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Traditional dusty plasma research

Research topic of dusty / complex plasma
physics was born in the 1990’s after discovery
of dust particles trapped in plasma.

Dust particles confined in processing plasma
above a wafer

G. S. Selwyn, Plasma Sources Sci.
Technol. 3, 340 (1994)
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Two concepts to explain confinement of particles in
(low temperature) plasma

Concept 1 Concept 2
(negative) charging of particles in plasma Plasma self-induced electric fields at its borders
- electrons much more mobile than lons - - electrons much more mobile than lons -
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Force balance on particle in plasma

Dominant forces:

F .
 Gravitational force Fg E F¢ (charge x Efield)

* Electrostatic force F¢ l

e lon drag force F,,

(momentum transfer from
streaming ions to particle)

e Neutral drag force
e Thermophoresis

e etc. _ , wall / electrode
Mutual Coulomb interaction




Dust structures as macroscopic model systems
(for fundamental processes such as crystal formation, phase transitions, density waves, etc.)

2D structures 3D structures

grounded electrode

RF electrode

clectrods

Experiments @ ClMlabs / Eindhoven Experiments @ Max Planck institute for Extraterrestrial
University of Technology, the Netherlands physics, Garching, Germany
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Traditional dusty/complex plasma research

Research topic of dusty plasma physics was born in the 1990’s after discovery of
dust particles trapped in plasma.

Active field for about 10 to 15 year, then faded away as most application
problems had been solved.

G. S. Selwyn, Plasma Sources Sci.
Technol. 3, 340 (1994)

Relatively large particles in steady state plasmas

Recently renewed interest for the field !!
Reasons: - improved technology / diagnostics
- applications at smaller length scales emerged
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From traditional dusty plasma to CIM

Traditional dusty and complex

plasma physics Transition from micrometer to nanometer sized particles

.
>

. Appl. Phys. Lett. (2021), 4‘

Plasma charging of nm sized quantum d
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Transition to exotic, transient and
non-quasi-neutral plasmas

©

Mature communications (2021},
Cluster chargingin afterglow plasma
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Applications with “CIM-like” ecosystems @ CiMlabs

1PRODRIVE

e = ®ignify
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Courtesy of VDL

-

https://www.smartcity.co.nz/

Engineered Diffusers™ unique
structures project general light patterns.

contamination
control for robotic
feedthroughs for
ultra-clean systems

https://www.smartcity.co.nz/

Plasma-based Air pollution
measurement technologies

Synthesis of nanoparticles for
fabrication of optical diffusers

A Courtesy of ASML ‘

Contamination control in
EUV lithography
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History of computer development

p—

Timeline of
Computer History

Presented by Feanch Mos Lubgubon

History of Computers timeline | Timetoast timelines

Courtesy of Kruidvat
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https://www.timetoast.com/timelines/history-of-computers-1f02cc77-9182-4543-8a04-0ab5551948e9

Extreme Ultraviolet (EUV) Lithography

Moore's Law

is alive and well

% ASML

Year 1970 2020 == |
. A

Courtesy of Intel; Screenshot by Stephen Shankland/CNET = i B < ’ ‘
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Y

e [ Courtesy of ASML
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Photolithography

FREFARED

PHOTORESIET SILICON WAFER

193 nm - 13.5 nm (EUV)
N

e

NA

SIMILAR CYCLE IS REPEATED
TO LAY DOWHM METAL LINKS
BETWEEN TRAMSISTORS

METAL MNEW PHOTORESIST IS 5PN
COMNECTOR OM WAFER, AND BTEFS 2 TO 4
ARE REPEATED

ficstind

IHE SHOWER THE
ETCHED AREAS, DOPING THEM

ETCHED BY GASES
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Extreme Ultraviolet (EUV) Lithography

Courtesy of ASML
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Extreme Ultraviolet (EUV) Lithography

Courtesy of ASML Y Courtesy of ASML
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EUV Photolithography: the beam path of photons

Reticle / mask

EUV photons interact with
Low pressure H, environment
- plasma

I . o AsvL

Multilayer optics
with ~7nm bilayers

Courtesy of ASML

Wafer exposure Source of EUV photons
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EUV-induced (~100 ns, 500 Hz pulsed) plasma

HZ' field averaged electron density
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Nano Contamination Control huge topic!

