:

𝜈𝑚 = 𝜔 tan Φ

Experimental Setup:

• Oxygen: 287.5 nm (2+1) REMPI C3Πg v′ = 2, J′ ←

O2 X
3Σg

− v′′ = 0, J′′

• Air:  287.5 nm (2+1) REMPI C3Πg v′ = 2, J′ ←

O2 X
3Σg

− v′′ = 0, J′′

• Krypton: 212.5 nm Kr 5p Τ1 2 0 ← Kr 4p6 1S0

27

Motivation and Applications:

• Relevant for broad range of small-size plasmas: laser-initiated, NRP, etc.

• Lack of direct diagnostics of 𝜈𝑚
• 𝜈𝑚 is hard to estimate (EEDF, local background pressure often unknow)



Electron Momentum-Transfer Collision Frequency (via Phase Measurements)

𝝂𝒎-measurements (2+1 REMPI of Oxygen at 287.5 nm, 100 Torr):

Infer 𝜈𝑚
Retrieve

∆Φ𝑆 and 𝑉𝑆

• Enables direct measurement of collision frequency 𝜈𝑚 (for actual Electron Energy Distribution Function in plasma object under 

test)

Various pressures:

𝜈𝑚 = 𝜔 tan Φ

Oxygen Air

28
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Te via Phase Measurement

Associate  Te (or 𝜖e)

• Measured 𝜈𝑚 can be used to derive 𝑇𝑒

Cross-section (tabulated) 𝜈𝑚-measurement

𝜈𝑚 = 𝑛𝑂2
𝑣𝜎𝑡𝑟,𝑒−𝑂2

(𝜖)

29
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Use of Phase Measurement for accurate evaluation of Ne

𝑉𝑠 = 𝐴
𝑒2

𝑚 𝜔2 + 𝜈𝑚
2
𝑁𝑒Derive Ne

𝜈𝑚-measurement 𝑉𝑠-measurement

30
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Diagnostics of gaseous species in Electric Propulsion devices

(2+1) 212.5 nm REMPI of neutral Krypton

Experimental Details:

(3+2) 214nm REMPI of singly-ionized Krypton 

KDC-40 gridded ion accelerator and REMPI-TMS diagnostics

• Detection on neutral and singly-ionized Krypton is feasible
• Sensitivity is high (down to ~1011 cm-3)  

32
Patel et al. Under review (2022)

• Ionize selective component by REMPI 

• Use TMS to detect REMPI-induced 

electrons

• Correlate TMS measurement to number 

density of original specie (via absolute 

calibration)

REMPI-TMS (radar REMPI) concept:



Sharma et.al. J. Appl. Phys. (2020)

Experimental system schematics: (2+1) REMPI of CO at 230.1 nm: 

CO number density diagnostics in gaseous mixture (concept):

• Number of REMPI-induced electrons scales linearly with nCO

• Independent of the buffer gas pressure up to 5 bar

• Saturation is due to laser beam energy (two-photon absorption/photoionization)
33

Diagnostics of gaseous species in Combustion



Conclusions

• Coherent Microwave Scattering (CMS) is powerful tool for diagnostics of miniature plasma objects

• High sensitivity due to in-phase coherency: 𝑃𝑆 ∝ 𝑁𝑒
2 (not 𝑃𝑆 ∝ 𝑁𝑒 as for incoherent counterpart)

• Thomson scattering regime at low pressures: Ideality of Thomson regime (independent of 𝜈𝑚)

• Temporally-resolved measurements of plasma dynamics

• Tabulation of photoionization rates 

• Direct measurements of 𝜈𝑚 in intermediate Collisional-Thomson regime

• Applications of in-phase Coherent Microwave Scattering:

• Laser-induced plasmas

• Nanosecond Repetitively Pulsed discharges

• Small-size glow discharges

• Electric propulsion and Combustion
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Approach: 8-photon MPI of Oxygen 

𝑁𝑒 = 𝜎8 𝑛0𝜏
𝜋

8
න 𝐼8𝑑𝑉v

න𝐼 𝐫 8𝑑𝑉 =
231 𝜋

1024 ∙ 16
𝐼0

8 𝜋 𝑤0
2 𝑧𝑅𝐼 𝑟, 𝑧 = 𝐼0

𝑤0
2

)𝑤(𝑧 2
𝑒
−

2𝑟2

)𝑤(𝑧 2

• If nonlinear optical effects are negligible:

𝑛𝑒 = 𝑛0𝜏
𝜋

8
𝜎8 𝐼

8

Known/measurable 
quantities

• Integrate over beam waist/plasma area: 

Measure using 
CMS

• Finally: 𝜎8𝑁𝑒 =
231 𝜋

1024 ∙ 16

𝜋

8
𝜎8 𝑛0 𝜏 𝜋 𝑤0

2 𝑧𝑅 𝐼0
8 Find

(For Gaussian pulse 
in time domain)
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Linear operation regime

• Non- linear refractive index: 𝑛 = 𝑛0 + 𝑛2𝐼 −
𝜔𝑝

2

2𝜔0
2

▪ n0- linear index of refraction (air)
▪ Optical Kerr effect: n2- Kerr nonlinear index coefficient 

▪ Plasma nonlinearity: 𝜔𝑝
2 =

𝑒2𝑛𝑒

𝜀0𝑚𝑒
- plasma frequency; 𝜔0 - laser frequency 

Pure linear regime was observed for laser pulse energy <320 mJ
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• Measurements to determine onset of nonlinear optical effects:
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Previous applications of CMS
Nanosecond Repetitive Pulsed Discharges 

Wang et al Plasma Sources Sci. Technol. 2018

Atmospheric-Pressure Plasma Jets 

Shashurin, Keidar et al Appl Phys Lett. 2010

3mm

Point of

treatment

5 consecutive

applications,

total time -

about 5 s

Thermocouple

probe

Canady
Plasma
Scalpel
Blade

Pig’s liver
sample

(a)

Electrosurgical Discharges

Shashurin, Canady et al Sci. Rep. 2015

Laser Induced Plasmas

Sharma et al Sci. Reports 2018
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