Reticle / mask

EUV photons interact with
Low pressure H, environment
- plasma

i

_ Courtesy of ASML

Multilayer optics
with ~7nm bilayers

Courtesy of ASML

Wafer exposure Source of EUV photons
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Process should be extremely clean

Specs: particle (>40nm) per 10,000 wafers

Sources:

oh virgin | b 3h (200W) & 18h (100W)

Y mobilizing particles

Robotic feedthrough Mo\“ng cable slabs D. Shefer et al., J. Phys. D: Appl. Phys. 56 (2023) 085204
Courtesy of VDL
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Physical eco-system (EUV or otherwise induced plasma)

= |, low pressure gas ComponentS:
o’@{‘ environment (1-10 Pa) e Gas
A‘}‘ ® ‘ * Plasma
S <+——1—— EUV & EUV-induced o
< S

5] - plasma (expandingin
background)

Particle charging
Plasma-wall interaction
Secondary electron release
Electric field generation

lon impact

Morphology change particles

plasma-induced charged pa background plasma / externally applied plasma including
electric field at velocity 1 : electrons, ions, radicals, free-foating (nm-um) particles
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Traditional methods for dust particle charge
measurement

Resonance method for single particles

Mutual particle interactions
Methods work for micron sized particles
Using mode spectra of thermally excited finite clusters

From waves in many particle systems

Dust-acoustic waves in nanodustry plasmas
Methods based on charge dependent absorption of infrared light - Methods work for nanoparticles

23 &m labs TU/e



Two (in-situ) diagnostics for charge on nanoparticles

* Based on Laser-induced Photodetachment
(in combination with microwave cavity resonance spectroscopy and laser light extinction measurements)

* Based on charge-dependence of quantum dot Photoluminescence




(nano)dusty plasma as a model system

* Plasmas containing nanometer sized particles

* Particles acquire (most often) high negative charge

* Especially at high particle densities plasma-conditions are altered (e.g. electron depletion,
change in EEDF)

Courtesy Calvin J. Hamilton

G. S. Selwyn, Plasma Sources Sci. Technol. 3, 340 (1994)

Outer space Laboratory Semicon industry
| (igniting a chemically reactive plasma)
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Dust growth in nanodusty plasmas

(laser light scattering visualization of nanoparticles)

. Low pressure 10-100 Pa

Radiofrequency (RF) driven: 13.56 MHz
Gases: Ar,

HMDSO

TR

| Standard diagnostics:

Electrical Characterization
Laser Light Scattering

; Optical emission spectroscopy
i\ SEM analysis

Nanodusty plasma without void

Homogeneous density / (relatively) monodisperse size
distribution!

Stable cloud of plasma-confined nanoparticles with monodisperse size distribution
which is homogenously distributed over the volume.
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Particle charge measurement from laser-induced
Photodetachment: general approach

1. Photodetach charge that the dust particles collected from the plasma &
measure the photodetached electrons using microwave cavity resonance
spectroscopy (MCRS)

‘ Retrieve information about the charge density on the
collection of dust particles: Output 2 n,;0,

Obtain set of
parameters for

2. Combine Laser-light extinction with MCRS _ sizea,, density n,,
and charge (; of dust
‘ Combination of these two diagnostics with model yields particles
density and size of dust particles: Output 2 n, and ay

27 @m labs



Measuring electron density with
Microwave Cavity Resonance Spectroscopy (MCRS)

Plasma operates in cylindrical resonant cavity

Half of side wall made of mesh grid for optical access

When putting in low power microwave radiation (UW range), _
standing microwaves can be excited for specific frequencies (in GHz range).

Resonance frequency depends on:
* Geometry

*  Permittivity (density of free electrons)f "
e

fTMOlO fTM110

By tracking the resonance frequency, we can determine the free electron density
(time resolution ~50 ns, lower detection limit: 10° m3)

28 CiMlabs



Laser-induced photodetachment (send laser beam
through cavity)

Picture by T.J.A. Stap
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Microwave frequency [MHz]

4286

Microwave Cavity Resonance Spectroscopy (MCRS) +
Laser Induced Photodetachment (LIPD)

ty response [mV]
detachment

B

Laser shot

>
@
O

10

Time after plasma ignition [ms]
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An, (10" m~3)

Obtaining dust charge density

[Tommmmmmmm oo NS5 (means all negative charge photodetched)

— Ane —1—ex (_ Odet Elaser)
AnSat P\T s

N5 = Qung ~ (4.0 +0.1) x 1016 ff"/m3

Majority of negative charge in plasma bound to dust particles
(described by the Havnes Parameter)

Qqng obtained. Now let’s find dust density n, to retrieve: Q4 =

__ Qang
ng

T. Staps, T. Donders, B. Platier and J. Beckers, J. Phys. D: Appl. Phys. 55 08LT0O1 @m labs TU/e



Obtaining dust density and size from time-synchronized
MCRS and laser light extinction measurements

= 300

D
[N
o

MCRS measurement Extinction measurement

[}
=
o

150

100

[ A}
o

Dust paritcle radius a (nm

0 10'3 10" 10%
Dust density ng (m?)

— 14 -3
T. Donders, T. Staps and J. Beckers. Appl. Sci. 2022, 12(23), 12013 ng=(1.2+0.2) x 10" m
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Determining in-situ dust size in another way

x 1010
6
::lj_\ 4 -
] &
i é—’ 9 -

—0.26 mJ r T
——0.69 mJ |1 < [

1.22 mJ |
—2.06 mJ| |
——242m]| |
———280mJ 0 ——* | . I T !

7 8 -2 0 2 4 6 8 10
Time since laser pulse (us)
T. Staps, T. Donders, B. Platier and J. Beckers, J. Phys. D: Appl. Phys. 55 08LTO1 T. Donders, T. Staps and J. Beckers, Phys. Plasmas 30, 083703 (2023)

33 @m labs



Stochastic charging model

Slightly adapted implementation of the work of Cui and Goree (1994)

OML currents to the particle’s surface

For typical values with depleted electron density

= onmgz BK8Te (e o
e € d mme p kBTe :E?O g
65; 8t
8kpT; ed = I
Iiy = e ma’ |——= <1 -—F ) = 06
Tmjy kgTi+ g
-~ 0.4
.
Qp = CspherePp = 4megady 0.2}
dQ i 0
Transient (re-)charging behavior: <2 _; 4 .. S5

Stochastic charging treating arrival of individual electrons and ion.
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From LIPD measurements to particle size

1: simulation

For fixed value of a, (here 100
nm), average 500 simulation
runs and obtain typical
recharging timescale fit.

2: measurement

3: compare

Find a, connected to charging time
scale in look-up table.

T 3 g <10° 200
:;_. Simulation ’5\
< 08¢ Exponential fit | 4 =
S —~ 4l 5 150} ]
o N
= 06} q % agz = (107 + 6)nm
= RS =
g @ > < 10— =
—= 0.4 N -
7 a2 (& g |
‘ 2+ — I
Loz | Z 50 |
= 0 ' A
o 0 - - - : . : : . : [ | .
- 0 5 10 15 20 25 30 -2 0 2 4 6 8 10 9 4
Time (us) Time since laser pulse (us) Charging timescale (ys)
Vary a, a'nd make look-up table 1e-time: (112 + 0.04)ps
(recharging timescale versus r,)
35 T. Donders, T. Staps and J. Beckers, Phys. Plasmas 30, 083703 (2023) Qi(m labs TU/e



Cross check with SEM analysis

Collected and SEM analyzed N=173 particles
from the same sample

60

SEM
PD decay

40

Counts (-)

80 100 120 140 160
Dust particle radius (nm)

f"m—| it B tom P oo WD=88mm PR T. Donders, T. Staps and J. Beckers, Phys. Plasmas 30, 083703 (2023)

WD = 6.8 mm Signal = 1.0000 System Vacuum = 7.19¢ 06 mbar File Name = Ar_HMDSO_sample1 |
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Merging all diagnostics together for
photodetachment sample:

— 300
250

2 0,=110%+10 nm

150

n,=(1.2+0.2) x 10 m=3
100

From photodetachment measurements we found:

(@3]
]

Dust paritcle radius a (nm

= 16 -3
1013 1014 1015 Qd nd_ (40i01) X 10-°m

Dust density ng (m?) '

T. Donders, T. Staps and J. Beckers. Appl. Sci. 2022, 12(23), 12013 . .
Q,=(330 £ 70) e at particles of 110 nm radius.
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Two (in-situ) diagnostics for charge on nanoparticles

* Based on Laser-induced Photodetachment
(in combination with microwave cavity resonance spectroscopy and laser light extinction measurements)

* Based on charge-dependence of quantum dot Photoluminescence

38 @m labs



Photoluminesence from quantum dots

Colour change when size of QD changes Also colour change when QDs feel electric field
® o Applying electric field E increases the emitted
N
Sw ® o . ' . . wavelength
Dia.: 2.7 2.9 3.8 4.3 4.8 nm )
= A2 2meF
o
>§ F A)\—DOSh—(mv—l—mh)aQD( h
=S
o
IRl PL: 510 530 555 570 590 610 nm
o
=
8 Use quantum dots as small
g nanometer sized charge probes!
[=]
2

550
Wavelength (nm)

Cheng et al., Nanoscale, 2013,5, 3547-3569
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Proof of principle experiments with QDs on sample
exposed to pulsed low pressure RF plasma

Plasma on
Plasma off redshift

$ . o
5‘ o, L ® ‘&
G e v oo
gl o 1 )
<

Emission wavelength (nm)

Monochromator + ICCD

0| 0

Long pass filter

13.56 MHz

QDs sample

QD material: CdSe/ZnS ¥

40

Z. Marvi, T. Donders, M. Hasani, G. Klaassen and J. Beckers, APL 119, 254104 (2021)
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Proof of principle experiments with QDs on sample
exposed to pulsed low pressure RF plasma

Plasma on
-11706 546.85 — -
& s @ | B /
544.6 | oS 8% | B 546.84 [
o [} 7]
g‘&% 8 1168
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€ e g T°° B0 oo 11668 £
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& 16
544.3 1 : . oo 1 1 1 1 1 1 546_78 L L L L L L
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Time (s) Time (s)
Z. Marvi, T. Donders, M. Hasani, G. Klaassen and M Hasani, G. Klaassen, Z. Marvi, M. Pustylnik and
J. Beckers, APL 119, 254104 (2021) J. Beckers, 2023 J. Phys. D: Appl. Phys. 56 025202
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Proof of principle experiments with QDs on sample
exposed to pulsed low pressure plasma

0.1 . . . :
* {’;";i;‘:;‘;’:d - A macroscopic electric field (obtained via sheath
0.08 | ¥ Calculated min A i model and Langmuir probe data) more than order
R " [ ] of magnitude too low to explain results.
E, 0.06 ; |
E : Discrete charge model: calculated max. values for
—% 0.04 | . ] 1 expected Stark shift nicely match with measured values.
“ A
002 e A Detection
Limit Combination of Stark shift measurements and discrete
pl.w . vy . vV ¥V ¥V VYV ¥V Y. Y, charge modeling to retrieve info about local surface
0 20 40 60 80 100 charge density!
Power (W)
M Hasani, G. Klaassen, Z. Marvi, M. Pustylnik and
J. Beckers, 2023 J. Phys. D: Appl. Phys. 56 025202
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Proposed usage quantum dots as surface charge
microsensor

M. Pustylnik, Z. Marvi and J. Beckers, J. Phys. D: Appl. Phys. 55 (2022) 095202

[T] core microparticle
@ quantum dot layer
[ protective coating

Figure 6. Schematically represented proposed design of a surface
charge microsensor in which the surplus electrons will be
distributed in the vicinity of the surface and their arrangement will
closely correspond to the surface arrangement of the surplus
electrons in the proposed model. A microparticle (of 1 —5 pm
radius) is coated by a layer of semiconductor QDs (of 6.6 nm
diameter). The layer of QDs is then protected against plasma
damage and electron electron penetration by a thin (~1 nm) layer of
material with negative electron surface affinity.

QD coated microparticle

Can be used to probe particle charge in different

plasma regions

Combine with Laser Induced Photodetachment
to study not only particle charge but also

dynamic (re)charging.
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Outlook:
Use momentum in applications to push diagnostic
development and physical understanding further

[T] core microparticle
@ quantum dot layer
W protective coating

Diagnostics & modeling - fundamental understanding - cool applications ©
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Measuring the last few electrons on dust particles in plasma:
from diagnostics development to application in industry

EPS 49™ CONFERENCE ON PLASMA PHYSICS

Thanks to the CIMIabs team and Dr. M. Pustylnik (for joint work on
guantum dots)

NI ASNML ==roprve ©ignify

Metherlands Organisatio
e VDL ETG

herland
for Scientific Research

Complex lonized Media — department of applied physics — Eindhoven University of Technology Qim labs TU/e
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